JPH07309617A - Inorganic powder and hardenable inorganic composition - Google Patents

Inorganic powder and hardenable inorganic composition

Info

Publication number
JPH07309617A
JPH07309617A JP9846094A JP9846094A JPH07309617A JP H07309617 A JPH07309617 A JP H07309617A JP 9846094 A JP9846094 A JP 9846094A JP 9846094 A JP9846094 A JP 9846094A JP H07309617 A JPH07309617 A JP H07309617A
Authority
JP
Japan
Prior art keywords
inorganic
powder
metakaolin
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9846094A
Other languages
Japanese (ja)
Inventor
Katsuzo Nitta
勝三 新田
Tatsutoshi Nakano
龍俊 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9846094A priority Critical patent/JPH07309617A/en
Publication of JPH07309617A publication Critical patent/JPH07309617A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain inorg. metakaolin powder excellent in reactivity with alkali and a hardenable inorg. compsn. excellent in hardening reactivity, having satisfactory moldability and suitable for use as starting material forming an inorg. molded body such as a building material excellent in appearance and strength. CONSTITUTION:Mechanical energy of 0.1-30kw/kg is applied to metakaolin obtd. by dehydrating a kaolin mineral by heating at 500-900 deg.C to obtain the objective inorg. powder and a hardened body excellent in strength and appearance is produced using a hardenable inorg. compsn. contg. 100 pts.wt. of the inorg. powder, 1-300 pts.wt. alkali metallic silicate and 10-1,000 pts.wt. water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ反応性の無機質
粉体およびこの無機質粉体を使用した硬化性無機質組成
物に関する。
TECHNICAL FIELD The present invention relates to an alkali-reactive inorganic powder and a curable inorganic composition using the inorganic powder.

【0002】[0002]

【従来の技術】特開平4−59648号公報において、
アルカリ金属珪酸塩水溶液とメタカオリン、コランダム
あるいはムライトの製造時に発生する集塵機の灰、フラ
イアッシュ等のアルカリ反応性無機質粉体と水と、必要
に応じて充填材や有機ベントナイト等の混和材を混合し
て得た硬化性無機質組成物から建築資材に有用な無機質
成形体を製造することが提案されている。
2. Description of the Related Art In Japanese Patent Laid-Open No. 4-59648,
Aqueous alkali metal silicate solution and metakaolin, ash of dust collector generated during the production of corundum or mullite, alkali-reactive inorganic powder such as fly ash, and water, and admixtures such as filler and organic bentonite are mixed if necessary. It has been proposed to produce an inorganic molded body useful for a building material from the curable inorganic composition obtained as described above.

【0003】[0003]

【発明が解決しようとする課題】しかし、アルカリ反応
性無機質粉体のうち、メタカオリンについて検討した結
果、メタカオリンは、アルカリに対して反応性が乏しい
ため、アルカリ金属珪酸塩水溶液との混合が困難で、成
形性が悪く、かつ、得られた成形体の強度が低いという
問題点がある。
However, as a result of examining metakaolin among the alkali-reactive inorganic powders, metakaolin has a poor reactivity with alkali, and thus it is difficult to mix it with an alkali metal silicate aqueous solution. However, there is a problem that the moldability is poor and the strength of the obtained molded product is low.

【0004】本発明は、上記の如き従来の問題点を改善
し、アルカリとの反応性にすぐれたメタカオリン系アル
カリ反応性無機質粉体および硬化反応性に優れ、成形性
が良好で、外観、強度に優れた建築材料等の無機質成形
体を形成する原料として好適に使用することができる硬
化性無機質組成物を提供することを目的とするものであ
る。
The present invention solves the above-mentioned problems of the prior art, is a metakaolin-based alkali-reactive inorganic powder having excellent reactivity with alkali, and has excellent curing reactivity, good moldability, appearance and strength. It is an object of the present invention to provide a curable inorganic composition that can be suitably used as a raw material for forming an inorganic molded article such as an excellent building material.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために、本発明にかかる無機質粉体は、カオリン鉱物
を500〜900℃で加熱脱水することにより得られる
メタカオリンに0.1〜30kw/kgの機械的エネル
ギーを作用させて得るようにした。上記構成において、
カオリン鉱物とは1:1層状珪酸塩で、Al2 SiO5
(OH)4 の化学式で示され、具体的には、カオリナイ
ト、ディッカナイト、ナクライト、ハロイサイト等が挙
げられる。
In order to achieve such an object, the inorganic powder according to the present invention is metakaolin obtained by heating and dehydrating kaolin mineral at 500 to 900 ° C. for 0.1 to 30 kw. It was obtained by applying mechanical energy of / kg. In the above configuration,
Kaolin mineral is a 1: 1 layered silicate, Al 2 SiO 5
It is represented by the chemical formula of (OH) 4 , and specific examples thereof include kaolinite, dickanite, nacrite and halloysite.

