JPH07306072A - Heat-generating resistance body for apparatus for measuring flow rate of air - Google Patents

Heat-generating resistance body for apparatus for measuring flow rate of air

Info

Publication number
JPH07306072A
JPH07306072A JP6098354A JP9835494A JPH07306072A JP H07306072 A JPH07306072 A JP H07306072A JP 6098354 A JP6098354 A JP 6098354A JP 9835494 A JP9835494 A JP 9835494A JP H07306072 A JPH07306072 A JP H07306072A
Authority
JP
Japan
Prior art keywords
resistor
air flow
flow rate
heating resistor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6098354A
Other languages
Japanese (ja)
Inventor
Hiroyuki Abe
博幸 阿部
Toshinori Oikawa
利紀 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP6098354A priority Critical patent/JPH07306072A/en
Publication of JPH07306072A publication Critical patent/JPH07306072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve a measuring accuracy for a flow rate of air in a range of high flow rates in an apparatus measuring an air flow rate. CONSTITUTION:A cross section of a supporting body 2 holding a resistance body 1 of a heat-generating resistance body 5 is made elliptic or streamline, thereby improving an accuracy of an apparatus for measuring an air flow rate. The effect is noticed particularly in a range of high flow rates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の内燃機関に吸
入される空気量を計測する空気流量測定装置用発熱抵抗
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating resistor for an air flow measuring device for measuring the amount of air taken into an internal combustion engine of an automobile.

【0002】[0002]

【従来の技術】現在、空気流量測定装置用の発熱抵抗体
としては、特開昭56−108907号公報に記載の例がある。
この公知例は、発熱抵抗体を保持する支持体はアルミナ
による円筒状のパイプである。他に板形の発熱抵抗体も
公開されている。これら公知例の発熱抵抗体は空気通路
中に設置され、空気流が発熱抵抗体に接触した際の熱伝
達により空気流量を検出する構造となっている。
2. Description of the Related Art At present, as an exothermic resistor for an air flow measuring device, there is an example described in Japanese Patent Application Laid-Open No. 56-108907.
In this known example, the support for holding the heating resistor is a cylindrical pipe made of alumina. In addition, a plate-shaped heating resistor has been made public. The heating resistors of these known examples are installed in an air passage, and have a structure that detects the air flow rate by heat transfer when the air flow contacts the heating resistor.

【0003】しかし、公知例の発熱抵抗体では多量の空
気流量を測定する際、円形や板形では形状的に流体抵抗
が大きいため発熱抵抗体及び感温抵抗体後方にカルマン
渦が発生しやすい状態となる。カルマン渦が発生した
際、空気流量の測定精度が悪化する不具合が発生する。
However, when measuring a large amount of air flow in the known heating resistor, Karman vortices are apt to occur behind the heating resistor and the temperature sensitive resistor due to the large fluid resistance in the shape of a circle or plate. It becomes a state. When the Karman vortex occurs, a problem that the accuracy of measuring the air flow rate deteriorates occurs.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、空気
流量測定装置に求められる高精度化に対応すべくするこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to meet the high precision required for an air flow rate measuring device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
には、抵抗体を保持する絶縁体より成る支持体の断面形
状を、だ円あるいは流線形にすることにより達成され
る。
In order to achieve the above object, the support made of an insulating material for holding a resistor is made to have an elliptical or streamline cross-sectional shape.

