JPH07306278A - Divertor structure - Google Patents

Divertor structure

Info

Publication number
JPH07306278A
JPH07306278A JP6099555A JP9955594A JPH07306278A JP H07306278 A JPH07306278 A JP H07306278A JP 6099555 A JP6099555 A JP 6099555A JP 9955594 A JP9955594 A JP 9955594A JP H07306278 A JPH07306278 A JP H07306278A
Authority
JP
Japan
Prior art keywords
stainless steel
copper
board
joined
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6099555A
Other languages
Japanese (ja)
Inventor
Risuke Nayama
理介 名山
Masahiko Toyoda
真彦 豊田
Seiichi Tsujimura
誠一 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6099555A priority Critical patent/JPH07306278A/en
Publication of JPH07306278A publication Critical patent/JPH07306278A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To shorten the distance between the inner wall of a vacuum vessel and the surface of a divertor structure facing the plasma while mountaining the cooling/heat removing capaciy by composing a forcibly cooling channel of a material having a high thermal conductivity on the side subjected to a heavy load and of a material having a high mechanical strength on he side fixed to a board. CONSTITUTION:A board 4 is joined to the inner wall 5 of a vacuum vessel at a fillet welded part 6 and a compositional member (stainless steel) 2 of forcibly cooling cannel is joined to the board 4. A compositional member (copper) 1 is joined metallurgically to the stainless steel 2 through a joining part 7 and a heat resistant material (armor member) 3 is joined to the copper 1. Consequently, the heat of plasma is transmitted from the armor member 3 to the cooling member efficiently through the copper 1 and a required heat removing performance is ensured. Furthermore, since the board 4 side is composed of the stainless steel 2 having a high mechanical strength, the divertor structure can be secured to the board 4 fixed to the inner wall 5 of vacuum vessel without requiring any additional material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイバータ構造に関す
る。詳しくは、トカマク型核融合プラズマ実験装置の真
空容器内で、超高温プラズマに直面して配置されるダイ
バータ構造に関する。その他の高熱負荷を受け、除熱の
ために強制冷却が必要となる構造すべてに応用可能なも
のである。
FIELD OF THE INVENTION The present invention relates to a diverter structure. More specifically, the present invention relates to a divertor structure arranged in the vacuum container of the tokamak-type fusion plasma experimental device facing the ultra-high temperature plasma. It can be applied to all other structures that are subjected to high heat load and require forced cooling for heat removal.

【0002】[0002]

【従来の技術】従来のダイバータ構造の例を図3に示
す。この例は、銅製の強制冷却チャンネル8を用いるも
のである。同図に示すように、真空容器の内壁5に基板
4が結合されると共にこの基板4にステンレス製の金具
(基板)9が固定され、更に、この金具9に強制冷却チ
ャンネル8を介して耐熱材料(アーマ材)3が結合され
ている。
2. Description of the Related Art An example of a conventional diverter structure is shown in FIG. This example uses a forced cooling channel 8 made of copper. As shown in the figure, the substrate 4 is joined to the inner wall 5 of the vacuum container, the metal fitting (substrate) 9 made of stainless steel is fixed to the substrate 4, and the metal fitting 9 is heat-resistant via the forced cooling channel 8. The material (armor material) 3 is bonded.

【0003】耐熱材料3は、真空容器内の超高温プラズ
マに面しており、高融点材料であるグラファイト或いは
C/Cコンポジット(炭素繊維強化炭素複合材料)が用
いられる。強制冷却チャンネル8は耐熱材料3にろう付
けされており、熱伝導度の高い銅製で構成される。強制
冷却チャンネル8の中空部には、耐熱材料であるアーマ
材3を冷却除熱するために、図示しない冷媒が流れてい
る。
The heat-resistant material 3 faces the ultra-high temperature plasma in the vacuum vessel, and graphite or C / C composite (carbon fiber reinforced carbon composite material) which is a high melting point material is used. The forced cooling channel 8 is brazed to the heat resistant material 3 and is made of copper having high thermal conductivity. A coolant (not shown) flows in the hollow portion of the forced cooling channel 8 in order to cool and remove the heat-resistant armor material 3.

