JPH07307154A - Hydrogen storage electrode and manufacture thereof - Google Patents

Hydrogen storage electrode and manufacture thereof

Info

Publication number
JPH07307154A
JPH07307154A JP6052017A JP5201794A JPH07307154A JP H07307154 A JPH07307154 A JP H07307154A JP 6052017 A JP6052017 A JP 6052017A JP 5201794 A JP5201794 A JP 5201794A JP H07307154 A JPH07307154 A JP H07307154A
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
conductive metal
metal powder
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6052017A
Other languages
Japanese (ja)
Other versions
JP2726976B2 (en
Inventor
Tetsuo Sakai
哲男 境
Hiroshi Miyamura
弘 宮村
Nobuhiro Kuriyama
信宏 栗山
Hitoshi Uehara
斎 上原
Hiroshi Yoshinaga
弘 吉永
Kensuke Hidaka
謙介 日▲高▼
Yoshio Kodaira
良男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fukuda Metal Foil and Powder Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP6052017A priority Critical patent/JP2726976B2/en
Publication of JPH07307154A publication Critical patent/JPH07307154A/en
Application granted granted Critical
Publication of JP2726976B2 publication Critical patent/JP2726976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the maximum discharge capacity and decrease the cycle number reaching the maximum discharge capacity by continuously orienting conductive metal powder in parallel or almost in parallel in the cross section structure of a hydrogen storage electrode to form a micro current collector. CONSTITUTION:10-30g of conductive metal powder (flaky copper powder) whose mean major axis is 45-100mum and mean minor axis is 1-20mum is mixed with 100g of hydrogen storage alloy powder pulverized in 45mum or less. The mixed powder is filled in a mold, then press-molded at 100Mpa to form a 30mmX40 mmX0.6mm sheet. A sheet-shaped hydrogen storage electrode with cross section structure in which the conductive metal powder is arranged (oriented) in a continuously contacted state in the parallel or almost parallel direction to an electrode surface (in the vertical or almost vertical direction to the press molding direction) is obtained. In this cross section structure, the conductive metal powder is capable of efficiently collecting current from the hydrogen storage alloy powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−金属水素化
物電池の負極に用いられる素吸蔵電極及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element storage electrode used for a negative electrode of a nickel-metal hydride battery and a method for producing the same.

【0002】[0002]

【従来技術とその問題点】水素吸蔵合金は、その体積の
1000倍以上の水素を吸収・放出することができると
いう性質を有しており、水素の貯蔵体、分離・精製材
料、水素の輸送媒体などとして有用であると期待されて
いる。
2. Description of the Related Art Hydrogen storage alloys have the property of being able to absorb and release 1000 times or more of the volume of hydrogen, and are used as hydrogen storage materials, separation / purification materials, and hydrogen transportation. It is expected to be useful as a medium.

【0003】従来、二次電池としては、Ni−Cd電池
が広く使用されてきたが、Cdが毒性を有しているこ
と、電池容量が小さいことなどの理由で、他の二次電池
への代替が急速に進んでいる。そして、水素吸蔵合金
は、正極にニッケルを使用し、負極に水素吸蔵合金を使
用するニッケル−金属水素化物電池と呼ばれている二次
電池に利用されている。
Conventionally, Ni-Cd batteries have been widely used as secondary batteries. However, due to the fact that Cd has toxicity and the battery capacity is small, other secondary batteries can be used. Substitution is progressing rapidly. The hydrogen storage alloy is used in a secondary battery called nickel-metal hydride battery that uses nickel for the positive electrode and hydrogen storage alloy for the negative electrode.

【0004】しかしながら、二次電池への水素吸蔵合金
の応用には、多くの解決すべき課題が残されており、そ
の一つに電池の放電容量の向上がある。
However, many problems remain to be solved in applying the hydrogen storage alloy to the secondary battery, and one of them is improvement of the discharge capacity of the battery.

【0005】水素吸蔵合金は、水素分子を水素原子に分
解する触媒能力をその表面に備えているので、その表面
積を大きくする、即ちその粉末を微粉末にすると、この
触媒能力が向上することが知られている。このことは、
水素吸蔵合金を微粉末とすることにより、その比表面積
の増大とともに触媒能力が改善されて、ニッケル−金属
水素化物電池の放電容量が向上することを意味する。し
かしながら、水素吸蔵合金を微粉末とする場合には、合
金粉末の個数が増えて合金粉末間の接点が増え、その結
果、導電性が低下して、水素吸蔵電極の内部抵抗が大き
くなるので、電池の初期放電容量が低く、最大放電容量
に到達するまでのサイクル数が多くなるなどの欠点があ
る。
The hydrogen storage alloy has a catalytic ability for decomposing hydrogen molecules into hydrogen atoms on its surface. Therefore, if the surface area is increased, that is, if the powder is made into a fine powder, the catalytic ability can be improved. Are known. This is
By using a fine powder of the hydrogen storage alloy, it is meant that the catalytic ability is improved along with the increase of the specific surface area, and the discharge capacity of the nickel-metal hydride battery is improved. However, when the hydrogen storage alloy is a fine powder, the number of alloy powders increases, the number of contacts between the alloy powders increases, and as a result, the conductivity decreases and the internal resistance of the hydrogen storage electrode increases. There are drawbacks such as a low initial discharge capacity of the battery and a large number of cycles until reaching the maximum discharge capacity.

【0006】また、従来水素吸蔵合金粉末をシート状の
水素吸蔵電極に成形するに際し、絶縁性の樹脂をバイン
ダーとして用いているために、バインダー樹脂が水素吸
蔵合金粉末粒子間の導電性を低下させている。そこで、
水素吸蔵合金粉末粒子間の導電性を改良して、内部抵抗
を小さくするために、導電材として粉末状のカーボン、
銅、ニッケルなどを多量に添加することが行われてい
る。例えば、水素吸蔵合金粉末1gに銅粉粉末3gを添
加混合することにより、図1(B)に示す様に、合金粉
末粒子の周囲を銅粉末で覆った断面構造を持つシート状
の水素吸蔵電極を作成し、二次電池の放電容量を改善す
ることが一般的におこなわれているが、満足すべき結果
は得られていない。
Further, since the insulating resin is used as the binder when forming the hydrogen-absorbing alloy powder into a sheet-shaped hydrogen-absorbing electrode, the binder resin lowers the conductivity between the particles of the hydrogen-absorbing alloy powder. ing. Therefore,
In order to improve the conductivity between the hydrogen storage alloy powder particles and reduce the internal resistance, powdered carbon as a conductive material,
A large amount of copper, nickel, etc. are added. For example, by adding 3 g of copper powder powder to 1 g of hydrogen storage alloy powder, as shown in FIG. 1 (B), a sheet-shaped hydrogen storage electrode having a cross-sectional structure in which the periphery of alloy powder particles is covered with copper powder. Is generally performed to improve the discharge capacity of the secondary battery, but satisfactory results have not been obtained.

【0007】水素吸蔵合金粉末を銅、ニッケルなどの導
電性金属でメッキする方法は、電極の導電性を改善し、
電池の放電容量をも向上させるので、電池の性能向上と
いう点では、有用である。しかしながら、この方法は、
メッキ廃液の処理コストが高い;水素吸蔵合金粉末が全
面的にメッキされると、水素ガスの出入りが出来ず、電
池反応がおこらないので、特殊な方法で多孔質メッキを
する必要があり、製造コストが高くなるなどの点で、一
般的でない。
The method of plating the hydrogen storage alloy powder with a conductive metal such as copper or nickel improves the conductivity of the electrode,
Since it also improves the discharge capacity of the battery, it is useful in improving the performance of the battery. However, this method
The cost of processing the plating waste liquid is high; if the hydrogen-absorbing alloy powder is plated over the entire surface, hydrogen gas cannot flow in and out, and the battery reaction will not occur, so it is necessary to perform porous plating by a special method. It is not common because of the high cost.