【0006】[0006]

【作用】空気通路中に障害物を設置すると、障害物後方
にカルマン渦が発生し流体抵抗となり空気通路が遮られ
た形となるため、空気通路中に見かけ上の圧力損失が発
生した形になり空気通路中の空気流速が遅くなる。この
見かけ上の圧力損失のために、空気流量測定誤差が発生
する。空気流量測定装置の場合、前記空気通路中に設置
された障害物は発熱抵抗体及び、感温抵抗体でありカル
マン渦が発生すると空気中への熱伝達がカルマン渦の影
響を受けて通常とは異なる状態での熱伝達を行い誤差が
発生する可能性がある。
[Operation] When an obstacle is installed in the air passage, Karman vortices are generated behind the obstacle, causing fluid resistance and blocking the air passage. Therefore, an apparent pressure loss occurs in the air passage. The air velocity in the air passage becomes slower. Due to this apparent pressure loss, an air flow measurement error occurs. In the case of an air flow rate measuring device, the obstacles installed in the air passage are a heating resistor and a temperature sensitive resistor, and when a Karman vortex is generated, heat transfer to the air is affected by the Karman vortex, which is normal. May cause heat transfer in different states, resulting in errors.

【0007】この空気通路中に設置された発熱抵抗体は
極力カルマン渦の発生を抑える形状,構造であれば空気
流量測定精度は低流量から高流量に至るまで安定した精
度を維持できる。特にカルマン渦の発生を抑えるために
は発熱抵抗体の断面形状を工夫すると効果がある。
(1)式は空気流の中に設置された障害物の流体抵抗を
表わす一般式である。
If the heating resistor installed in the air passage has a shape and structure that suppresses the generation of Karman vortices as much as possible, the accuracy of the air flow rate measurement can be kept stable from low flow rate to high flow rate. Particularly, in order to suppress the generation of Karman vortices, it is effective to devise the cross-sectional shape of the heating resistor.
Formula (1) is a general formula that represents the fluid resistance of an obstacle installed in the air flow.

【0008】[0008]

【数1】 [Equation 1]

【0009】D:流体抵抗 u:通路内の流速 CD :抵抗係数 A:支持体の断面積 ρ:空気の密度 (1)式より空気通路中の流体抵抗は空気流速の2乗で
影響し、抵抗係数に比例しており、高流量になるほど流
体抵抗の影響が大きくなることが判る。(1)式の中で
空気流中に設置された障害物について、障害物自身の有
する抵抗係数は発熱抵抗体の断面形状によって係数が異
なることが判っている。この抵抗係数は空気流に対する
障害物の投影面積と比例するため、円形,板形よりはだ
円,流線形のような投影面積の小さい形状にすることが
有効である。発熱抵抗体の断面が円形の場合、抵抗係数
=0.68〜1.2に対し、だ円の場合の抵抗係数は約0.
6である。更に断面形状が流線形の場合形状にもよる
が、抵抗係数≦0.1 も可能となる。従って、発熱抵抗
体の断面形状をだ円あるいは流線形にすることによって
抵抗係数を軽減し、更に流体抵抗を軽減できる効果によ
り、特に高流量域でのカルマン渦の発生を抑える効果を
期待でき、空気流量測定精度を改善できる効果がある。
D: Fluid resistance u: Flow velocity in passage C D : Resistance coefficient A: Cross-sectional area of support ρ: Density of air From equation (1), the fluid resistance in the air passage is affected by the square of the air flow velocity. , It is proportional to the resistance coefficient, and it can be seen that the influence of fluid resistance increases as the flow rate increases. It has been known in the equation (1) that the resistance coefficient of the obstacle itself, which is installed in the air flow, differs depending on the sectional shape of the heating resistor. Since this resistance coefficient is proportional to the projected area of the obstacle against the air flow, it is effective to use a shape with a small projected area such as a circle, an ellipse rather than a plate, or a streamline. When the heating resistor has a circular cross section, the resistance coefficient is 0.68 to 1.2, whereas when the elliptical shape has a resistance coefficient of about 0.6.
Is 6. Further, when the cross-sectional shape is streamlined, the resistance coefficient ≦ 0.1 is possible, though it depends on the shape. Therefore, the resistance coefficient can be reduced by making the cross-sectional shape of the heating resistor elliptical or streamlined, and the effect of further reducing the fluid resistance can be expected to suppress the generation of Karman vortices, particularly in the high flow rate region. This has the effect of improving the accuracy of air flow measurement.

