JPH07304014A - Manufacture of high strength centrifugally applied concrete formed body - Google Patents
Manufacture of high strength centrifugally applied concrete formed bodyInfo
- Publication number
- JPH07304014A JPH07304014A JP10037694A JP10037694A JPH07304014A JP H07304014 A JPH07304014 A JP H07304014A JP 10037694 A JP10037694 A JP 10037694A JP 10037694 A JP10037694 A JP 10037694A JP H07304014 A JPH07304014 A JP H07304014A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- cement
- strength
- polycarboxylic acid
- dispersant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000004568 cement Substances 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000002270 dispersing agent Substances 0.000 claims abstract description 18
- 239000002253 acid Substances 0.000 claims abstract description 14
- 239000011398 Portland cement Substances 0.000 claims abstract description 7
- 238000000465 moulding Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000002947 alkylene group Chemical group 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 2
- 150000002689 maleic acids Chemical class 0.000 abstract 1
- 239000000047 product Substances 0.000 description 8
- 239000011372 high-strength concrete Substances 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003517 fume Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 238000005056 compaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- -1 methylene, ethylene, propylene, butylene Chemical group 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2664—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/40—Surface-active agents, dispersants
- C04B2103/408—Dispersants
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高強度コンクリート成
形体を得ることができる高強度遠心力コンクリート成形
体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength concrete molded product having high strength and capable of obtaining a high-strength concrete molded product.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来、
高強度コンクリート製品、例えばヒューム管、ポール及
びパイル等のような遠心力鉄筋コンクリート製品は、通
常コンクリート混練後3〜4時間経過した後、蒸気養生
し、翌日脱型してコンクリート成形体を得、これを所定
の材令まで屋外で養生した後、出荷している。また、早
期強度を目的とする場合には、蒸気養生後さらに高温高
圧蒸気養生(180℃、10kg/m2 前後)したり、
コンクリート混練り時に超高強度混和材を加えたりする
ことにより早期強度を得、早期出荷している。また、従
来から用いられている高性能減水剤、高性能AE減水
剤、例えばナフタリンスルフォン酸ホルマリン高縮合
物、高縮合トリアジン系化合物等を用いて減水すること
によりコンクリート成形体の強度を向上させる試みもな
されているが、この減水は水セメント比にすると28重
量%程度が限度であった。従って高強度コンクリート成
形体を得るためには、シリカヒュームや超高強度混和材
を加えたり、オートクレーブで養生するなどの策を講じ
なければならなかった。超高強度混和材として最も繁用
されているのは石膏を主体とした微粉末であるが、これ
を用いた場合には、遠心力処理による水などの分離性が
悪く、締固めが困難なため、成形に時間がかかるという
問題があった。2. Description of the Related Art Conventionally, the problems to be solved by the invention
Centrifugal reinforced concrete products such as high-strength concrete products, such as fume tubes, poles and piles, are usually steam-cured 3 to 4 hours after concrete kneading, and then demolded the next day to obtain concrete compacts. After being cured to a specified age outdoors, it is shipped. In addition, when aiming for early strength, after steam curing, high temperature and high pressure steam curing (180 ° C, around 10 kg / m 2 ) or
Early strength is obtained by adding an ultra-high-strength admixture when kneading concrete, and it is shipped early. Further, an attempt to improve the strength of a concrete molded body by reducing water using a high-performance water reducing agent and a high-performance AE water reducing agent that have been conventionally used, for example, high condensation products of naphthalene sulfonic acid formalin and high condensation triazine compounds. However, this water reduction was limited to about 28% by weight in terms of water cement ratio. Therefore, in order to obtain a high-strength concrete compact, it was necessary to take measures such as adding silica fume and an ultra-high-strength admixture, and curing with an autoclave. The most commonly used ultra-high-strength admixture is fine powder mainly composed of gypsum, but when this is used, it is difficult to compact due to poor separation of water etc. by centrifugal force treatment. Therefore, there is a problem that molding takes time.