【0004】[0004]

【発明が解決しようとする課題】トカマク型核融合実験
装置では、良好なプラズマ性能を得るために、ダイバー
タ構造のプラズマ対向面(高熱負荷を受ける側の表面)
と、ダイバータ構造を固定する真空容器の内壁5との距
離を極力小さくすることが強く要請されている。しかる
に、従来のダイバータ構造では、冷媒流量を確保するた
めに強制冷却チャンネル8の断面積が定められているた
め、強制冷却チャンネル8をこれ以上小型化するのは困
難である。
In the tokamak fusion experimental apparatus, in order to obtain good plasma performance, the plasma facing surface of the divertor structure (the surface on the side subject to high heat load)
There is a strong demand for minimizing the distance between the inner wall 5 and the inner wall 5 of the vacuum container that fixes the diverter structure. However, in the conventional diverter structure, since the cross-sectional area of the forced cooling channel 8 is determined in order to secure the flow rate of the refrigerant, it is difficult to downsize the forced cooling channel 8 any further.

【0005】また、強制冷却チャンネル8は、熱伝導度
の高い銅等を用いるために機械的強度が比較的低く、真
空容器の内壁5に機械的に固定するためには、ステンレ
ス鋼等の比較的機械的強度の高い材料で構成された基板
4,9に更に結合する必要があった。
Further, the forced cooling channel 8 has relatively low mechanical strength because it uses copper or the like having high thermal conductivity, and in order to mechanically fix it to the inner wall 5 of the vacuum container, a comparison with stainless steel or the like is made. It was necessary to further bond to the substrates 4 and 9 composed of a material having high mechanical strength.

【0006】この為、プラズマ対向面と真空容器の内壁
5と距離を小さくするには限界があり、これを更に小さ
くすることが強く求められていた。本発明は、上記従来
技術に鑑みてなされたものであり、冷却除熱能力を保ち
ながら、ダイバータ構造のプラズマ対向面と真空容器の
内壁との距離を小さくすることができるダイバータ構造
を提供することを目的とする。
Therefore, there is a limit in reducing the distance between the plasma facing surface and the inner wall 5 of the vacuum container, and it has been strongly demanded to further reduce the distance. The present invention has been made in view of the above prior art, and provides a diverter structure capable of reducing the distance between the plasma facing surface of the diverter structure and the inner wall of the vacuum container while maintaining the cooling and heat removal capacity. With the goal.

【0007】[0007]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成は高熱負荷を受け、これを除熱するダイバー
タ構造において、強制冷却チャンネルの高熱負荷を受け
る側が熱伝導度の高い材料で構成されると共に前記強制
冷却チャンネルの基板に固定される側が機械的強度の高
い材料で構成され、且つ、前記材料が冶金的に結合され
ていることを特徴とする。また、前記熱伝導度の高い材
料として銅を用いること、前記機械的強度の高い材料と
してステンレス鋼を用いることを特徴とする。
The structure of the present invention which achieves such an object is subjected to a high heat load, and in the diverter structure for removing the heat, the side of the forced cooling channel receiving the high heat load is made of a material having a high thermal conductivity. It is characterized in that the side of the forced cooling channel fixed to the substrate is made of a material having high mechanical strength, and the materials are metallurgically bonded. Further, it is characterized in that copper is used as the material having high thermal conductivity and stainless steel is used as the material having high mechanical strength.