【0008】特開平5−9504号公報は、メッキ法の
欠点を改善するため、乾式で水素吸蔵合金粉末の周囲に
銅粉末と亜酸化銅粉末とを被覆させる方法を提案してい
る。この方法は、安全で且つ製造工程が簡単であり、し
かも得られた銅粉末被覆水素吸蔵合金を使用する二次電
池は、最大放電容量が大きいとされている。しかしなが
ら、この方法に用いる亜酸化銅粉末は、充電によって銅
に還元されてからその特性を発揮するため、電池の初期
放電容量が低く、且つ最大放電容量に到達するサイクル
数が多くなる。また、造粒により形成される粉末が球形
であるため、加圧成形によるシート状負極の形成が困難
であり、樹脂をバインダーとして負極を作成しなければ
ならない。従って、シート状負極の抵抗が高く、放電容
量の顕著な向上が認められないなどの問題がある。
In order to improve the drawbacks of the plating method, Japanese Patent Laid-Open No. 9504/1993 proposes a dry method of coating the hydrogen storage alloy powder with copper powder and cuprous oxide powder. This method is safe and has a simple manufacturing process, and the secondary battery using the obtained copper powder-coated hydrogen storage alloy is said to have a large maximum discharge capacity. However, the cuprous oxide powder used in this method exhibits its characteristics after being reduced to copper by charging, so that the initial discharge capacity of the battery is low and the number of cycles to reach the maximum discharge capacity is large. Further, since the powder formed by granulation is spherical, it is difficult to form a sheet-shaped negative electrode by pressure molding, and a negative electrode must be prepared using a resin as a binder. Therefore, there is a problem that the resistance of the sheet-shaped negative electrode is high, and the discharge capacity is not significantly improved.

【0009】また、特開平4−262367号公報によ
れば、水素吸蔵合金粉末とフレークニッケル粉末とを混
合することにより、水素吸蔵合金粉末の表面をフレーク
ニッケル粉末が容易に包み込んで、粒子間の導電性が向
上するとされている。しかしながら、この場合には、各
々の粉末粒子の形状が相違するので、単に2種の粉末を
混合するだけの操作では、均一な混合は困難であり、フ
レークニッケル粉末が水素吸蔵合金粉末を包むことは、
実際上困難である。しかも、この公報に記載の方法で
は、バインダーとして樹脂を用いて負極を作成するた
め、二次電池の放電容量が大きくは向上しないという本
質的な問題がある。
Further, according to JP-A-4-262367, by mixing the hydrogen storage alloy powder and the flake nickel powder, the surface of the hydrogen storage alloy powder is easily covered with the flake nickel powder, and the particles It is said that the conductivity is improved. However, in this case, since the shape of each powder particle is different, it is difficult to uniformly mix the two powders by an operation of simply mixing the two powders, and the flake nickel powder encloses the hydrogen storage alloy powder. Is
Practically difficult. Moreover, the method described in this publication has an essential problem that the discharge capacity of the secondary battery is not significantly improved because the negative electrode is formed by using the resin as the binder.

【0010】[0010]

【発明が解決しようとする課題】本発明は、安全且つ低
コストで二次電池用の電極を製造することができる方法
を提供することを主な目的とする。
SUMMARY OF THE INVENTION The main object of the present invention is to provide a method capable of producing an electrode for a secondary battery safely and at low cost.

【0011】本発明は、さらに、最大放電容量が大き
く、且つ最大放電容量に到達するサイクル数が少ない二
次電池を形成し得る水素吸蔵電極を提供することをも、
目的とする。
The present invention also provides a hydrogen storage electrode capable of forming a secondary battery having a large maximum discharge capacity and a small number of cycles for reaching the maximum discharge capacity.
To aim.

【0012】[0012]

【問題を解決するための手段】本発明者は、水素吸蔵電
極の導電性の向上のための手段について種々検討を重ね
る過程において、導電性金属粉末を水素吸蔵電極内で連
続的に接触する様に配向させる場合には、樹脂を用いる
ことなく、加圧成形のみにより、薄くて、加工性に優れ
た水素吸蔵電極を作成することができること、その結
果、水素吸蔵電極の導電性が著しく改善されて、最大放
電容量が大きく、および最大放電容量に到達するサイク
ル数が少ない二次電池を形成しうることを見出した。
Means for Solving the Problem In the process of conducting various studies on means for improving the conductivity of the hydrogen storage electrode, the present inventor decided to continuously contact the conductive metal powder in the hydrogen storage electrode. In the case of orienting to, it is possible to form a thin hydrogen storage electrode excellent in workability only by pressure molding without using a resin, and as a result, the conductivity of the hydrogen storage electrode is significantly improved. As a result, it was found that a secondary battery having a large maximum discharge capacity and a small number of cycles reaching the maximum discharge capacity can be formed.

【0013】則ち、本発明は、下記の水素吸蔵電極およ
びその製造方法を提供するものである;1.45μm以
下の水素吸蔵合金粉末100重量部と、長径の平均が4
5〜100μmで且つ短径の平均が1〜20μmである
導電性金属粉末10〜30重量部とからなり、導電性金
属粉末の長径方向面が電極内で電極面に平行もしくは平
行に近い状態で連続的に接触したネットワークを形成し
ていることを特徴とする水素吸蔵電極。
That is, the present invention provides the following hydrogen storage electrode and a method for producing the same: 100 parts by weight of hydrogen storage alloy powder having a particle diameter of 1.45 μm or less and an average major axis of 4
5 to 100 μm and 10 to 30 parts by weight of a conductive metal powder having an average minor axis of 1 to 20 μm, and the major axis direction surface of the conductive metal powder is parallel or nearly parallel to the electrode surface in the electrode. A hydrogen storage electrode, which is characterized by forming a network in continuous contact.

【0014】2.45μm以下の水素吸蔵合金粉末10
0重量部と長径の平均が45〜100μmで且つ短径の
平均が1〜20μmである導電性金属粉末10〜30重
量部とからなる混合粉末を金型に充填して少なくとも一
回ローラ圧縮した後、加圧成型することを特徴とする水
素吸蔵電極の製造方法。
Hydrogen storage alloy powder 10 of 2.45 μm or less
0 parts by weight and 10 to 30 parts by weight of a conductive metal powder having an average major axis of 45 to 100 μm and an average minor axis of 1 to 20 μm were filled in a mold and roller-compressed at least once. After that, the method for producing a hydrogen storage electrode is characterized by performing pressure molding.

【0015】本発明方法においては、水素吸蔵電極の導
電性を高めるため、水素吸蔵合金粉末と導電性金属粉末
とを混合し、導電性金属粉末が連続的に接触して配向
し、導電性ネットワークを形成する様に、混合粉末を金
型に充填し、ローラ圧縮した後、加圧成形する。
In the method of the present invention, in order to enhance the conductivity of the hydrogen storage electrode, the hydrogen storage alloy powder and the conductive metal powder are mixed, and the conductive metal powder is continuously contacted and oriented to form a conductive network. In order to form the above, the mixed powder is filled in a mold, compressed by a roller, and then pressure-molded.

【0016】本発明で使用する水素吸蔵合金は、特に限
定されず、AB5型の組成式で示されるLaNi5系合
金、MmNi5(Mmは、希土類合金の混合物であるミ
ッシュメタルを意味する)系合金、Ti−Mn系合金、
Ti−Cr系合金、Zr−Mn系合金、Ti−Fe系合
金、Ti−Ni系合金など;AB2の組成式で示される
Zr基のラ−ベス相合金;およびこれらの改良型;さら
には、水素と接触して金属水素化物を形成する合金であ
れば良い。水素吸蔵合金粉末は、45μm以下の粉末に
粉砕して使用する。水素吸蔵合金粉末の粒径が、45μ
m以下であれば、導電性金属粉末の分散が効率良く進行
するとともに、形成された水素吸蔵電極を電池に組み込
んだ場合に、良好な電池特性が得られる。
The hydrogen storage alloy used in the present invention is not particularly limited, and is a LaNi 5 type alloy represented by an AB 5 type composition formula, MmNi 5 (Mm means Misch metal which is a mixture of rare earth alloys). Alloys, Ti-Mn alloys,
La Zr group represented by the composition formula of AB 2 - Beth phase alloy;; Ti-Cr alloy, Zr-Mn based alloy, Ti-Fe based alloy, Ti-Ni based alloys, and the like, and these improved; more Any alloy that forms a metal hydride by contact with hydrogen may be used. The hydrogen storage alloy powder is used after being pulverized to a powder of 45 μm or less. Particle size of hydrogen storage alloy powder is 45μ
When it is at most m, the dispersion of the conductive metal powder will proceed efficiently, and good battery characteristics will be obtained when the formed hydrogen storage electrode is incorporated into a battery.