【0010】[0010]

【実施例】本発明の実施例を図により説明する。Embodiments of the present invention will be described with reference to the drawings.

【0011】図1は本発明の流体抵抗を軽減した発熱抵
抗体及び感温抵抗体。図2,図3,図4,図5は本発明
の流体抵抗を軽減した発熱抵抗体及び感温抵抗体の実施
例。図6には本発明が空気流量測定装置に与える効果を
示した。図7は空気流量測定装置の断面構造図である。
FIG. 1 shows a heat-generating resistor and a temperature-sensitive resistor which have reduced fluid resistance according to the present invention. 2, FIG. 3, FIG. 4, and FIG. 5 are embodiments of the heat-generating resistor and the temperature-sensitive resistor that reduce the fluid resistance of the present invention. FIG. 6 shows the effect of the present invention on the air flow rate measuring device. FIG. 7 is a sectional structural view of the air flow rate measuring device.

【0012】本発明は空気流量測定装置の空気流量測定
精度向上を目的に発明した。図1を例に説明する。空気
流量測定装置に用いられる発熱抵抗体及び感温抵抗体は
導電性金属より成る抵抗体1を絶縁体より形成される支
持体2にスパイラル状に巻き付けられている。この支持
体2は断面形状が、だ円形であることが特徴であり水平
方向に穴が設けられている条である。この穴の両端には
導電性金属よる成るリード3が接着剤4などにより接着
固定される。そして前記抵抗体1はリード3の両端部に
溶接されることにより所定の抵抗値を有する発熱抵抗体
5あるいは感温抵抗体6となる。更に抵抗体1表面には
抵抗体1の保護のためガラスなどによるコーティング7
が施されている構造である。
The present invention has been invented for the purpose of improving the accuracy of measuring an air flow rate of an air flow rate measuring device. An example will be described with reference to FIG. The heat-generating resistor and the temperature-sensitive resistor used in the air flow rate measuring device are formed by spirally winding a resistor 1 made of a conductive metal around a support 2 made of an insulator. The support 2 is characterized in that its cross-sectional shape is elliptical, and is a strip provided with holes in the horizontal direction. Leads 3 made of a conductive metal are bonded and fixed to both ends of this hole with an adhesive 4 or the like. The resistor 1 is welded to both ends of the lead 3 to become the heat generating resistor 5 or the temperature sensitive resistor 6 having a predetermined resistance value. Further, the surface of the resistor 1 is coated with glass or the like 7 to protect the resistor 1.
It is a structure that has been applied.

【0013】このだ円形の断面を有する支持体2に抵抗
体1を巻線した発熱抵抗体5は支持体2の断面が円形の
場合に比較して、空気流に対しての投影面積が小さくな
るため空気流に対しての抵抗係数が軽減する。流体抵抗
は空気通路を通過する空気流速の2乗に比例し、抵抗係
数と比例するため支持体2の断面が円形の場合に比較し
て、特に高流量域での空気流量測定精度が向上する効果
がある。
The heating resistor 5 in which the resistor 1 is wound around the support 2 having an elliptical cross section has a smaller projected area with respect to the air flow than when the support 2 has a circular cross section. Therefore, the resistance coefficient to the air flow is reduced. The fluid resistance is proportional to the square of the flow velocity of the air passing through the air passage, and is proportional to the resistance coefficient, so that the accuracy of the air flow rate measurement is improved particularly in a high flow rate range as compared with the case where the support 2 has a circular cross section. effective.