【0006】メタカオリンは上記のカオリン鉱物を50
0〜900℃の温度範囲内で熱処理される必要がある
が、これは、熱処理温度が500℃に満たないとカオリ
ン鉱物の水酸基が脱離せず、メタカオリンへの変成が起
こらないとともに、逆に900℃を越えると結晶化が起
こりアルカリ反応性が著しく低下するためである。な
お、更に好ましい範囲は、600〜800℃である。
Metakaolin contains 50 of the above kaolin minerals.
It is necessary to perform heat treatment within a temperature range of 0 to 900 ° C. This is because when the heat treatment temperature is less than 500 ° C, hydroxyl groups of kaolin minerals are not eliminated and metakaolin is not transformed, and conversely 900 This is because if the temperature exceeds ℃, crystallization will occur and alkali reactivity will be significantly reduced. A more preferable range is 600 to 800 ° C.

【0007】熱処理時間は、短いとメタカオリンへの変
成が起こらず、長くなってもそれ以上の効果は得られな
いので、5分〜10時間が好ましい。また、熱処理温度
が高いほど、処理時間は短くて良い。メタカオリンの粒
径は、特に限定されないが、機械的エネルギーの有効使
用の面から、平均粒径0.1〜500μmが好ましい。
更に好ましくは0.1〜100μmである。
When the heat treatment time is short, metakaolin is not converted, and even when it is long, no further effect can be obtained, so that it is preferably 5 minutes to 10 hours. Further, the higher the heat treatment temperature, the shorter the treatment time may be. The particle size of metakaolin is not particularly limited, but an average particle size of 0.1 to 500 μm is preferable from the viewpoint of effective use of mechanical energy.
More preferably, it is 0.1 to 100 μm.

【0008】上記のメタカオリンに機械的エネルギーを
作用させるとは、圧縮力、せん断力、衝撃力等を加える
事を意味する。具体的には、一般に粉砕を目的に使用さ
れている粉砕機、例えば粉砕の機構において衝撃、摩
擦、圧縮、せん断等が複合したボール媒体ミル(ボール
ミル、振動ミル、遊星ミル等)、媒体攪拌型ミル、ロー
ラミル、乳鉢等または、衝撃、摩砕が主流であるジェッ
ト粉砕機を使用する事により可能である。
Applying mechanical energy to the above metakaolin means applying compressive force, shearing force, impact force and the like. Specifically, a crusher generally used for crushing, for example, a ball medium mill (ball mill, vibration mill, planetary mill, etc.) that combines impact, friction, compression, shear, etc. in the crushing mechanism, medium stirring type It is possible to use a mill, a roller mill, a mortar or the like, or a jet crusher whose mainstream is impact and grinding.

【0009】なお、機械的エネルギーは、乾式で加えて
も湿式で加えても良い。また、セメントクリンカーや珪
砂、石灰石等の粉砕時に使用されるメチルアルコール等
のアルコール類又はトリエタノールアミン等のエタノー
ル・アミン類を中心とした液体系、ステアリン酸ナトリ
ウム・カルシウム等の固体系、アセトン蒸気等の気体系
の粉砕助剤を使用しても良い。
The mechanical energy may be added by a dry method or a wet method. In addition, liquid systems centered on alcohols such as methyl alcohol or ethanol / amines such as triethanolamine used for crushing cement clinker, silica sand, limestone, etc., solid systems such as sodium / calcium stearate, and acetone vapor. You may use gas-type grinding aids, such as.