【0017】本発明で使用する導電性金属粉末は、従来
からニッケル−金属水素化物電池において導電性金属粉
末として使用されている銅(Cu)、ニッケル(N
i)、コバルト(Co)の単独の粉末或いはこれらの2
種以上からなる混合粉末、さらにはこれらのいずれか1
種に他のいずれか1種以上をメッキした複合粉末などで
あれば良い。粉末としては、長径と短径とを備えた粉末
であって、例えば、片状粉、樹枝状粉、繊維状粉、針状
粉などの形状をしたものが好ましい。具体的には、長径
の平均粒径が45〜100μm程度であり、且つ短径が
1〜20μm程度であって、長径の1/5〜1/50程
度(特に好ましくは1/10〜1/20程度)の粉末が
好適である。導電性金属粉末の長径が45μm未満或い
は短径が20μm以上の場合には、水素吸蔵合金粉末よ
り小さくなるため、導電性金属粉末の間に介在する複数
の水素吸蔵合金粉末を越えて、2つの導電性金属粉末同
士が直接触することができなくなることがあり、多くの
導電性金属粉末粒子が必要となる。この場合には、接点
数の増加、即ち接触抵抗が増大することにより、導電性
が低下して、従来使用されてきた通常の銅粉末と大差が
なくなる。一方、導電性金属粉末の長径が100μm以
上を超える場合或いは短径が1μm未満である場合に
は、水素吸蔵合金粉末との混合時に、形状および寸法の
相違により、偏析したり、或いは折れ曲がって、丸く凝
集し、連続的な接触配向状態が得られず、目的とする断
面構造になりにくい。
The conductive metal powder used in the present invention is copper (Cu) or nickel (N) which has been conventionally used as a conductive metal powder in nickel-metal hydride batteries.
i), a single powder of cobalt (Co) or these two
Mixed powder consisting of at least one kind, and any one of these
Any compound powder or the like in which any one or more of the other is plated may be used. The powder is a powder having a major axis and a minor axis, and is preferably in the shape of, for example, flaky powder, dendritic powder, fibrous powder, acicular powder or the like. Specifically, the average particle diameter of the major axis is about 45 to 100 μm, the minor axis is about 1 to 20 μm, and about 1/5 to 1/50 of the major axis (particularly preferably 1/10 to 1/1). A powder of about 20) is suitable. When the major axis of the conductive metal powder is less than 45 μm or the minor axis is 20 μm or more, it becomes smaller than the hydrogen storage alloy powder, and therefore, the number of hydrogen storage alloy powders interposed between the conductive metal powders exceeds two. The conductive metal powders may not be in direct contact with each other, and many conductive metal powder particles are required. In this case, the number of contacts increases, that is, the contact resistance increases, so that the conductivity decreases, and there is not much difference from the conventional copper powder used conventionally. On the other hand, when the major axis of the conductive metal powder exceeds 100 μm or more or the minor axis is less than 1 μm, segregation or bending due to the difference in shape and size when mixed with the hydrogen storage alloy powder, It aggregates in a round shape, a continuous contact orientation state cannot be obtained, and it is difficult to obtain the target cross-sectional structure.

【0018】導電性金属粉末は、従来は水素吸蔵合金粉
末100重量部に対し、一般的に5〜300重量%の範
囲で添加して使用されているが、本発明方法によれば、
水素吸蔵合金粉末100重量部に対し、10〜30重量
部の範囲で配合すれば良い。導電性金属粉末の配合量が
10重量部未満の場合には、導電性金属粉末相互の連続
接触が不十分となり、導電性ネットワークが充分に形成
されなくなる。この場合には、導電性金属粉末により形
成されるネットワーク層間に存在する水素吸蔵合金粉末
の個数が、5粒子を上回る数となり、電池の放電容量の
向上が十分に達成されず、また最大放電容量に到達する
サイクル数が多くなり、さらに特性にばらつきを生じ
る。一方、導電性金属粉末の配合量が30重量部を超え
る場合には、添加に伴う顕著な配向性の向上は認められ
ず、且つ水素吸蔵合金粉末の周囲を導電性金属粉末が取
りまくことにより、水素ガスの円滑な吸放出が妨げられ
るため、最大放電容量の増大と最大放電容量に到達する
までのサイクル数の減少効果も達成されない。しかも水
素吸蔵電極の製造コストが高くなる。即ち、水素吸蔵合
金粉末100重量部に対する導電性金属粉末の配合量を
10〜30重量部とすることにより、電極内に導電性金
属粉末粒子が連続的に接触する様に配向した断面構造を
形成することが容易となり、電池の特性的にも、経済的
にも有利となる。
Conventionally, the conductive metal powder is generally used by adding it in the range of 5 to 300% by weight based on 100 parts by weight of the hydrogen storage alloy powder. According to the method of the present invention,
It may be added in an amount of 10 to 30 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. When the content of the conductive metal powder is less than 10 parts by weight, continuous contact between the conductive metal powders becomes insufficient and the conductive network is not sufficiently formed. In this case, the number of hydrogen storage alloy powders existing between the network layers formed of the conductive metal powder exceeds 5 particles, the discharge capacity of the battery is not sufficiently improved, and the maximum discharge capacity is not achieved. The number of cycles to reach to increases, and the characteristics further vary. On the other hand, when the amount of the conductive metal powder is more than 30 parts by weight, no remarkable improvement in the orientation due to the addition is observed, and the conductive metal powder surrounds the hydrogen storage alloy powder, Since the smooth absorption and desorption of hydrogen gas is hindered, neither the increase of the maximum discharge capacity nor the effect of reducing the number of cycles until reaching the maximum discharge capacity is achieved. Moreover, the manufacturing cost of the hydrogen storage electrode increases. That is, by setting the blending amount of the conductive metal powder to 100 parts by weight of the hydrogen storage alloy powder to be 10 to 30 parts by weight, a cross-sectional structure oriented so that the conductive metal powder particles are continuously contacted in the electrode is formed. This facilitates the operation, which is advantageous in terms of battery characteristics and economics.