【0003】一方、従来、常圧蒸気養生により高強度遠
心力コンクリート成形体を製造する場合、普通ポルトラ
ンドセメントに超高強度混和材及び高性能減水剤を配合
したコンクリートが用いられている。しかし、このコン
クリートは粉体量が多く、遠心力成形によってヒューム
管等の製品を製造する際、締固めが悪いため作業時間が
かかり、作業工程に支障を来すことがあった。また、こ
のコンクリートはスランプロスが大きいため、作業性が
悪いという問題があった。特に夏期はスランプロスが大
きく、これに対応するために水や減水剤を過剰に添加し
てミキサ排出コンクリートのスランプを大きくしている
が、水によりスランプを大きくするとコンクリートの水
セメント比が大きくなり、所要の強度が得られないとい
う問題があり、また、減水剤によりスランプを大きくす
るとコンクリートの凝結遅延や硬化不良を起こすという
問題があった。On the other hand, conventionally, in the case of producing a high-strength centrifugal concrete molding by atmospheric curing, ordinary Portland cement is used in which concrete is mixed with an ultra-high-strength admixture and a high-performance water reducing agent. However, this concrete has a large amount of powder, and when a product such as a fume tube is manufactured by centrifugal molding, it takes a long working time due to poor compaction, which may hinder the working process. In addition, this concrete has a large slump loss, and thus has a problem of poor workability. Especially in the summer, slump loss is large, and in order to respond to this, water and water reducing agents are added excessively to increase the slump of the concrete discharged from the mixer, but increasing the slump with water increases the water-cement ratio of the concrete. However, there is a problem that the required strength cannot be obtained, and when the slump is increased by the water-reducing agent, there is a problem that the setting of the concrete is delayed and the hardening is insufficient.
【0004】従って、本発明の目的は、水セメント比及
びスランプロスの小さいコンクリートを混練し、常圧蒸
気養生することにより、早期出荷することができると共
に、材令1日、7日及び14日強度を向上させたコンク
リート成形体を安価に製造することができる製造方法を
提供することにある。Therefore, an object of the present invention is to knead concrete having a small water cement ratio and a small slump loss, and perform steam curing under normal pressure to enable early shipment, as well as 1 day, 7 days and 14 days of age. It is an object of the present invention to provide a manufacturing method capable of inexpensively manufacturing a concrete molded body having improved strength.
【0005】[0005]
【課題を解決するための手段】このような実情におい
て、本発明者は鋭意検討を行った結果、早強及び/又は
超早強のポルトランドセメントをベースとし、かつ特定
の単位セメント量及び水セメント比を持つコンクリート
原料に、ポリカルボン酸系セメント分散剤を配合し、こ
れを成形し、常圧蒸気養生することにより、オートクレ
ーブ等の特別な装置を必要とせずに、高強度遠心力コン
クリート成形体が得られることを見出し、本発明を完成
した。Under such circumstances, as a result of intensive studies by the present inventor, as a result, based on early-strength and / or ultra-early-strength Portland cement, and with a specific unit cement amount and water cement. By mixing a polycarboxylic acid cement dispersant with a concrete raw material with a specific ratio, molding it, and subjecting it to steam curing at atmospheric pressure, a high-strength centrifugal concrete molded body is required without the need for special equipment such as an autoclave. The inventors have found that the following can be obtained and completed the present invention.