【0008】[0008]

【作用】高熱負荷を受ける側、即ち、耐熱材料で構成さ
れるアーマ材と接する側の強制冷却チャンネルは、熱伝
導度の高い材料で構成されているため、プラズマからア
ーマ材が受けた熱量が効率良く冷却材に伝達される。強
制冷却チャンネルを構成する基板側、即ち、高熱負荷を
受ける側の反対側で基板に機械的に固定される側は、機
械的強度の高い材料で構成されているため、他の付加物
を介さずに、真空容器の内壁に固定された基板に固定す
ることができる。
Since the forced cooling channel on the side that receives a high heat load, that is, the side that comes into contact with the armor material that is made of a heat-resistant material is made of a material with high thermal conductivity, the amount of heat that the armor material receives from the plasma is It is efficiently transmitted to the coolant. The side of the substrate that constitutes the forced cooling channel, that is, the side that is mechanically fixed to the substrate on the side opposite to the side that receives a high heat load, is made of a material with high mechanical strength, and therefore other additives are not interposed. Instead, it can be fixed to the substrate fixed to the inner wall of the vacuum container.

【0009】[0009]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。図1に本発明の一実施例を示
す。本実施例では、強制冷却チャンネル8を二つの構成
材(Cu)1と構成材(ステンレス鋼)2とで構成したも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 shows an embodiment of the present invention. In this embodiment, the forced cooling channel 8 is composed of two constituent materials (Cu) 1 and two constituent materials (stainless steel) 2.

【0010】同図に示すように、真空容器の内壁5に基
板4がすみ肉溶接部6にて結合されると共にこの基板4
に強制冷却チャンネルの一部を構成するステンレス鋼2
が結合され、このステンレス鋼2に強制冷却チャンネル
の一部を構成する銅1が冶金的に結合部7を介して結合
され、更に、この銅1に耐熱材料(アーマ材)3が結合
されている。
As shown in the figure, the substrate 4 is joined to the inner wall 5 of the vacuum vessel at the fillet weld 6 and the substrate 4 is joined.
Stainless steel that forms part of the forced cooling channel on the
Copper 1 forming a part of the forced cooling channel is metallurgically bonded to the stainless steel 2 through a bonding portion 7, and a heat resistant material (armor material) 3 is bonded to the copper 1. There is.

【0011】銅1及びステンレス鋼2は、それぞれ断面
コ字型であり、それらを結合した強制冷却チャンネルに
は中空部が形成されている。その中空部には耐熱材料を
除熱冷却するために、図示しない冷媒が流れている。銅
1とステンレス鋼2とは結合部7で溶融溶接されてお
り、本実施例では、EBWにより冶金的に結合されてい
る。
The copper 1 and the stainless steel 2 each have a U-shaped cross section, and a hollow portion is formed in the forced cooling channel connecting them. A refrigerant (not shown) flows in the hollow portion to remove heat and cool the heat resistant material. The copper 1 and the stainless steel 2 are melt-welded at the joint 7, and in this embodiment, they are metallurgically joined by EBW.

【0012】上記構成を有する本実施例のダイバータ構
造では、高熱負荷を受ける側、即ち、耐熱材料で構成さ
れるアーマ材と接する側の強制冷却チャンネルは、熱伝
導度の高い材料である銅1で構成されているため、プラ
ズマからアーマ材3が受けた熱量が効率良く冷却材に伝
達され、必要な除熱性能を確保することができる。ま
た、強制冷却チャンネルを構成する基板側、即ち、高熱
負荷を受ける側の反対側で基板に機械的に固定される側
は、機械的強度の高い材料であるステンレス鋼2で構成
されているため、他の付加物(従来のような基板9)を
介さずに、真空容器の内壁5に固定された基板4に固定
することができる。
In the diverter structure of this embodiment having the above-mentioned structure, the forced cooling channel on the side that receives a high heat load, that is, the side that contacts the armor material made of a heat-resistant material, is made of copper 1 which is a material having high thermal conductivity. Therefore, the amount of heat received by the armor member 3 from the plasma is efficiently transferred to the coolant, and the necessary heat removal performance can be secured. In addition, the side of the substrate that constitutes the forced cooling channel, that is, the side that is mechanically fixed to the substrate on the side opposite to the side that receives a high heat load, is made of stainless steel 2 that is a material with high mechanical strength. , And can be fixed to the substrate 4 fixed to the inner wall 5 of the vacuum container without interposing other additives (the conventional substrate 9).