【0019】本発明による水素吸蔵合金電極を製造する
に際しては、まず、水素吸蔵合金粉末と導電性金属粉末
とを混合する。水素吸蔵合金粉末と導電性金属粉末は、
酸化しやすいので、空気中で混合する場合は、粉末冶金
関連分野で通常使用されている酸化防止剤乃至防錆剤を
添加して、粉末表面を被覆することが望ましい。この被
覆形成により、両粉末の酸化が防止されるとともに、両
粉末の分散性が改善され、電極内での導電性金属粉末の
配向性も改善される。酸化防止剤乃至防錆剤としては、
公知のステアリン酸、オレイン酸などの高級脂肪酸およ
びそれらの塩などを使用すれば良い。酸化防止剤乃至防
錆剤としては、特に液状の油脂の効果が顕著であるが、
固形状の油脂であっても、溶剤に溶解したものであれ
ば、液状の油脂と同様の効果が得られる。液状の油脂或
いは溶剤に溶解した油脂は、2種の粉末の混合時に粉末
を速やかに被覆して、混合の初期段階から酸化防止乃至
防錆効果を発揮するので、空気中での混合が可能とな
る。また、油脂を被覆された水素吸蔵合金粉末と導電性
金属粉末は、潤滑性をもつので、混合粉末中で粒子は相
互に滑り易く、移動し易くなる。その結果、導電性金属
粉末がロール圧縮による充填と長径と短径の長さの違い
による形状特性との相乗効果により、電極面に平行な一
定の方向にほぼ並ぶ(配向する)のである。
When manufacturing the hydrogen storage alloy electrode according to the present invention, first, the hydrogen storage alloy powder and the conductive metal powder are mixed. Hydrogen storage alloy powder and conductive metal powder are
Since it is easily oxidized, it is preferable to add an antioxidant or a rust preventive which is commonly used in the field of powder metallurgy to coat the powder surface when mixing in air. This coating formation prevents oxidation of both powders, improves dispersibility of both powders, and improves orientation of the conductive metal powder in the electrode. As an antioxidant or rust preventive,
Known higher fatty acids such as stearic acid and oleic acid and salts thereof may be used. As an antioxidant or a rust preventive agent, the effect of a liquid oil is particularly remarkable,
Even solid fats and oils can obtain the same effects as liquid fats and oils if they are dissolved in a solvent. Liquid fats and oils or fats and oils dissolved in a solvent rapidly coat the powders when mixing two types of powders, and exert an antioxidant or rust preventive effect from the initial stage of mixing, so that mixing in air is possible. Become. Further, since the hydrogen storage alloy powder coated with oil and fat and the conductive metal powder have lubricity, the particles in the mixed powder are likely to slip with each other and move easily. As a result, the conductive metal powders are substantially aligned (orientated) in a certain direction parallel to the electrode surface due to the synergistic effect of the filling by roll compression and the shape characteristic due to the difference between the long diameter and the short diameter.

【0020】脆くて硬い水素吸蔵合金粉末とこれよりは
軟らかな導電性金属粉末とをライカイ機などを用いて混
合すると、水素吸蔵合金粉末はさらに微細に粉砕され
る。また、重なりあっていたり、凝集したりしていた導
電性金属粉末は、簡単に1個づつの粒子に分散される。
水素吸蔵合金粉末と導電性金属粉末との混合に使用する
混合機は、一般に粉末冶金分野で使われる混合機をその
まま使用することができる。より具体的には、例えば、
ライカイ機、ボールミル、振動ミル、アトライターなど
が例示される。特に、導電性ネットワーク間に存在する
水素吸蔵合金粉末の積み重なりの数を5粒子以内とする
ためには、混合操作中に重なりあったり、凝集したりし
た水素吸蔵合金粉末および導電性金属粉末を1個づつの
粒子に効率よく分散させる必要があるので、粉末に剪断
力を与えることのできるメカノフュージョンタイプの混
合機(例えば、ホソカワミクロン株式会社製のものが市
販されている)を用いることが好ましい。メカノフュー
ジョンタイプの混合機の操作条件は、特に限定されるも
のではないが、通常回転数300〜900rpm程度、
混合時間120〜5分程度とすれば良い。
When the brittle and hard hydrogen-absorbing alloy powder and the softer conductive metal powder are mixed by using a Raikai machine or the like, the hydrogen-absorbing alloy powder is further finely pulverized. In addition, the conductive metal powders that are overlapped or agglomerated are easily dispersed into particles one by one.
As the mixer used for mixing the hydrogen storage alloy powder and the conductive metal powder, a mixer generally used in the field of powder metallurgy can be used as it is. More specifically, for example,
Examples thereof include a reiki machine, a ball mill, a vibration mill, and an attritor. Particularly, in order to keep the number of stacked hydrogen storage alloy powders existing between conductive networks within 5 particles, the hydrogen storage alloy powders and conductive metal powders that are overlapped or agglomerated during the mixing operation are Since it is necessary to efficiently disperse the particles into individual particles, it is preferable to use a mechanofusion type mixer (for example, a product manufactured by Hosokawa Micron Co., Ltd. is commercially available) that can apply a shearing force to the powder. The operating conditions of the mechanofusion type mixer are not particularly limited, but are usually about 300 to 900 rpm.
The mixing time may be about 120 to 5 minutes.

【0021】水素吸蔵合金粉末と導電性金属粉末は、酸
化され易いので、アルゴンガス、窒素ガスなどの非酸化
性ガス雰囲気中で行なうことが好ましい。但し、上記の
様に、酸化防止剤乃至防錆剤を用いる場合には、空気中
で混合することもできる。用いる水素吸蔵合金粉末と導
電性金属粉末の大きさ、組成などは、所望の特性に応じ
て、上記の範囲内で適宣選択すればよい。
Since the hydrogen storage alloy powder and the conductive metal powder are easily oxidized, it is preferable to carry out in a non-oxidizing gas atmosphere such as argon gas or nitrogen gas. However, as described above, when an antioxidant or a rust preventive agent is used, they can be mixed in the air. The size, composition, etc. of the hydrogen storage alloy powder and the conductive metal powder to be used may be appropriately selected within the above range according to desired characteristics.

【0022】次いで、上記のようにして調製した混合粉
末を金型に入れ、ローラで圧縮して充填した後、加圧成
形してシート状の水素吸蔵電極を形成させる。この過程
において軟らかな導電性金属粉末と硬い水素吸蔵合金粉
末とは、加圧により強固に接触する。そして、図1の
(A)に示す様に、導電性金属粉末が電極面に平行乃至
ほぼ平行な方向に(換言すれば、成形加圧方向に垂直乃
至ほぼ垂直な方法に)連続的に接触して並んだ(配向し
た)断面構造を有するシート状水素吸蔵電極が得られ
る。この断面構造によれば、導電性金属粉末が、水素吸
蔵合金粉末から効率良く集電することが可能となる。ま
た、水素吸蔵合金粉末の周りを導電性金属粉末が密に被
覆することもないので、水素が水素吸蔵合金粉末から容
易に出入りできる。そして、導電性金属粉末が連続的に
配向しているので、マイクロ集電体となり、水素吸蔵電
極の内部抵抗を低下させる効果を発揮するのである。
Next, the mixed powder prepared as described above is put into a mold, compressed by a roller and filled, and then pressure-molded to form a sheet-shaped hydrogen storage electrode. In this process, the soft conductive metal powder and the hard hydrogen-absorbing alloy powder come into strong contact with each other under pressure. Then, as shown in FIG. 1 (A), the conductive metal powder is continuously contacted in a direction parallel or substantially parallel to the electrode surface (in other words, a method perpendicular or substantially perpendicular to the molding pressure direction). Thus, a sheet-shaped hydrogen storage electrode having an aligned (orientated) cross-sectional structure is obtained. With this cross-sectional structure, the conductive metal powder can efficiently collect current from the hydrogen storage alloy powder. Further, since the conductive metal powder does not densely coat the circumference of the hydrogen storage alloy powder, hydrogen can easily enter and leave the hydrogen storage alloy powder. Further, since the conductive metal powder is continuously oriented, it becomes a micro-current collector and exerts an effect of lowering the internal resistance of the hydrogen storage electrode.