【0014】図2は図1に示した本発明の実施例であ
る。抵抗体1を支持する支持体2の断面形状は流線形の
翼形であることが特徴である。流線形の断面を有する場
合、円形や、だ円の断面に比較して空気流に対する支持
体の投影面積がはるかに小さいため抵抗係数を、更に小
さくすることできる。従って、空気通路中に設置された
発熱抵抗体の後方に発生するカルマン渦の発生を抑える
効果により、高流量域での空気流量測定精度が改善さ
れ、空気流量測定装置の高精度化に効果がある。
FIG. 2 shows an embodiment of the present invention shown in FIG. The cross-sectional shape of the support 2 that supports the resistor 1 is characterized by a streamlined wing shape. In the case of a streamlined cross section, the projected area of the support for the air flow is much smaller than that of a circular or elliptical cross section, so that the resistance coefficient can be further reduced. Therefore, the effect of suppressing the generation of Karman vortices generated behind the heating resistor installed in the air passage improves the air flow rate measurement accuracy in the high flow rate range, and is effective in improving the accuracy of the air flow rate measurement device. is there.

【0015】図3も図1に示した本発明の実施例であ
る。抵抗体1は支持体2上にスパッタや蒸着などで形成
された導電性金属の薄膜8である。この薄膜8をレーザ
ー等の方法でトリミングして所定の抵抗値にすることで
発熱抵抗体5としている。この発熱抵抗体5は支持体2
の水平方向に設けられている穴にリード3を固定する
際、電気的接続のため導電性接着剤9で支持体2とリー
ド3を固定する必要がある。また薄膜8の保護のため、
薄膜8表面にガラスなどのコーティング7が施されてい
る。
FIG. 3 is also an embodiment of the present invention shown in FIG. The resistor 1 is a conductive metal thin film 8 formed on the support 2 by sputtering or vapor deposition. The thin film 8 is trimmed by a method such as a laser so as to have a predetermined resistance value, thereby forming the heating resistor 5. This heating resistor 5 is the support 2
When fixing the leads 3 to the holes provided in the horizontal direction, it is necessary to fix the support 2 and the leads 3 with a conductive adhesive 9 for electrical connection. Also, to protect the thin film 8,
The surface of the thin film 8 is coated with a coating 7 such as glass.

【0016】図4は図3に示した本発明の他の実施例で
ある。支持体2の表面に薄膜8を形成し、この薄膜8を
トリミングすることにより所定の抵抗値を有する発熱抵
抗体5において、支持体2の断面は流線形であり図3の
本発明と同様、高流量域での空気流量測定精度向上を図
る効果がある。
FIG. 4 shows another embodiment of the present invention shown in FIG. A thin film 8 is formed on the surface of the support 2, and the thin film 8 is trimmed to have a predetermined resistance value. In the heating resistor 5, the cross section of the support 2 is streamlined, and similar to the present invention of FIG. This has the effect of improving the accuracy of air flow rate measurement in the high flow rate range.

【0017】図5は図4に提示した本発明の他の実施例
である。断面が流線形の支持体2の表面に薄膜8が形成
された構造の発熱抵抗体5を2つ用意して、互いに向き
合わせた状態で、前記2つの発熱抵抗体の間にリード3
を介在させて導電性接着剤9により固定することによ
り、互いに向き合った流線形の支持体2を固定して発熱
抵抗体5とするものである。
FIG. 5 is another embodiment of the invention presented in FIG. Two heating resistors 5 having a structure in which a thin film 8 is formed on the surface of a support body 2 having a streamline cross section are prepared, and the leads 3 are placed between the two heating resistors in a state of facing each other.
By fixing with a conductive adhesive 9 with the interposition of, the streamlined supports 2 facing each other are fixed to form the heating resistor 5.

【0018】流線形の支持体2を向き合わせた構造の発
熱抵抗体5の場合、空気通路中に設置される発熱抵抗体
5の発熱部面積つまり空気中への熱伝達部面積が2倍と
なるため、レイノルズ数が高く乱流状態であったり、カ
ルマン渦の発生により空気流量測定精度の悪い高流量域
や、層流と乱流の境界であるためノイズの大きい遷移域
での空気流を、広い面積で捉えることができるため空気
流量の平均化精度が高く、空気流量の測定精度が向上す
る。
In the case of the heating resistor 5 having a structure in which the streamlined supports 2 face each other, the heating portion area of the heating resistor 5 installed in the air passage, that is, the heat transfer portion area to the air is doubled. Therefore, the Reynolds number is high and it is in a turbulent state, and the air flow in a high flow area where the air flow measurement accuracy is poor due to the generation of Karman vortex, and the air flow in the transition area where noise is large due to the boundary between laminar flow and turbulent Since it can be captured in a wide area, the averaging accuracy of the air flow rate is high, and the measurement accuracy of the air flow rate is improved.