【0006】すなわち、本発明は、早強及び/又は超早
強のポルトランドセメントを単位セメント量400〜6
00kg/m3 、水セメントト32重量%以下、及びポ
リカルボン酸系セメント分散剤を単位セメント量に対し
て0.1〜2.0重量%配合したコンクリート原料を成
形し、常圧蒸気養生することを特徴とする高強度遠心力
コンクリート成形体の製造方法を提供するものである。That is, according to the present invention, a high-strength and / or ultra-fast-strength Portland cement is used in a unit cement amount of 400 to 6
Molding a concrete raw material containing 00 kg / m 3 , 32% by weight or less of water cement, and 0.1 to 2.0% by weight of a polycarboxylic acid type cement dispersant with respect to a unit cement amount, and performing steam curing under normal pressure. The present invention provides a method for producing a high-strength centrifugally molded concrete product characterized by:
【0007】本発明において、セメントとしては早強、
超早強のポルトランドセメントを用いる。また、コンク
リート1m3 中のセメントの量は400〜600kgで
あり、400kg未満ではセメント分散剤を最大使用し
ても水セメント比が32重量%(以下、単に%で示す)
よりも大きくなるため、14日強度が小さくなり、また
600kgを超えると水セメント比は小さくなるが、1
4日強度はそれ程増加しないばかりか遠心力成形の際に
セメントペーストが分離するため、締固めが困難となり
好ましくない。本発明において特に好適な単位セメント
量は、430〜530kgである。また、水セメント比
は32%以下、特に20〜28%とすることが好まし
い。In the present invention, the cement has early strength,
Use super early strength Portland cement. The amount of cement in 1 m 3 of concrete is 400 to 600 kg, and if it is less than 400 kg, the water-cement ratio is 32% by weight (hereinafter, simply expressed as%) even if the cement dispersant is maximally used.
14 days strength becomes smaller, and when it exceeds 600 kg, the water-cement ratio becomes smaller, but
The 4-day strength does not increase so much and the cement paste separates during centrifugal molding, which makes compaction difficult and is not preferable. In the present invention, the particularly preferable unit cement amount is 430 to 530 kg. Further, the water cement ratio is preferably 32% or less, and particularly preferably 20 to 28%.
【0008】本発明で用いるポリカルボン酸系セメント
分散剤としては、エチレンオキサイドとマレイン酸類か
ら製造されるもの、例えば次の式The polycarboxylic acid type cement dispersant used in the present invention is produced from ethylene oxide and maleic acid, for example, the following formula
【0009】[0009]
【化2】 [Chemical 2]
【0010】(式中、Aは炭素数1〜5のアルキレン基
を示し、nは5〜20の数を示し、mは重量平均で20
〜50の数を示し、Rは炭素数1〜5のアルキル基を示
す)で表されるものが好ましい。ここでAとしてはメチ
レン、エチレン、プロピレン、ブチレン等が挙げられる
がエチレン又はプロピレンが特に好ましい。またRとし
てはメチル基、エチル基が好ましい。(In the formula, A represents an alkylene group having 1 to 5 carbon atoms, n represents a number of 5 to 20, and m represents a weight average of 20.
It is preferable that R represents a number of 50 to 50, and R represents an alkyl group having 1 to 5 carbon atoms. Examples of A include methylene, ethylene, propylene, butylene, and ethylene or propylene is particularly preferable. Further, R is preferably a methyl group or an ethyl group.
【0011】ポリカルボン酸系分散剤は、市販されてい
るものでよく、例えば、商品名チューポールHP−8
(竹本油脂(株)社製)、チューポールHP−11(竹
本油脂(株)社製)、ダーレックス・スーパー200
(グレースジャパン(株)社製)、マリアリムA−60
(日本油脂(株)社製)、マリアリムA−20(日本油
脂(株)社製)、マイティー2000WHZ(花王
(株)社製)、レオビルドSP−8S(ポゾリス物産
(株)社製)、セメロールR−222M(東邦化学工業
(株)社製)等が挙げられる。The polycarboxylic acid-based dispersant may be a commercially available product, for example, trade name Tupol HP-8.
(Takemoto Yushi Co., Ltd.), Chupol HP-11 (Takemoto Yushi Co., Ltd.), Darrex Super 200
(Manufactured by Grace Japan Co., Ltd.), Marialim A-60
(Nippon Oil & Fats Co., Ltd.), Marialim A-20 (Nippon Oil & Fats Co., Ltd.), Mighty 2000WHZ (Kao Corporation), Rheobuild SP-8S (Pozoris Bussan Co., Ltd.), Cemrole R-222M (manufactured by Toho Chemical Industry Co., Ltd.) and the like can be mentioned.