【0013】本発明の他の実施例について、図2を参照
して説明する。本実施例は、前述した実施例の変形例を
示すものである。即ち、真空容器の内壁5に基板4がす
み肉溶接部6にて結合されると共にこの基板4に強制冷
却チャンネルの一部を構成するステンレス鋼2が結合さ
れ、このステンレス鋼2に強制冷却チャンネルの一部を
構成する銅1が冶金的に結合部7を介して結合され、更
に、この銅1に耐熱材料(アーマ材)3が結合されてい
る。銅1とステンレス鋼2とは結合部7でろう付け溶接
されている。
Another embodiment of the present invention will be described with reference to FIG. This embodiment shows a modification of the above-mentioned embodiment. That is, the substrate 4 is joined to the inner wall 5 of the vacuum container at the fillet welded portion 6 and the stainless steel 2 forming a part of the forced cooling channel is joined to the substrate 4, and the forced cooling channel is connected to the stainless steel 2. 1 is partially metallurgically bonded to each other via a bonding portion 7, and a heat resistant material (armor material) 3 is bonded to the copper 1. The copper 1 and the stainless steel 2 are brazed and welded at the joint 7.

【0014】銅1は板状であり、また、ステンレス鋼2
は断面コ字型であり、それらを結合した強制冷却チャン
ネルには中空部が形成されている。その中空部には耐熱
材料を除熱冷却するために、図示しない冷媒が流れてい
る。
Copper 1 is plate-shaped, and stainless steel 2
Has a U-shaped cross section, and a hollow portion is formed in the forced cooling channel connecting them. A refrigerant (not shown) flows in the hollow portion to remove heat and cool the heat resistant material.

【0015】上記構成を有する本実施例のダイバータ構
造においても、前述した実施例と同様に、強制冷却チャ
ンネルの高熱負荷を受ける側が熱伝導度の高い材料であ
る銅1で構成されると共に強制冷却チャンネルの基板に
固定される側が機械的強度の高い材料でてあるステンレ
ス鋼2で構成され、且つ、これらの銅1とステンレス鋼
2が結合部7で冶金的に結合されているため、冷却除熱
能力を保ちながら、ダイバータ構造のプラズマ対向面と
真空容器の内壁との距離を小さくすることができる。
Also in the diverter structure of the present embodiment having the above-mentioned structure, as in the above-mentioned embodiments, the side of the forced cooling channel which receives a high heat load is made of copper 1 which is a material having high thermal conductivity and the forced cooling is carried out. Since the side of the channel fixed to the substrate is made of stainless steel 2 which is a material having high mechanical strength, and the copper 1 and the stainless steel 2 are metallurgically bonded at the joint 7, the cooling removal is performed. It is possible to reduce the distance between the plasma facing surface of the diverter structure and the inner wall of the vacuum container while maintaining the heat capacity.

【0016】[0016]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明では、強制冷却冷却チャンネルを特性
の異なる二種類の材料を組み合わせて構成するようにし
たので、冷却除熱能力を保ちながら、ダイバータ構造の
プラズマ対向面と真空容器の内壁との距離を小さくする
ことができる。
As described above in detail with reference to the embodiments, in the present invention, the forced cooling channel is constructed by combining two kinds of materials having different characteristics. While maintaining the above, the distance between the plasma facing surface of the diverter structure and the inner wall of the vacuum container can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るダイバータ構造の断面
図である。
FIG. 1 is a sectional view of a diverter structure according to an embodiment of the present invention.

【図2】本発明の他の実施例に係るダイバータ構造の断
面図である。
FIG. 2 is a sectional view of a diverter structure according to another embodiment of the present invention.

【図3】従来のダイバータ構造の断面図である。FIG. 3 is a cross-sectional view of a conventional diverter structure.