【0023】上記のローラ圧縮による充填に際して、導
電性金属粉末は、長径が大きい程、水素吸蔵電極の電極
面に平行に並び易く(配向し易く)なる。即ち、単に水
素吸蔵合金と導電性金属粉末とを混合した状態では、導
電性金属粉末は、不規則な方向に配向している。しかる
に、金型内に充填した状態で、その一端から他端に向け
て移動するローラによる圧縮を少なくとも1回行う(よ
り好ましくは複数回繰返し行う)ことにより、一辺が他
辺よりも長い金属粉末、例えば長径が50μmの銅粉末
は、当初は金型内の混合粉末中で垂直方向を向いていた
としても、次第に水平方向に向きを変えてやがて電極面
に平行乃至ほぼ平行に並ぶのである。このローラ圧縮に
よる導電性金属粉末の配向特性は、長径が短径に比して
大きいほど顕著である。仮に導電性金属粉末の長径が水
素吸蔵合金粉末の寸法と同程度に小さい場合には、ロー
ラにより混合粉末を圧縮しても、水素吸蔵合金粉末に邪
魔されて、導電性金属粉末が電極面に実質的に平行且つ
連続的に配向した断面構造は得られない。 上記のロー
ラ圧縮工程においては、混合粉末中の水素吸蔵合金粉末
と導電性金属粉末の寸法および量的割合が本発明の規定
を満足していること、ならびに両粉末が均一に分散混合
された状態にあることという2つの条件が満たされる場
合には、混合粉末をローラで圧縮することにより、導電
性金属粉末が連続的に且つ電極面に平行乃至ほぼ平行に
配列した導電性ネットワークを形成しており、ネットワ
ーク間での水素吸蔵合金粉末の積み重なり個数がが5個
以内である層が形成される。仮に、混合粉末中に偏析が
あると、導電性金属粉末の配向が良好に行われず、且つ
水素吸蔵合金粉末の積み重なり数が5個を超えるので、
放電容量の向上という所望の目的が達成されない。
In the filling by the above roller compression, the larger the major axis of the conductive metal powder, the easier it becomes to be aligned (orientate) in parallel with the electrode surface of the hydrogen storage electrode. That is, in the state where the hydrogen storage alloy and the conductive metal powder are simply mixed, the conductive metal powder is oriented in an irregular direction. However, the metal powder having one side longer than the other side is compressed at least once (more preferably a plurality of times) by a roller moving from one end to the other end in a state of being filled in the mold. For example, the copper powder having a major axis of 50 μm, although initially oriented in the vertical direction in the mixed powder in the mold, gradually changes its orientation in the horizontal direction and is then arranged parallel or substantially parallel to the electrode surface. The orientation characteristic of the conductive metal powder due to the roller compression becomes more remarkable as the major axis is larger than the minor axis. If the major axis of the conductive metal powder is as small as the dimension of the hydrogen storage alloy powder, even if the mixed powder is compressed by the roller, the hydrogen storage alloy powder will disturb the conductive metal powder and the conductive metal powder will be deposited on the electrode surface. A substantially parallel and continuously oriented cross-sectional structure is not obtained. In the above roller compression step, the size and the quantitative ratio of the hydrogen storage alloy powder and the conductive metal powder in the mixed powder satisfy the requirements of the present invention, and both powders are uniformly dispersed and mixed. If the above two conditions are satisfied, the mixed powder is compressed by a roller to form a conductive network in which the conductive metal powder is continuously arranged in parallel or substantially parallel to the electrode surface. Thus, a layer is formed in which the number of stacked hydrogen storage alloy powders within the network is 5 or less. If there is segregation in the mixed powder, the conductive metal powder will not be favorably oriented, and the number of hydrogen storage alloy powders stacked will exceed 5,
The desired purpose of improving discharge capacity is not achieved.

【0024】上記のローラ圧縮に際しては、必要なら
ば、所定の電極形状に対応する形状をした金型内に必要
量の半分の混合粉末をローラ圧縮しながら充填した後、
集電体(例えば、金属メッシュ)を載せ、残りの混合粉
末をローラ圧縮しながら充填しても良い。
In the above-mentioned roller compression, if necessary, half of the required amount of the mixed powder is charged while being roller-compressed into a mold having a shape corresponding to a predetermined electrode shape, and then,
A current collector (for example, a metal mesh) may be placed and the remaining mixed powder may be charged while being roller-compressed.

【0025】次いで、金型内に充填された混合粉末をシ
ート状の水素吸蔵電極に加圧成形する。成型時の圧力
は、特に限定されるものではないが、通常5〜500M
Pa程度であり、より好ましくは100〜300MPa
程度である。
Next, the mixed powder filled in the die is pressure-molded into a sheet-shaped hydrogen storage electrode. The pressure during molding is not particularly limited, but is usually 5 to 500M.
Pa, and more preferably 100 to 300 MPa
It is a degree.

【0026】かくして、図1の(A)に示す様に、導電
性金属粉末粒子の長径方向面が電極面に平行に連続的に
接触して並んでおり、これらがマイクロ集電体の役目を
果たして、良好な特性を発揮するシート状の水素吸蔵電
極が得られる。
Thus, as shown in FIG. 1 (A), the surfaces of the conductive metal powder particles in the major axis direction are in continuous contact with each other in parallel with the electrode surface, and these serve as a micro-current collector. As a result, a sheet-shaped hydrogen storage electrode exhibiting good characteristics can be obtained.

【0027】[0027]

【発明の効果】本発明によれば、簡単な工程により、低
コストで特異な断面構造を有する水素吸蔵電極を製造す
ることができる。得られた水素吸蔵電極は、ニッケル−
金属水素化物電池の放電容量を著しく高め、最大放電容
量に到達するサイクル数を大幅に減少させ、電池の寿命
を延長させることができる。
According to the present invention, a hydrogen storage electrode having a unique sectional structure can be manufactured at low cost by a simple process. The obtained hydrogen storage electrode was nickel-
The discharge capacity of the metal hydride battery can be significantly increased, the number of cycles to reach the maximum discharge capacity can be significantly reduced, and the life of the battery can be extended.

【0028】[0028]

【実施例】次に、実施例および比較例を示し、本発明の
特徴とするところをより詳細に説明する。
EXAMPLES Next, the features of the present invention will be described in more detail by showing examples and comparative examples.

【0029】実施例1 45μm以下に粉砕した水素吸蔵合金粉末(MmNi
3.65Co0.7Al0.65 :但し、Mmはミッシュメタルを
示し、希土類金属の混合物である)100gに対し、長
径の平均が49.3μm(短径の平均は、長径の1/1
0〜1/20の範囲内にある)の片状銅粉の混合量を1
0gから30gまで変化させて配合し、メカノフュージ
ョン装置により、800rpmで10分間混合した。
Example 1 Hydrogen storage alloy powder (MmNi
3.65 Co 0.7 Al 0.65 : However, Mm represents misch metal, which is a mixture of rare earth metals), and the average major axis is 49.3 μm (the average minor axis is 1/1 of the major axis).
The mixing amount of the flaky copper powder (in the range of 0 to 1/20) is 1
The amount was changed from 0 g to 30 g, blended, and mixed by a mechanofusion device at 800 rpm for 10 minutes.

【0030】次いで、得られた3種の混合粉末のそれぞ
れ1.2gを金型(30mm×40mm×2mm)に入
れ、ローラで約2MPaの圧力を加え、圧縮しながら充
填した後、集電体である銅メッキしたニッケル金網を乗
せ、最後に残りの混合粉末1.2gをローラで約2MP
aの圧力を加え、圧縮しながら充填した。
Next, 1.2 g of each of the obtained three kinds of mixed powders was put into a mold (30 mm × 40 mm × 2 mm), a pressure of about 2 MPa was applied by a roller, and the powder was packed while being compressed. Place the copper-plated nickel wire mesh, which is the last item, and finally, 1.2g of the remaining mixed powder with a roller for about 2MP
The pressure of a was applied and filling was performed while compressing.

【0031】次いで、上記の様にして得た3種の金型充
填物をそれぞれ100MPaで加圧成形し、30mm×
40mm×0.6mmのシート状成形体を得た。
Next, the three types of mold fillings obtained as described above were each pressure-molded at 100 MPa, and 30 mm ×
A 40 mm × 0.6 mm sheet-shaped compact was obtained.

【0032】このシート状成形体をセパレータであるポ
リアミド製の不織布で包んで負極とし、焼結型酸化ニッ
ケル電極を正極として、6N水酸化カリウム溶液を電解
液とする開放型電池を組み立てた。この開放型電池を温
度20℃の恒温槽に設置し、以下の(イ)〜(ハ)の操
作を1サイクルとする充放電を200サイクル繰り返す
実験を行い、開放型電池の最大放電容量とそれに到達す
るまでのサイクル数を測定した。 (イ)充電電流400mAで3時間充電する。→(ロ)
0.5時間休止する。→(ハ)放電電流200mAで電
圧が0.8Vに低下するまで放電する。
This sheet-shaped molded body was wrapped with a non-woven fabric made of polyamide as a separator to form a negative electrode, a sintered nickel oxide electrode as a positive electrode, and a 6N potassium hydroxide solution was used as an electrolytic solution to assemble an open-type battery. This open battery was installed in a constant temperature bath at a temperature of 20 ° C., and an experiment was repeated 200 cycles of charging / discharging with the following operations (a) to (c) as one cycle, and the maximum discharge capacity of the open battery and the The number of cycles to reach it was measured. (B) Charge the battery with a charging current of 400 mA for 3 hours. → (b)
Pause for 0.5 hours. → (c) Discharge at a discharge current of 200 mA until the voltage drops to 0.8 V.