【0010】粉体に作用させる機械的エネルギーは、
0.1kwh/kg以上30kwh/kg以下に限定さ
れる。0.1kwh/kgより小さいとメタカオリンの
活性が上がらず、アルカリとの反応性が低い。一方、3
0kwh/kgより大きくなると、粉砕装置への負荷が
大きく、媒体としてのボールや容器の摩耗も激しい。ま
た、処理粘土中への汚染(コンタミ)、コスト等の生産
性の面等で問題が生じる。なお、上記で示した機械的エ
ネルギーは、上記無機質粉体を入れて運転する時に粉砕
装置に投入した電力を処理粉体単位重量当たりで表した
ものである。
The mechanical energy applied to the powder is
It is limited to 0.1 kwh / kg or more and 30 kwh / kg or less. If it is less than 0.1 kwh / kg, the activity of metakaolin does not increase and the reactivity with alkali is low. On the other hand, 3
When it is more than 0 kwh / kg, the load on the crushing device is large, and the balls as the medium and the container are greatly worn. In addition, problems arise in terms of productivity such as contamination (contamination) in the treated clay and cost. The mechanical energy shown above is the electric power supplied to the pulverizing device when the inorganic powder is put into operation and expressed per unit weight of the treated powder.

【0011】また、粉体に作用させる単位時間当たりの
機械的エネルギーは0.01〜40kw/kghの範囲
である必要がある。0.01kw/kgh未満ではメタ
カオリンの活性が上がらず、逆に、40kw/kghを
越えると粉砕装置への負荷が大きく、媒体としてのボー
ルや容器の摩耗も激しい。また、処理粘土中への汚染、
コスト等の生産性の面等で問題が生じる。
The mechanical energy applied to the powder per unit time needs to be in the range of 0.01 to 40 kw / kgh. If it is less than 0.01 kw / kgh, the activity of metakaolin does not increase, and if it exceeds 40 kw / kgh, the load on the crushing device is large, and the balls and the container as the medium are severely worn. Also, contamination of treated clay,
Problems arise in terms of productivity such as cost.

【0012】本発明にかかる硬化性無機質組成物は、本
発明の無機質粉体100重量部と、アルカリ金属珪酸塩
1〜300重量部と、水10〜100重量部とを含む構
成とした。上記構成において、アルカリ金属珪酸塩とし
ては、M2 O・nSiO2 (M=Li、K、Naまたは
それらの混合物)で表され、n=0.05〜8のものが
好ましく、n=0.1〜3がさらに好ましく、0.5〜
2.5が特に好ましい。
The curable inorganic composition according to the present invention comprises 100 parts by weight of the inorganic powder of the present invention, 1 to 300 parts by weight of an alkali metal silicate, and 10 to 100 parts by weight of water. In the above structure, the alkali metal silicate is represented by M 2 O · nSiO 2 (M = Li, K, Na or a mixture thereof), preferably n = 0.05 to 8, and n = 0. 1-3 are more preferable, and 0.5-
2.5 is particularly preferred.

【0013】すなわち、nが8を越えた場合、アルカリ
金属珪酸塩水溶液がゲル化をおこしやすく粘度が急激に
上昇するため、粉体との混合が困難になる恐れがある。
アルカリ金属珪酸塩は水溶液で添加されるのが好まし
く、水溶液濃度は特に限定されないが、濃度が低すぎる
と無機質粉体との反応性が低下し、逆に、濃度が高すぎ
ると固定分が生じやすくなるので1%以上である必要が
あり、1〜70%が好ましい。
That is, when n exceeds 8, the aqueous solution of the alkali metal silicate is apt to gel, and the viscosity rapidly increases, which may make it difficult to mix with the powder.
The alkali metal silicate is preferably added in an aqueous solution, and the concentration of the aqueous solution is not particularly limited, but if the concentration is too low, the reactivity with the inorganic powder decreases, and conversely, if the concentration is too high, fixed components occur. Since it becomes easy, it is necessary to be 1% or more, preferably 1 to 70%.

【0014】上記アルカリ珪酸塩水溶液はアルカリ金属
珪酸塩をそのまま水に溶解してもよいが、アルカリ金属
水酸化物水溶液に珪砂、珪石粉などのSiO2 成分をn
が所定の量となるように溶解してもよい。上記アルカリ
金属珪酸塩の添加量は、無機質粉体100重量部に対
し、1〜300重量部である必要があるが、1〜250
重量部とすることが好ましく、10〜150重量部とす
ることが更に好ましい。
Although the alkali silicate aqueous solution may be prepared by dissolving the alkali metal silicate in water as it is, the SiO 2 component such as silica sand and silica stone powder is added to the alkali metal hydroxide aqueous solution.
May be dissolved in a predetermined amount. The amount of the alkali metal silicate added should be 1 to 300 parts by weight with respect to 100 parts by weight of the inorganic powder.
The amount is preferably set to 10 parts by weight, more preferably 10 to 150 parts by weight.