【0019】図6は本発明の発熱抵抗体5を空気流量測
定装置に使用した際の効果を表す実施例である。断面が
円形である発熱抵抗体5の場合と断面がだ円形の場合の
発熱抵抗体5を比較すると空気流量が低い領域の空気流
量測定誤差のばらつきについては双方に変化はないが、
高流量域での空気流量測定誤差のばらつきはあきらかに
断面がだ円形の発熱抵抗体5を用いた場合が小さくなっ
ており、空気流量測定誤差の低減に効果があることがわ
かる。
FIG. 6 is an embodiment showing the effect when the heating resistor 5 of the present invention is used in an air flow measuring device. Comparing the heating resistor 5 having a circular cross section with the heating resistor 5 having an elliptical cross section, there is no change in the variation in the air flow rate measurement error in the region where the air flow rate is low.
The variation in the air flow rate measurement error in the high flow rate region is apparently small when the heating resistor 5 having an oval cross section is used, and it can be seen that it is effective in reducing the air flow rate measurement error.

【0020】図7に本発明の発熱抵抗体を用いた空気流
量測定装置の構成を実施例として説明する。5は副空気
通路10に設置された発熱抵抗体である。6は発熱抵抗
体と同じ副空気通路10に設置された温度補償用の感温
抵抗体である。11は発熱抵抗体5より検出した信号を
電気的に処理する駆動回路である。12は大部分の空気
が流れる主空気通路である。
FIG. 7 illustrates the structure of an air flow rate measuring device using the heating resistor of the present invention as an embodiment. Reference numeral 5 is a heating resistor installed in the sub air passage 10. 6 is a temperature-sensitive resistor for temperature compensation, which is installed in the same sub air passage 10 as the heating resistor. Reference numeral 11 is a drive circuit for electrically processing the signal detected by the heating resistor 5. 12 is a main air passage through which most of the air flows.

【0021】発熱抵抗体5,感温抵抗体6は共に抵抗体
であり両者の抵抗温度係数は等しい抵抗体を使用する。
また両者は、電気的に駆動回路11と接続している。こ
の、空気流量測定装置の発熱抵抗体5,感温抵抗体6は
吸入空気の一部が通過する副空気通路10にピンに溶接
され保持される。このピンは電気的に駆動回路と接続し
ており、発熱抵抗体5と駆動回路11を電気的に接続す
るターミナルとなっている。駆動回路11はボディ13
に固定され一体構造となる。
The heating resistor 5 and the temperature sensitive resistor 6 are both resistors, and resistors having the same temperature coefficient of resistance are used.
Both are electrically connected to the drive circuit 11. The heat generating resistor 5 and the temperature sensitive resistor 6 of the air flow rate measuring device are held by being welded to the pins in the sub air passage 10 through which a part of the intake air passes. This pin is electrically connected to the drive circuit and serves as a terminal for electrically connecting the heating resistor 5 and the drive circuit 11. The drive circuit 11 is a body 13
It is fixed to and becomes an integral structure.