【0033】表1に混合粉末中の片状銅粉末の配合量
(重量部)と放電容量との関係を示す。なお、作成した
各電極試料の断面を顕微鏡で観察した結果、どの試料に
おいても、導電性ネットワーク間の水素吸蔵合金粉末の
積み重なり数は、5個以内であった(試料No.1〜
6)。
Table 1 shows the relationship between the blending amount (parts by weight) of the flaky copper powder in the mixed powder and the discharge capacity. In addition, as a result of observing a cross section of each of the prepared electrode samples with a microscope, the number of stacked hydrogen storage alloy powders between the conductive networks was 5 or less in any of the samples (Sample No. 1 to No. 1).
6).

【0034】実施例2 45μm以下に粉砕したMmNi3.65Co0.7Al0.65
合金100gに対し、平均長径を10.0〜120.0
μmの範囲で変化させた各種の片状銅粉(短径の平均
は、平均長径の1/10〜1/20の範囲内にある)2
0gを配合し、メカノフュージョン装置により800r
pmで10分間混合した。
Example 2 MmNi 3.65 Co 0.7 Al 0.65 ground to 45 μm or less
The average major axis is 10.0 to 120.0 with respect to 100 g of the alloy.
Various flaky copper powders varied in the range of μm (the average of the minor axis is in the range of 1/10 to 1/20 of the average major axis) 2
0g blended, 800r by mechanofusion device
Mix for 10 minutes at pm.

【0035】得られたそれぞれの混合粉末を使用して、
実施例1と同様にシート状負極を作成し、電池を組み立
て、最大放電容量とそれに到達するまでのサイクル数を
測った。
Using each of the resulting mixed powders,
A sheet-shaped negative electrode was prepared in the same manner as in Example 1, a battery was assembled, and the maximum discharge capacity and the number of cycles until reaching it were measured.

【0036】結果を表1に試料No.7〜10として示
す。作成試料の断面を顕微鏡で観察した結果、どの試料
においても、導電性ネットワーク間の水素吸蔵合金粉末
の積み重なり数は5個以内であった。
The results are shown in Table 1. Shown as 7-10. As a result of observing the cross section of the prepared sample with a microscope, the number of stacked hydrogen storage alloy powders between the conductive networks was 5 or less in any sample.

【0037】比較例1 45μm以下に粉砕したMmNi3.65Co0.7Al0.65
合金100gに対し、平均粒径25.1μmの片状銅粉
を5〜50gの範囲で混合した。次いで、従来法に準じ
て、それぞれの混合粉末にPTFE樹脂を5重量%の割
合で加え、良く混合し、ガム状のシートを作り、ニッケ
ル金網に包み、加圧力20MPaで30×40■×0.
6mmのシートを作成した。このシートをナイロン製セ
パレータで包んで水素吸蔵電極を作成した。この水素吸
蔵電極を負極とし、実施例1と同様にして電池を組み立
て、電池の最大放電容量とそれに到達するまでのサイク
ル数を測定した。なお、水素吸蔵電極の断面を顕微鏡で
観察したところ、導電性ネットワークは形成されておら
ず、片状銅粉は、平行して連続的に接触してはいなかっ
た。
Comparative Example 1 MmNi 3.65 Co 0.7 Al 0.65 ground to 45 μm or less
Flake-shaped copper powder having an average particle size of 25.1 μm was mixed with 100 g of the alloy in the range of 5 to 50 g. Then, according to the conventional method, PTFE resin was added to each mixed powder at a ratio of 5% by weight and mixed well to form a gum-like sheet, which was wrapped in a nickel wire mesh and pressed at a pressure of 20 MPa to 30 × 40 ×× 0. .
A 6 mm sheet was created. This sheet was wrapped with a nylon separator to prepare a hydrogen storage electrode. Using this hydrogen storage electrode as a negative electrode, a battery was assembled in the same manner as in Example 1, and the maximum discharge capacity of the battery and the number of cycles until reaching it were measured. When the cross section of the hydrogen storage electrode was observed with a microscope, no conductive network was formed and the flaky copper powder was not in parallel and continuous contact.

【0038】結果を表1に試料No.11〜18として
示す。
The results are shown in Table 1. Shown as 11 to 18.

【0039】[0039]

【表1】 [Table 1]

【0040】表1に示す結果から明らかな様に、本発明
による水素吸蔵電極を使用する場合には、電池の最大放
電容量が高く、且つ最大放電容量に到達するまでのサイ
クル数が少ないことが明らかである。これに対し、従来
技術による試料No.11〜18は、最大電池容量も低
く、最大放電容量に到達するサイクル数も満足すべきも
のではない。
As is clear from the results shown in Table 1, when the hydrogen storage electrode according to the present invention is used, the maximum discharge capacity of the battery is high and the number of cycles until reaching the maximum discharge capacity is small. it is obvious. On the other hand, the sample No. In Nos. 11 to 18, the maximum battery capacity is low, and the number of cycles to reach the maximum discharge capacity is not satisfactory.

【0041】実施例3 45μm以下に粉砕したMmNi3.65Co0.7Al
0.65合金100gに対し、平均長径が50.4μm(短
径の平均は、平均長径の1/10〜1/20の範囲内に
ある)の片状ニッケル粉を10〜30gまでの範囲で配
合し、集電体としてニッケル金網を用い、且つ成形圧力
を200MPaとした以外は、実施例1と同様にしてシ
ート状負極を作成し、電池を組立た後、実施例1と同様
にして最大放電容量とそれに到達するまでのサイクル数
を測った。
Example 3 MmNi 3.65 Co 0.7 Al ground to 45 μm or less
With respect to 100 g of 0.65 alloy, flake nickel powder having an average major axis of 50.4 μm (the average of the minor axis is in the range of 1/10 to 1/20 of the average major axis) was added in the range of 10 to 30 g. A sheet-shaped negative electrode was prepared in the same manner as in Example 1 except that a nickel wire net was used as the current collector and the molding pressure was set to 200 MPa, and the battery was assembled. And the number of cycles to reach it was measured.

【0042】結果を表2に示す(試料No.19〜2
3)。なお、顕微鏡による断面観察によれば、どの試料
においても、導電性ネットワーク間の水素吸蔵合金粉末
の積み重なり数は、5個以下であった。
The results are shown in Table 2 (Sample Nos. 19 to 2).
3). In addition, according to cross-sectional observation with a microscope, the number of stacked hydrogen-absorbing alloy powders between the conductive networks was 5 or less in any sample.

【0043】実施例4 45μm以下に粉砕したMmNi3.65Co0.7Al0.65
合金100gに対し、平均長径を11.2〜111μm
の範囲で変化させた片状ニッケル粉(短径の平均は、平
均長径の1/10〜1/20の範囲内にある)20gを
メカノフュージョン装置により回転数800rpmで1
0分間混合した。
Example 4 MmNi 3.65 Co 0.7 Al 0.65 ground to 45 μm or less
The average major axis is 11.2 to 111 μm with respect to 100 g of the alloy.
20 g of flaky nickel powder (average of minor axis is in the range of 1/10 to 1/20 of average major axis) varied in the range of 1 by a mechanofusion device at a rotation speed of 800 rpm.
Mix for 0 minutes.