【0015】すなわち、アルカリ金属珪酸塩の添加量が
1重量部を下回ると、無機質粉体との反応性が低く、逆
に、300重量部を越えると、得られる無機質成形体の
機械的強度が低下する。水の添加量は、無機質粉体10
0重量部に対し、10〜1000重量部である必要があ
るが、10〜750重量部とすることが好ましく、10
〜400重量部とすることが更に好ましい。すなわち、
水の添加量が10重量部を下回ると、無機質粉体と混合
することが不可能となり、逆に、1000重量部を越え
ると、得られる無機質成形体の機械的強度が低下する。
That is, when the amount of the alkali metal silicate added is less than 1 part by weight, the reactivity with the inorganic powder is low, and conversely, when it exceeds 300 parts by weight, the mechanical strength of the obtained inorganic compact is low. descend. The amount of water added is 10
It is necessary to be 10 to 1000 parts by weight, preferably 10 to 750 parts by weight, based on 0 parts by weight.
It is more preferable that the amount is 400 parts by weight. That is,
When the amount of water added is less than 10 parts by weight, it becomes impossible to mix with the inorganic powder, and conversely, when it exceeds 1000 parts by weight, the mechanical strength of the obtained inorganic molded body decreases.

【0016】本発明にかかる無機質組成物において、必
要に応じて無機質充填材が添加されてもよい。無機質充
填材としては、例えば珪砂、珪石粉、結晶質アルミナ、
フライアッシュ、アルミナ、タルク、マイカ、珪藻土、
雲母、岩石粉末(シラス、抗火石等)、玄武岩、長石、
珪灰石、粘土、ボーキサイト、セピオライト、繊維材料
等、各種鉱物等が使用可能である。これらの充填材は、
無機質成形体の用途に応じて適宜選択され、単独で、あ
るいは混合して使用されるものである。
In the inorganic composition according to the present invention, an inorganic filler may be added if necessary. Examples of the inorganic filler include silica sand, silica stone powder, crystalline alumina,
Fly ash, alumina, talc, mica, diatomaceous earth,
Mica, rock powder (shirasu, firestone, etc.), basalt, feldspar,
Various minerals such as wollastonite, clay, bauxite, sepiolite and fiber materials can be used. These fillers are
The inorganic molded body is appropriately selected according to the intended use and is used alone or in a mixture.

【0017】無機質充填材の添加量は、無機質粉体10
0重量部に対し、700重量部を越えると機械的強度が
低下するため、700重量部以下が好ましく、更に好ま
しくは50〜500重量部である。本発明にかかる無機
質組成物において、更に、必要に応じて材料の軽量化を
目的として有機質、無機質発泡体が使用されてもよい。
The amount of the inorganic filler added is the amount of the inorganic powder 10
When the amount exceeds 700 parts by weight with respect to 0 parts by weight, the mechanical strength decreases, so the amount is preferably 700 parts by weight or less, and more preferably 50 to 500 parts by weight. In the inorganic composition according to the present invention, if necessary, an organic or inorganic foam may be used for the purpose of reducing the weight of the material.

【0018】例えば、有機質発泡体としては、塩化ビニ
ル、フェノール、ユリア、スチレン、ウレタン、エチレ
ン等の合成樹脂の粒状発泡体が挙げられ、無機質発泡体
としては、ガラスバルーン、シラスバルーン、フライア
ッシュバルーン、シリカバルーン、パーライト、ヒル
石、粒状発泡シリカ等が挙げられる。これら有機質、無
機質発泡体は、単独で使用しても混合して使用しても構
わない。
Examples of the organic foam include granular foams of synthetic resins such as vinyl chloride, phenol, urea, styrene, urethane and ethylene, and examples of the inorganic foam include glass balloons, shirasu balloons and fly ash balloons. , Silica balloons, perlite, hirucite, granular expanded silica and the like. These organic and inorganic foams may be used alone or in combination.

【0019】上記の発泡体は、比重が0.01未満で
は、成形体の機械的強度の低下を招く恐れがあり、又、
1を越えると軽量化の効果が得られないため0.01〜
1が好ましく、更に好ましくは0.03〜0.7であ
る。上記発泡体の添加量は無機質粉体100重量部に対
し、10重量部未満では軽量化の効果が得られず、一方
100重量部を越えると機械的強度が低下する恐れがあ
るため、10〜100重量部が好ましく、更に好ましく
は30〜80重量部である。
If the specific gravity of the above-mentioned foam is less than 0.01, the mechanical strength of the molded product may be deteriorated, and
If it exceeds 1, the effect of weight reduction cannot be obtained, so 0.01-
1 is preferable, and 0.03 to 0.7 is more preferable. If the addition amount of the foam is less than 10 parts by weight with respect to 100 parts by weight of the inorganic powder, the effect of weight reduction cannot be obtained. On the other hand, if it exceeds 100 parts by weight, the mechanical strength may decrease. The amount is preferably 100 parts by weight, more preferably 30 to 80 parts by weight.