【0022】次に動作原理を説明する。駆動回路11に
より発熱抵抗体5を一定の温度に加熱するための印加電
流が供給される。この加熱温度は吸入空気の量と関係な
く発熱抵抗体5と感温抵抗体6で検出する吸入空気温度
との温度差が常に一定に保たれるように感温抵抗体6で
補正している。従って、高流量が主空気通路12を流れ
た場合は高い電流を、低流量が流れた際は低い電流を供
給して発熱抵抗体5と感温抵抗体6の温度差を常に一定
に保つように駆動回路11でフィードバック制御する原
理であり、前記加熱電流を抵抗で検出し、出力信号を得
る構造である。発熱抵抗体5に供給する印加電流と吸入
空気流量との間には単調増加関数の関係があり、この関
係により吸入空気流量を測定する原理である。
Next, the operating principle will be described. The drive circuit 11 supplies an applied current for heating the heating resistor 5 to a constant temperature. The heating temperature is corrected by the temperature sensitive resistor 6 so that the temperature difference between the heating resistor 5 and the temperature of the intake air detected by the temperature sensitive resistor 6 is always kept constant regardless of the amount of intake air. . Therefore, a high current is supplied when a high flow rate flows through the main air passage 12, and a low current is supplied when a low flow rate flows so that the temperature difference between the heating resistor 5 and the temperature sensitive resistor 6 is always kept constant. In addition, it is the principle of feedback control by the drive circuit 11, and has a structure in which the heating current is detected by a resistor and an output signal is obtained. There is a monotonically increasing function relationship between the applied current supplied to the heating resistor 5 and the intake air flow rate, which is the principle of measuring the intake air flow rate.

【0023】[0023]

【発明の効果】本発明によれば、空気流量測定装置の空
気流量測定精度向上に寄与する効果がある。
According to the present invention, there is an effect that it contributes to the improvement of the air flow rate measurement accuracy of the air flow rate measurement device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発熱抵抗体の断面図である。FIG. 1 is a cross-sectional view of a heating resistor of the present invention.

【図2】本発明の発熱抵抗体の断面図である。FIG. 2 is a sectional view of a heating resistor of the present invention.

【図3】本発明の発熱抵抗体の断面図である。FIG. 3 is a cross-sectional view of a heating resistor of the present invention.

【図4】本発明の発熱抵抗体の断面図である。FIG. 4 is a sectional view of a heating resistor of the present invention.

【図5】本発明の発熱抵抗体の断面図である。FIG. 5 is a cross-sectional view of a heating resistor of the present invention.

【図6】本発明の発熱抵抗体の測定精度改善の効果図で
ある。
FIG. 6 is an effect diagram of improving the measurement accuracy of the heating resistor of the present invention.

【図7】本発明の発熱抵抗体を用いた空気流量測定装置
の断面構造図である。
FIG. 7 is a cross-sectional structural view of an air flow rate measuring device using the heating resistor of the present invention.

【符号の説明】[Explanation of symbols]