【符号の説明】[Explanation of symbols]

1 構成材(Cu) 2 構成材(ステンレス鋼) 3 アーマ材 4 基板 5 真空容器の内壁 6 すみ肉溶接部 7 接合部 8 強制冷却チャンネル 9 基板 1 constituent material (Cu) 2 constituent material (stainless steel) 3 armor material 4 substrate 5 inner wall of vacuum vessel 6 fillet weld 7 joint 8 forced cooling channel 9 substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高熱負荷を受け、これを除熱するダイバ
ータ構造において、強制冷却チャンネルの高熱負荷を受
ける側が熱伝導度の高い材料で構成されると共に前記強
制冷却チャンネルの基板に固定される側が機械的強度の
高い材料で構成され、且つ、前記材料が冶金的に結合さ
れていることを特徴とするダイバータ構造。
1. In a diverter structure that receives a high heat load and removes the heat, the side of the forced cooling channel that receives the high heat load is made of a material with high thermal conductivity, and the side of the forced cooling channel that is fixed to the substrate is fixed. A diverter structure comprising a material having high mechanical strength, and the materials being metallurgically bonded.
【請求項2】 前記熱伝導度の高い材料として、銅を用
いることを特徴とする請求項1記載のダイバータ構造。
2. The diverter structure according to claim 1, wherein copper is used as the material having high thermal conductivity.
【請求項3】 前記機械的強度の高い材料として、ステ
ンレス鋼を用いることを特徴とする請求項1又は2記載
のダイバータ構造。
3. The diverter structure according to claim 1, wherein stainless steel is used as the material having high mechanical strength.
JP6099555A 1994-05-13 1994-05-13 Divertor structure Withdrawn JPH07306278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6099555A JPH07306278A (en) 1994-05-13 1994-05-13 Divertor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6099555A JPH07306278A (en) 1994-05-13 1994-05-13 Divertor structure

Publications (1)

Publication Number Publication Date
JPH07306278A true JPH07306278A (en) 1995-11-21

Family

ID=14250413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099555A Withdrawn JPH07306278A (en) 1994-05-13 1994-05-13 Divertor structure

Country Status (1)

Country Link
JP (1) JPH07306278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852139A1 (en) * 2003-03-04 2004-09-10 Japan Nuclear Cycle Dev Inst Nuclear reactor vessel heat load reduction system uses heat conducting element outside vessel covering zone above and below surface of liquid coolant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852139A1 (en) * 2003-03-04 2004-09-10 Japan Nuclear Cycle Dev Inst Nuclear reactor vessel heat load reduction system uses heat conducting element outside vessel covering zone above and below surface of liquid coolant

Similar Documents

Publication Publication Date Title
US4869421A (en) Method of jointing titanium aluminide structures
EP0135937B1 (en) Method of bonding alumina to metal
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JP2001355992A (en) Plate type heat exchanger
US5069978A (en) Brazed composite having interlayer of expanded metal
JPH07306278A (en) Divertor structure
JP3197835B2 (en) Composite joint of beryllium, copper alloy and stainless steel and composite joint method
CN116507439A (en) Method for producing a cooling body by means of brazing and device comprising a cooling body
US4785989A (en) Clad system for brazing to alumina
JPH0380162A (en) Method for joining ceramic parts with metallic parts
JP6852927B1 (en) Brazing joining method of copper and copper alloy
JPS61286059A (en) Joining method for aluminum alloy and aluminum ceramics
JP2606847B2 (en) High frequency window
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JP3522896B2 (en) Sealing material for vacuum hermetic container and vacuum hermetic container
JP2001225176A (en) Producing method for hip joined body of beryllium and copper alloy and hip joined body
JPS61215273A (en) Method of bonding ceramic and metal
JPH11282561A (en) Insulated control rod and its manufacture
JPS6140626B2 (en)
JPH07225288A (en) High temperature flux receiving plate
JPH05249264A (en) Plasma facing device of nuclear fusion device
US20040173660A1 (en) Method of soldering
JPS60256787A (en) Ceramics lined furnace wall body and manufacture thereof
JPS62252376A (en) Method of joining alumina ceramic and copper plate
Dockus Direct Liquid Phase Bonding of Ceramics

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731