【0020】本発明にかかる無機質組成物において、更
に、必要に応じて補強繊維が添加されてもよい。補強繊
維は、成形体に付与したい性能に応じ任意のものが使用
でき、例えばビニロン、ポリアミド、ポリエステル、ポ
リプロピレン、アラミド、アクリル、レーヨン等の合成
繊維、カーボン、ガラス繊維、チタン酸カリウム、鋼等
の無機繊維などが使用できる。
In the inorganic composition according to the present invention, reinforcing fibers may be further added, if necessary. As the reinforcing fiber, any one can be used according to the performance desired to be imparted to the molded product, and examples thereof include synthetic fibers such as vinylon, polyamide, polyester, polypropylene, aramid, acrylic, rayon, carbon, glass fiber, potassium titanate, steel and the like. Inorganic fibers can be used.

【0021】上記補強繊維の太さは、細すぎると混合時
に再凝集し、交絡によりファイバーボールが形成されや
すくなり、得られる成形体の強度はそれ以上改善され
ず、太すぎるか、または、短すぎると引っ張り強度向上
などの補強効果が小さく、また、長すぎると繊維の分散
性及び配向性が低下する恐れがあるので、繊維径1〜5
00μm、繊維長1〜15mmが好ましい。
If the thickness of the above-mentioned reinforcing fiber is too small, it will be re-aggregated during mixing and fiber balls will be easily formed by entanglement, and the strength of the obtained molded article will not be improved any more, and it will be too thick or short. If it is too long, the reinforcing effect such as improvement in tensile strength is small, and if it is too long, the dispersibility and orientation of the fiber may be deteriorated.
00 μm and a fiber length of 1 to 15 mm are preferable.

【0022】上記補強繊維の添加量は多くなると繊維の
分散性が低下するので、無機質粉体100重量部に対
し、10重量部以下が好ましい。なお、本発明にかかる
無機質組成物から成形体を得る方法としては、本発明の
無機質粉体と、アルカリ金属水酸化物水溶液もしくはア
ルカリ金属珪酸塩水溶液と、必要に応じて、無機質充填
材、有機質発泡体もしくは無機質発泡体、補強繊維を混
練して得られた混合物の注型、プレス、押出成形等、従
来公知の方法が使用できる。得られた成形体は常温で硬
化させてもよいが、40〜200℃の温度で加熱硬化す
ることが好ましい。
Since the dispersibility of the fibers decreases as the amount of the reinforcing fibers added increases, it is preferably 10 parts by weight or less relative to 100 parts by weight of the inorganic powder. As a method for obtaining a molded article from the inorganic composition according to the present invention, the inorganic powder of the present invention, an alkali metal hydroxide aqueous solution or an alkali metal silicate aqueous solution, and if necessary, an inorganic filler, an organic material Conventionally known methods such as casting, pressing and extrusion of a mixture obtained by kneading a foam or an inorganic foam and a reinforcing fiber can be used. The obtained molded product may be cured at room temperature, but it is preferably cured by heating at a temperature of 40 to 200 ° C.

【0023】[0023]

【作用】上記本発明にかかる無機質粉体によれば、ま
ず、カオリン鉱物を500〜900℃で加熱脱水するこ
とによってメタカオリンを得る。そして、この得られた
メタカオリンに0.1〜30kwh/kgの機械的エネ
ルギーを作用させると、メタカオリンが粉砕され、比表
面積が大きくなるため、アルカリに対する反応性が向上
する。
According to the above inorganic powder according to the present invention, first, kaolin mineral is heated and dehydrated at 500 to 900 ° C. to obtain metakaolin. When mechanical energy of 0.1 to 30 kwh / kg is applied to the obtained metakaolin, metakaolin is crushed and the specific surface area is increased, so that the reactivity with alkali is improved.

【0024】そして、本発明にかかる硬化性無機質組成
物の構成によれば、アルカリ反応性が向上した本発明の
無機質粉体と、アルカリ金属珪酸塩と、水とを配合させ
たので、この組成物を成形し硬化させると、成形性よく
外観に優れ、かつ、強度に優れた硬化体を得ることがで
きる
Further, according to the constitution of the curable inorganic composition of the present invention, the inorganic powder of the present invention having improved alkali reactivity, the alkali metal silicate and water are blended. By molding and curing the product, it is possible to obtain a cured product with good moldability, excellent appearance, and strength.