1…抵抗体、2…支持体、3…リード、4…接着剤、5
…発熱抵抗体、6…感温抵抗体、7…コーティング、8
…薄膜、9…導電性接着剤、10…副空気通路、11…
駆動回路、12…主空気通路、13…ボディ。
1 ... Resistor, 2 ... Support, 3 ... Lead, 4 ... Adhesive, 5
… Heating resistor, 6… Temperature sensitive resistor, 7… Coating, 8
... Thin film, 9 ... Conductive adhesive, 10 ... Sub air passage, 11 ...
Drive circuit, 12 ... Main air passage, 13 ... Body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 及川 利紀 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshinori Oikawa 2477 Kashima Yatsu Kashima, Katsuta City, Ibaraki Prefecture 3 Hitachi Automotive Engineering Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】空気流量測定装置に用いる発熱抵抗体及び
感温抵抗体において、前記発熱抵抗体を構成する導電性
金属より形成される抵抗体を保持し、絶縁体により形成
される支持体を、だ円形とすることを特徴とした空気流
量測定装置用発熱抵抗体。
1. A heat-generating resistor and a temperature-sensitive resistor used in an air flow rate measuring device, wherein a support made of an insulating material holds a resistor made of a conductive metal forming the heat-generating resistor. A heating resistor for an air flow measuring device, which has an elliptical shape.
【請求項2】請求項1において、抵抗体を保持するパイ
プや円柱の断面形状を流線形とすることを特徴とする空
気流量測定装置用発熱抵抗体。
2. A heating resistor for an air flow measuring device according to claim 1, wherein a pipe or a cylinder holding the resistor has a streamline cross-sectional shape.
【請求項3】絶縁体の支持体上にスパッタなどにより薄
膜を形成し、薄膜をトリミングする構造を有する発熱抵
抗体及び感温抵抗体において、前記支持体の断面形状
を、だ円形とすることを特徴とする空気流量測定装置用
発熱抵抗体。
3. In a heating resistor and a temperature sensitive resistor having a structure in which a thin film is formed on an insulating support by sputtering or the like and the thin film is trimmed, the cross-sectional shape of the support is oval. A heating resistor for an air flow rate measuring device, characterized in that
【請求項4】請求項3において、支持体の断面形状を流
線形としたことを特徴とする空気流量測定装置用発熱抵
抗体。
4. A heating resistor for an air flow measuring device according to claim 3, wherein the cross-sectional shape of the support is streamlined.
【請求項5】請求項3において、2つの流線形の支持体
を互いに向き合わせ、双方の間に介在する導電性金属に
よるリード線を導電性接着剤などで固定し、前記双方の
流線形支持体も、向き合ったまま固定される構造を特徴
とする空気流量測定装置用発熱抵抗体。
5. The streamlined support according to claim 3, wherein two streamlined supports are opposed to each other, and a lead wire made of a conductive metal interposed therebetween is fixed by a conductive adhesive or the like. A heating resistor for an air flow rate measuring device, characterized in that the body is fixed while facing each other.
JP6098354A 1994-05-12 1994-05-12 Heat-generating resistance body for apparatus for measuring flow rate of air Pending JPH07306072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098354A JPH07306072A (en) 1994-05-12 1994-05-12 Heat-generating resistance body for apparatus for measuring flow rate of air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098354A JPH07306072A (en) 1994-05-12 1994-05-12 Heat-generating resistance body for apparatus for measuring flow rate of air

Publications (1)

Publication Number Publication Date
JPH07306072A true JPH07306072A (en) 1995-11-21

Family

ID=14217560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098354A Pending JPH07306072A (en) 1994-05-12 1994-05-12 Heat-generating resistance body for apparatus for measuring flow rate of air

Country Status (1)

Country Link
JP (1) JPH07306072A (en)

Similar Documents

Publication Publication Date Title
EP0106455B1 (en) Mass airflow sensor
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
JP3404251B2 (en) Flow detector
US4843882A (en) Direct-heated flow measuring apparatus having improved sensitivity response speed
JP2001027558A (en) Thermal type flowrate sensor
JPH06273435A (en) Heat-generating resistor element and heat-type air flowmeter
US5375466A (en) Measuring element
JP3331814B2 (en) Thermal flow detector
JP3361708B2 (en) Measurement element for air flow measurement device and air flow measurement device provided with the same
JP3671393B2 (en) Thermal flow sensor
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JPH07306072A (en) Heat-generating resistance body for apparatus for measuring flow rate of air
JPH05231899A (en) Intake air amount detector
JPS5895265A (en) Thermal type flow meter
JP2633994B2 (en) Thermal air flow meter
JP3172426B2 (en) Air flow measuring device and measuring element used therein
JPH09236465A (en) Heating resistance-type measuring apparatus for flow rate of air
JP2690066B2 (en) Thermal flow sensor
JP2000162011A (en) Heating resistance type air flow rate measuring apparatus
JPH095135A (en) Thermal flowmeter and its measuring element
JP2001296157A (en) Heating resistor element and thermal air flowmeter
JP2000002568A (en) Air flow rate measuring apparatus
JPS62288522A (en) Thermal flow rate sensor
JPH08145753A (en) Heating resistor
JPH0560588A (en) Air flow meter