【0044】次いで、実施例3と同様にしてシート状電
極を作成し、電池を組み立て、その最大放電容量とそれ
に到達するまでのサイクル数を測った。結果を表2に試
料No.24〜27として示す。なお、どの試料におい
ても、導電性ネットワーク間の水素吸蔵合金粉の積み重
なり数は、5個以内であった。
Then, a sheet electrode was prepared in the same manner as in Example 3, a battery was assembled, and its maximum discharge capacity and the number of cycles until reaching it were measured. The results are shown in Table 2. Shown as 24-27. In all the samples, the number of stacked hydrogen-absorbing alloy powders between the conductive networks was 5 or less.

【0045】[0045]

【表2】 [Table 2]

【0046】表2に示す結果から明らかな様に、導電性
金属粉末としてニッケルを使用する本発明の水素吸蔵電
極によっても、電池の最大放電容量が高くなり、且つ最
大放電容量に到達するまでのサイクル数が少なくなるこ
とが明らかである。
As is clear from the results shown in Table 2, the hydrogen storage electrode of the present invention using nickel as the conductive metal powder also increases the maximum discharge capacity of the battery and reaches the maximum discharge capacity. It is clear that the number of cycles is reduced.

【0047】実施例5 45μm以下に粉砕したMmNi3.65Co0.7Al0.65
合金100gに対し、絵平均長径が49.3μmの片状
銅粉末(短径の平均は、平均長径の1/10〜1/20
の範囲内にある)と平均長径が50.4μmの片状ニッ
ケル粉末(短径の平均は、平均長径の1/10〜1/2
0の範囲内にある)を25/75〜75/25の重量比
で混合した粉末を10〜30gの範囲で配合し、メカノ
フュージョン装置により回転数700rpmで10分間
混合した後、実施例1と同様にしてシート状負極を作成
し、電池を組立て、その最大放電容量とそれに到達する
までのサイクル数を測った。
Example 5 MmNi 3.65 Co 0.7 Al 0.65 ground to 45 μm or less
Flake-shaped copper powder having an average major axis of 49.3 μm with respect to 100 g of the alloy (the average of the minor axis is 1/10 to 1/20 of the average major axis).
And a flaky nickel powder having an average major axis of 50.4 μm (the average of the minor axis is 1/10 to 1/2 of the average major axis).
(In the range of 0) was mixed in the range of 10 to 30 g in a weight ratio of 25/75 to 75/25, and the mixture was mixed for 10 minutes at a rotation speed of 700 rpm by a mechanofusion device. Similarly, a sheet-shaped negative electrode was prepared, a battery was assembled, and its maximum discharge capacity and the number of cycles until reaching it were measured.

【0048】結果を表3に試料No.28〜34として
示す。なお、作成試料の断面を顕微鏡で観察した結果、
どの試料においても、導電性ネットワーク間の水素吸蔵
合金粉の積み重なり数は5個以内であった。
Table 3 shows the results. Shown as 28-34. As a result of observing the cross section of the created sample with a microscope,
In all the samples, the number of stacked hydrogen storage alloy powders between the conductive networks was 5 or less.

【0049】[0049]

【表3】 [Table 3]

【0050】実施例6 平均長径が60.0μmで平均短径が3μmの銅とニッ
ケルとの複合粉末(両者の割合は、25/75〜75/
25の範囲)をボールミルで造り、45μm以下に粉砕
したMmNi3.65Co0.7Al0.65合金100gに対
し、10〜30gの範囲で配合し、メカノフュージョン
装置により回転数700rpmで10分間混合した後、
実施例1と同様にしてシート状負極を作成し、電池を組
立て、電池の最大放電容量とそれに到達するまでのサイ
クル数を測定した。
Example 6 A composite powder of copper and nickel having an average major axis of 60.0 μm and an average minor axis of 3 μm (the ratio of the two is 25/75 to 75 /
25 range) was made with a ball mill and mixed with 100 g of MmNi 3.65 Co 0.7 Al 0.65 alloy pulverized to 45 μm or less in the range of 10 to 30 g, and mixed by a mechanofusion device at a rotation speed of 700 rpm for 10 minutes,
A sheet-like negative electrode was prepared in the same manner as in Example 1, a battery was assembled, and the maximum discharge capacity of the battery and the number of cycles until reaching it were measured.

【0051】結果を表4に試料No.35〜41として
示す。なお、作成試料の断面を顕微鏡で観察した結果、
どの試料においても、導電性ネットワーク間の水素吸蔵
合金粉末の積み重なり数は5個以内であった。
Table 4 shows the results. Shown as 35-41. As a result of observing the cross section of the created sample with a microscope,
In all the samples, the number of stacked hydrogen storage alloy powders between the conductive networks was 5 or less.

【0052】[0052]

【表4】 [Table 4]

【0053】実施例7 45μm以下に粉砕したMmNi3.65Co0.7Al0.65
合金100gに対し、平均長径が100μmで平均短径
が11μmの電解銅粉{長径である枝が縦横に良く発達
しており、短径(厚みが)が短い樹枝状銅粉}20gを
配合し、メカノフュージョン装置により回転数500r
pmで10分間混合した後、実施例1と同様にしてシー
ト状負極を作成し、電池を組立て、電池の最大放電容量
とそれに到達するまでのサイクル数を測定した。
Example 7 MmNi 3.65 Co 0.7 Al 0.65 ground to 45 μm or less
With respect to 100 g of the alloy, 20 g of electrolytic copper powder having an average major axis of 100 μm and an average minor axis of 11 μm {branched copper powder having short major axis (short thickness) with well-developed branches having long major axis) was blended. , Rotation speed 500r by mechanofusion device
After mixing at pm for 10 minutes, a sheet-shaped negative electrode was prepared in the same manner as in Example 1, a battery was assembled, and the maximum discharge capacity of the battery and the number of cycles until reaching it were measured.

【0054】結果を表5に試料No.42〜43として
示す。なお、作成試料の断面を顕微鏡で観察した結果、
どの試料においても、導電性ネットワーク間の水素吸蔵
合金粉末の積み重なり数は5個以内であった。
The results are shown in Table 5 as sample No. Shown as 42-43. As a result of observing the cross section of the created sample with a microscope,
In all the samples, the number of stacked hydrogen storage alloy powders between the conductive networks was 5 or less.

【0055】[0055]

【表5】 [Table 5]

【0056】実施例8 45μm以下に粉砕したMmNi3.65Co0.7Al0.65
合金100gに対し、平均長径が45.1μmの片状コ
バルト粉末(短径の平均は、平均長径の1/10〜1/
20の範囲内にある)10gを加え、メカノフュージョ
ン装置により回転数500rpmで10分間混合した
後、実施例1と同様にしてシート状負極を作成し、電池
を組立て、電池の最大放電容量とそれに到達するまでの
サイクル数を測定した。
Example 8 MmNi 3.65 Co 0.7 Al 0.65 ground to 45 μm or less
Flake-shaped cobalt powder having an average major axis of 45.1 μm with respect to 100 g of the alloy (the average of the minor axes is 1/10 to 1/1 of the average major axis).
10 g (in the range of 20) and mixed by a mechanofusion device at a rotation speed of 500 rpm for 10 minutes, and then a sheet-shaped negative electrode was prepared in the same manner as in Example 1, a battery was assembled, and the maximum discharge capacity of the battery and The number of cycles to reach it was measured.

【0057】結果を表6に試料No.44として示す。
なお、作成試料の断面を顕微鏡で観察した結果、導電性
ネットワーク間の水素吸蔵合金粉末の積み重なり数は5
個以内であった。
The results are shown in Table 6. Shown as 44.
As a result of observing the cross section of the prepared sample with a microscope, the number of stacked hydrogen-absorbing alloy powders between the conductive networks was 5
It was within the number.

【0058】[0058]

【表6】 [Table 6]

【0059】試験例1 20重量%の片状銅粉末を20重量%の割合で配合した
本発明による実施例3と従来法による比較例13につい
て、電池の充放電特性を比べた結果を図2に示す。
Test Example 1 The results of comparing the charge and discharge characteristics of the batteries of Example 3 according to the present invention in which 20% by weight of flaky copper powder was mixed in the ratio of 20% by weight and Comparative Example 13 according to the conventional method are shown in FIG. Shown in.