【0025】[0025]

【実施例】以下に、本発明を、その実施例を参照しつつ
詳しく説明する。まず、メタカオリン(エンゲルハード
社製のSATINTONE SP 33、平均粒径3.
3ミクロン、比表面積13.9m2 /g)を用い、以下
に示す方法で本発明にかかるアルカリ反応性無機質粉体
(以下、「無機質粉体」とのみ記す)〜を得た。な
お、加えた機械的エネルギー、単位時間当たりの機械的
エネルギーおよび得られた無機粉体〜の比表面積は
表1に示すとおりである。また、機械的エネルギーは、
メタカオリンを入れて運転する時に粉砕装置に投入した
電力を処理粉体単位重量当たりで表した。さらに、粉体
物性評価は、以下の装置を用いて行った。 ・粉度分布 レーザー回折式粒度分布測定機(セイシン
企業(株)製:PRO−7000S) ・比表面積 自動比表面積/細孔分布測定装置(島津製
作所(株)製:ASAP2000) (無機質粉体、)上記メタカオリン(平均粒径3.
3ミクロン)を三菱重工(株)製ウルトラファインミル
AT−20(ジルコニアボール10mmφ使用、ボール
充填率85%、メタカオリン混入量1.7kg、粉砕助
剤としてトリエタノールアミン25%エタノール75%
の混合物を10g添加)で表1に示す所定機械エネルギ
ーを作用させて無機質粉体を得た。
EXAMPLES The present invention will be described in detail below with reference to its examples. First, metakaolin (SATINONE SP 33 manufactured by Engelhard Co., average particle size 3.
Using 3 micron and a specific surface area of 13.9 m 2 / g), alkali-reactive inorganic powders according to the present invention (hereinafter, referred to as “inorganic powder”) to were obtained by the following method. The mechanical energy applied, the mechanical energy per unit time, and the specific surface area of the obtained inorganic powders are as shown in Table 1. Also, the mechanical energy is
The electric power supplied to the crushing device when operating with the metakaolin was expressed per unit weight of the treated powder. Furthermore, the powder physical property evaluation was performed using the following apparatus.・ Fineness distribution Laser diffraction type particle size distribution analyzer (manufactured by Seishin Enterprise Co., Ltd .: PRO-7000S) ・ Specific surface area automatic specific surface area / pore distribution measurement device (manufactured by Shimadzu Corporation: ASAP2000) (inorganic powder, ) The above metakaolin (average particle size 3.
3 micron) made by Mitsubishi Heavy Industries, Ltd. Ultra Fine Mill AT-20 (using zirconia balls 10 mmφ, ball filling rate 85%, metakaolin mixed amount 1.7 kg, triethanolamine 25% ethanol 75% as grinding aid)
The mixture was added with 10 g of the mixture) and the predetermined mechanical energy shown in Table 1 was applied to obtain an inorganic powder.

【0026】(無機質粉体、)上記メタカオリン
(平均粒径3.3ミクロン)を栗本鉄工(株)製ハイジ
ーミルBX254(ジルコニアボール10mmφ使用、
ボール充填率60%メタカオリン混入量40g)で表1
に示す所定機械エネルギーを作用させて無機質粉体を得
た。
(Inorganic powder) The above metakaolin (average particle size: 3.3 microns) was used as a product of Kurimoto Iron Works Co., Ltd. Heidi Mill BX254 (using zirconia balls 10 mmφ,
Table 1 with a ball filling rate of 60% and a metakaolin content of 40 g)
The inorganic powder was obtained by applying the predetermined mechanical energy shown in.

【0027】(無機質粉体、)上記メタカオリン
(平均粒径3.3ミクロン)を(株)マキノ製ボールミ
ルBM150(アルミナボール10mmφ使用、ボール
充填率60%、メタカオリン混入量30kg)で表1に
示す所定機械エネルギーを作用させて無機質粉体を得
た。
(Inorganic powder) The above-mentioned metakaolin (average particle size: 3.3 microns) is shown in Table 1 by Makino Co., Ltd. ball mill BM150 (using alumina balls 10 mmφ, ball filling rate 60%, metakaolin content 30 kg). A predetermined mechanical energy was applied to obtain an inorganic powder.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示したように、本発明にかかる無機
質粉体〜は、いずれも原料粉体としてのメタカオリ
ンに比べ比表面積が大きくなった。 (実施例1〜7、比較例1〜3)得られた無機質粉体
〜、および、原料粉体としての上記メタカオリンから
なる群より選ばれた無機質粉体と充填材としての住友セ
メント製、ブレーン値5000cm2 /g)、ビニロン
繊維(クラレ(株)製、RM182、長さ6mm、径1
4μm)、K2 O:SiO2 がモル比で1:1.4、濃
度が45%のアルカリ液として表2に示す割合で、オム
ニミキサーに供給し5分間混合した。混合して得た混合
物を150×50×10mmの型枠内に注入し85℃オ
ーブン内10時間養生硬化させて型枠形状の硬化体を得
た。
As shown in Table 1, each of the inorganic powders according to the present invention has a larger specific surface area than metakaolin as the raw material powder. (Examples 1 to 7 and Comparative Examples 1 to 3) Obtained inorganic powders ~, and inorganic powder selected from the group consisting of the above-mentioned metakaolin as raw material powder and Sumitomo Cement as a filler, Brane Value 5000 cm 2 / g), vinylon fiber (Kuraray Co., Ltd., RM182, length 6 mm, diameter 1)
4 μm), K 2 O: SiO 2 was supplied to an omnimixer at a ratio shown in Table 2 as an alkaline solution having a molar ratio of 1: 1.4 and a concentration of 45%, and mixed for 5 minutes. The mixture obtained by mixing was poured into a mold of 150 × 50 × 10 mm and cured by curing in an oven at 85 ° C. for 10 hours to obtain a mold-shaped cured body.

【0030】そして、得られた硬化体を50℃で5時間
乾燥させた後、気乾状態で24時間放置した試験片につ
いて曲げ強度、光沢度を調べるとともに、その結果を成
形性の目安となる混合物(ペースト)の粘度と合わせて
表2に示した。なお、表2中、無機質粉体は、原料粉
体としてのメタカオリンを表す。また、混合物の粘度、
曲げ強度、および、光沢度は、以下の方法で調べた。 混合物の粘度 上記の配合で混合し得られたペーストの粘度をB型粘度
計で測定した。 曲げ強度 得られた試験片の曲げ強度を、JIS A 1408の
方法に準じて測定した。 光沢度 得られた試験片の表面の光沢度を、JIS Z 874
1の方法に準じて測定した。
The cured product thus obtained was dried at 50 ° C. for 5 hours, and then the flexural strength and gloss of the test piece which had been left in the air-dried state for 24 hours were examined, and the result was used as an index of moldability. It is shown in Table 2 together with the viscosity of the mixture (paste). In addition, in Table 2, the inorganic powder represents metakaolin as a raw material powder. Also, the viscosity of the mixture,
The bending strength and glossiness were examined by the following methods. Viscosity of Mixture The viscosity of the paste obtained by mixing with the above formulation was measured with a B-type viscometer. Bending Strength The bending strength of the obtained test piece was measured according to the method of JIS A 1408. Glossiness The glossiness of the surface of the obtained test piece was measured according to JIS Z 874.
It measured according to the method of 1.

【0031】[0031]

【表2】 [Table 2]

【0032】表2から実施例1〜7で得た硬化体は、い
ずれも比較例1〜3で得た硬化体に比べ、その曲げ強度
および光沢度が優れていることが判る。また、使用した
混合物の粘度も低く成形性に優れていることが判る。
From Table 2, it can be seen that the cured products obtained in Examples 1 to 7 are superior in bending strength and gloss to the cured products obtained in Comparative Examples 1 to 3. Further, it can be seen that the viscosity of the mixture used is low and the moldability is excellent.

【0033】[0033]