【0060】図2から明らかなように、本発明の水素吸
蔵電極は、従来の水素吸蔵電極に比較して、最大放電容
量に達するまでのサイクル数が少く、最大放電容量が大
きく、且つ200サイクルまでの放電容量の劣化が少な
いことがわかる。
As is apparent from FIG. 2, the hydrogen storage electrode of the present invention has a smaller number of cycles until reaching the maximum discharge capacity, a larger maximum discharge capacity, and 200 cycles as compared with the conventional hydrogen storage electrode. It can be seen that there is little deterioration in the discharge capacity up to.

【0061】以上の結果から、本発明の方法により得ら
れた水素吸蔵電極を用いる電池は、従来法による水素吸
蔵電極を用いる電池に比して、最大放電容量が高く、最
大放電容量に達するサイクル回数が1/3程度と少な
く、また導電性金属粉末の混合量も少なくて良いことが
わかる。
From the above results, the battery using the hydrogen storage electrode obtained by the method of the present invention has a higher maximum discharge capacity than the battery using the hydrogen storage electrode by the conventional method, and the cycle reaching the maximum discharge capacity. It can be seen that the number of times is as small as about 1/3, and the amount of the conductive metal powder mixed is also small.

【0062】本発明の方法で得られた水素吸蔵電極を、
例えばニッケル−金属水素化物電池に用いた場合には、
高い放電容量と最大放電容量に達するサイクル数が少な
いという優れた性能を発揮する電池が得られることが明
らかである。
The hydrogen storage electrode obtained by the method of the present invention is
For example, when used in a nickel-metal hydride battery,
It is clear that a battery having a high discharge capacity and a small number of cycles reaching the maximum discharge capacity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法による水素吸蔵電極の断面構造(A)
と従来法による水素吸蔵電極の断面構造(B)を比較し
て示す模式図である。
FIG. 1 is a sectional structure of a hydrogen storage electrode according to the method of the present invention (A).
FIG. 3 is a schematic diagram showing a cross-sectional structure (B) of a hydrogen storage electrode according to a conventional method and FIG.

【図2】実施例3と比較例13で得られた水素吸蔵電極
を使用する電池の充放電特性を示すグラフである。
2 is a graph showing charge / discharge characteristics of batteries using the hydrogen storage electrodes obtained in Example 3 and Comparative Example 13. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮村 弘 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 栗山 信宏 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 上原 斎 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 吉永 弘 京都府京都市山科区西野山中臣町20番地 福田金属箔粉工業株式会社研究所内 (72)発明者 日▲高▼ 謙介 京都府京都市山科区西野山中臣町20番地 福田金属箔粉工業株式会社研究所内 (72)発明者 小平 良男 京都府京都市山科区西野山中臣町20番地 福田金属箔粉工業株式会社研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Miyamura 1-831 Midorigaoka, Ikeda City, Osaka Prefecture Industrial Technology Institute, Osaka Institute of Industrial Technology (72) Inventor Nobuhiro Kuriyama 1-8 Midorigaoka, Ikeda City, Osaka Prefecture No. 31 Industrial Technology Institute Osaka Industrial Technology Research Institute (72) Inventor Sai Uehara 1-8-31 Midorigaoka, Ikeda City, Osaka Prefecture Industrial Technology Institute Osaka Industrial Technology Research Institute (72) Inventor Hiroshi Yoshinaga Yamashina, Kyoto Prefecture 20 Nishinoyama-Nakashinmachi, Nishino-ku, Fukuda Metal Foil & Powder Industry Co., Ltd. (72) Inventor Hidaka ▼ Kensuke Nishinoyama Naka-Omimachi, 20 Yamanashi Ward, Kyoto City, Kyoto Prefecture (72) Inventor Yoshio Kodaira 20 Nakanomachi, Nishinoyama, Yamashina-ku, Kyoto City, Kyoto Prefecture Fukuda Metal Foil & Powder Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】45μm以下の水素吸蔵合金粉末100重
量部と、長径の平均が45〜100μmで且つ短径の平
均が1〜20μmである導電性金属粉末10〜30重量
部とからなり、導電性金属粉末の長径方向面が電極内で
電極面に平行もしくは平行に近い状態で連続的に接触し
たネットワークを形成していることを特徴とする水素吸
蔵電極。
1. A conductive metal powder comprising 100 parts by weight of a hydrogen storage alloy powder having a diameter of 45 μm or less and 10 to 30 parts by weight of a conductive metal powder having an average major axis of 45 to 100 μm and an average minor axis of 1 to 20 μm. A hydrogen storage electrode, characterized in that the major axis surface of the conductive metal powder forms a continuous network in the electrode in parallel or near parallel to the electrode surface.
【請求項2】45μm以下の水素吸蔵合金粉末100重
量部と、長径の平均が45〜100μmで且つ短径の平
均が1〜20μmである導電性金属粉末10〜30重量
部とからなる混合粉末を金型に充填して少なくとも一回
ローラ圧縮した後、加圧成型することを特徴とする水素
吸蔵電極の製造方法。
2. A mixed powder comprising 100 parts by weight of a hydrogen storage alloy powder having a diameter of 45 μm or less, and 10 to 30 parts by weight of a conductive metal powder having an average major axis of 45 to 100 μm and an average minor axis of 1 to 20 μm. A method for producing a hydrogen storage electrode, comprising: filling a metal mold with a roller, compressing the roller at least once, and then pressure molding.
JP6052017A 1994-03-15 1994-03-23 Hydrogen storage electrode and method for producing the same Expired - Lifetime JP2726976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6052017A JP2726976B2 (en) 1994-03-15 1994-03-23 Hydrogen storage electrode and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-44329 1994-03-15
JP4432994 1994-03-15
JP6052017A JP2726976B2 (en) 1994-03-15 1994-03-23 Hydrogen storage electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07307154A true JPH07307154A (en) 1995-11-21
JP2726976B2 JP2726976B2 (en) 1998-03-11

Family

ID=26384189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6052017A Expired - Lifetime JP2726976B2 (en) 1994-03-15 1994-03-23 Hydrogen storage electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP2726976B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062359A1 (en) * 1999-04-14 2000-10-19 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode, battery including the same and method for producing the both
JP2017073205A (en) * 2015-10-05 2017-04-13 古河機械金属株式会社 All-solid type lithium ion battery electrode and all-solid type lithium ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062359A1 (en) * 1999-04-14 2000-10-19 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode, battery including the same and method for producing the both
US6610445B1 (en) 1999-04-14 2003-08-26 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode, battery including the same and method for producing the both
JP2017073205A (en) * 2015-10-05 2017-04-13 古河機械金属株式会社 All-solid type lithium ion battery electrode and all-solid type lithium ion battery

Also Published As

Publication number Publication date
JP2726976B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US6517971B1 (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
JP2726976B2 (en) Hydrogen storage electrode and method for producing the same
JP3577531B2 (en) Electrode for alkaline secondary battery and method for producing the same
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP2002309303A (en) Metal particle composition for manufacturing alloy
JP4196005B2 (en) Hydrogen storage alloy negative electrode and nickel-hydrogen storage battery
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
EP1727229B1 (en) Active material composition and alkaline electrolyte accumulator
JP4025863B2 (en) Electrode for alkaline secondary battery and method for producing the same
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10102172A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JP3414148B2 (en) Hydrogen storage alloy powder and hydrogen storage electrode for Ni-H secondary battery
Thuyet-Nguyen et al. Phase Structure and Magnetic Properties of Intermetallic Cu-Ni Alloy Nanopowders Synthesized by the Electrical Explosion of Wire
JPH10195556A (en) Production of electric contact material
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
Wada et al. Production of copper-alloy complex granules for nickel/metal hydride electrodes
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP2008269888A (en) Nickel-hydrogen storage battery
JPH10326613A (en) Electrode of hydrogen storage alloy
JP2708088B2 (en) Nickel electrode for battery, method for producing the same, and alkaline storage battery
JPH10106621A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
Song et al. Electrochemical hydrogen storage performance of AB 5-CoB composites synthesized by a simple mixing method
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term