【発明の効果】本発明にかかる無機質粉体は、以上のよ
うに構成されているので、比表面積が大きく、アルカリ
液に対する反応性に優れたものとなる。そして、本発明
にかかる硬化性無機質組成物は、アルカリ反応性無機質
粉体として、アルカリ液に対する反応性に優れた上記本
発明にかかる無機質粉体を使用したので、成形性に優
れ、かつ、緻密で外観および強度に優れた硬化体を得る
ことができる。
Since the inorganic powder according to the present invention is constituted as described above, it has a large specific surface area and excellent reactivity with an alkaline liquid. And, the curable inorganic composition according to the present invention, as the alkali-reactive inorganic powder, since the inorganic powder according to the present invention excellent in reactivity to an alkaline liquid is used, excellent moldability, and dense. It is possible to obtain a cured product having excellent appearance and strength.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カオリン鉱物を500〜900℃で加熱
脱水することにより得られるメタカオリンに0.1〜3
0kwh/kgの機械的エネルギーを作用させることで
得られる無機質粉体。
1. Metakaolin obtained by heating and dehydrating a kaolin mineral at 500 to 900 ° C. is 0.1 to 3 parts.
An inorganic powder obtained by applying mechanical energy of 0 kwh / kg.
【請求項2】 請求項1に記載の無機質粉体100重量
部と、アルカリ金属珪酸塩1〜300重量部と、水10
〜1000重量部とを含む硬化性無機質組成物。
2. 100 parts by weight of the inorganic powder according to claim 1, 1 to 300 parts by weight of an alkali metal silicate, and 10 parts of water.
~ 1000 parts by weight of a curable inorganic composition.
JP9846094A 1994-05-12 1994-05-12 Inorganic powder and hardenable inorganic composition Pending JPH07309617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9846094A JPH07309617A (en) 1994-05-12 1994-05-12 Inorganic powder and hardenable inorganic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9846094A JPH07309617A (en) 1994-05-12 1994-05-12 Inorganic powder and hardenable inorganic composition

Publications (1)

Publication Number Publication Date
JPH07309617A true JPH07309617A (en) 1995-11-28

Family

ID=14220315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9846094A Pending JPH07309617A (en) 1994-05-12 1994-05-12 Inorganic powder and hardenable inorganic composition

Country Status (1)

Country Link
JP (1) JPH07309617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868829A (en) * 1994-08-24 1999-02-09 Cdem Holland, B. V. Methods of manufacturing hydraulic materials
JP2006321662A (en) * 2005-05-17 2006-11-30 Sekisui Chem Co Ltd Hardenable inorganic composition good in low-luminosity coloration, and colored inorganic hardened body
JP2010138004A (en) * 2008-12-09 2010-06-24 Kao Corp Method for manufacturing mesoporous silica particle powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868829A (en) * 1994-08-24 1999-02-09 Cdem Holland, B. V. Methods of manufacturing hydraulic materials
JP2006321662A (en) * 2005-05-17 2006-11-30 Sekisui Chem Co Ltd Hardenable inorganic composition good in low-luminosity coloration, and colored inorganic hardened body
JP2010138004A (en) * 2008-12-09 2010-06-24 Kao Corp Method for manufacturing mesoporous silica particle powder

Similar Documents

Publication Publication Date Title
US8574358B2 (en) Geopolymeric particles, fibers, shaped articles and methods of manufacture
EP1971562B1 (en) Method of manufacture of shaped geopolymeric particles
JPH07309617A (en) Inorganic powder and hardenable inorganic composition
JP2000178065A (en) Hardenable inorganic composition and production of inorganic molding
JP2000159581A (en) Production of aluminosilicate slurry and inorganic cured product
JPH08117626A (en) Production of fly ash granular body and curable inorganic composition using fly ash granular body
JPH08119693A (en) Production of curable inorganic powder and curable inorganic composition using the same
JPH07165455A (en) Curable inorganic composition
JP3699597B2 (en) Aluminosilicate slurry, curable inorganic composition, and inorganic cured body
JP3615665B2 (en) Method for producing inorganic cured body
JP3447117B2 (en) Foamable inorganic composition
JPH06239655A (en) Inorganic composition
JP3025130B2 (en) Inorganic powder and curable inorganic composition
JPH09175813A (en) Inoragnic powder and curable inorganic composition
JP3253403B2 (en) Inorganic composition
JPH1112020A (en) Inorganic composition and production of inorganic, hardened body using the same
JPH10297916A (en) Inorganic powdery material and curing inorganic material composition
JP3305150B2 (en) Hydraulic inorganic composition
JPH08165175A (en) Foamable inorganic composition
JPH0977538A (en) Hardenable inorganic composition
JP2005343751A (en) Humidity conditioning building material and method of manufacturing the same
JP2005336032A (en) Inorganic exterior and method of manufacturing the same
JPH09142912A (en) Hardening inorganic composition
JPH08208308A (en) Production of hardenable inorganic material
JPH0789753A (en) Production of inorganic hardened body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040128

A521 Written amendment

Effective date: 20040325

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040407

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20040611

Free format text: JAPANESE INTERMEDIATE CODE: A912