【0012】上記ポリカルボン酸系のセメント分散剤
は、ポリカルボン酸−ポリオキシアルキレングラフトポ
リマーのポリオキシレン鎖がランダムコイル構造のた
め、セメント粒子の分散型を保持し、粒子間摩擦を低減
するためスランプロスを大幅に減少させることができ
る。また、ポリカルボン酸系分散剤は分子量が数千から
数万のオリゴマーであり、キレート力(吸着力)が大き
く、また電荷付与力も大きい。分子量が大きいことか
ら、セメント粒子を取り囲む分子の量が多くなり、水和
できる面積が小さくなる。一方、スルホン酸系は、キレ
ート力が小さいので水和できる面積が大きく、分散力が
プレーンのコンクリートよりも上がっているので、延べ
の水和できる面積が増加し水和を促進するので、スラン
プロスを引き起こす。In the above-mentioned polycarboxylic acid type cement dispersant, since the polyoxylene chain of the polycarboxylic acid-polyoxyalkylene graft polymer has a random coil structure, the dispersion type of the cement particles is maintained and friction between particles is reduced. Slump loss can be greatly reduced. Further, the polycarboxylic acid-based dispersant is an oligomer having a molecular weight of several thousand to tens of thousands, and has a large chelating force (adsorption force) and a large charge imparting power. Since the molecular weight is large, the amount of molecules surrounding the cement particles is large and the hydratable area is small. On the other hand, since the sulfonic acid system has a small chelating power, it has a large hydrated area, and its dispersive power is higher than plain concrete, so the total hydratable area increases and promotes hydration. cause.
【0013】以上の理由により、上記ポリカルボン酸系
セメント分散剤を添加することでオートクレーブ処理を
必要とせずに作業性が良く、高強度コンクリートが得ら
れる。この分散剤の添加量は単位セメント量に対して
0.1〜2.0%であり、好ましくは0.3〜1.3%
である。添加量が0.1%未満では減水効果が小さすぎ
たり、スランプロス低減効果が小さすぎる。また、添加
量が2.0%を超えるとセメントの凝結が遅延され、前
置き時間を長く取らなければならないと共に、蒸気養生
後の強度が低下する。For the above reasons, by adding the above polycarboxylic acid type cement dispersant, it is possible to obtain a high-strength concrete with good workability without requiring an autoclave treatment. The amount of this dispersant added is 0.1 to 2.0%, preferably 0.3 to 1.3%, relative to the unit cement amount.
Is. If the added amount is less than 0.1%, the water reducing effect is too small, or the slump loss reducing effect is too small. On the other hand, if the addition amount exceeds 2.0%, the setting of cement will be delayed, the pre-introduction time must be taken longer, and the strength after steam curing will decrease.
【0014】本発明にかかる成形体を製造するには、ま
ず常法により上記成分及び必要によりその他の任意成分
を加えて混合してコンクリートを調製し、このコンクリ
ートを所望の成形型に入れ、遠心力をかけて成形すると
共に、コンクリート中の水分を絞り取る。遠心力条件は
3G〜40Gで5〜30分とすることができ、初めは回
転速度を低速度として遠心力をかけることによりコンク
リート中の成分を均一にし、次いで中速度、高速度で遠
心力をかけてコンクリートを成形することが好ましい。
具体的には、例えば、初速2G〜5Gで1〜5分、中速
10G〜20Gで1〜5分、高速30G〜40Gで5〜
20分とすることができる。このような遠心力成形が終
了した後、成形体を室温に2〜3時間放置して前置養生
し、次に常圧蒸気養生を行う。常圧蒸気養生は、昇温速
度10〜30℃/hrとして徐々に蒸気の温度を上げて
いき、60〜75℃で2〜4時間、好ましくは3時間程
度保持し、次いで自然冷却し、成形体を脱型する。この
ようにして、800kg/m2 以上の高強度のコンクリ
ート成形体を1日で製造することができる。In order to produce the molded product according to the present invention, first, the above components and optionally other optional components are added and mixed by a conventional method to prepare concrete, and the concrete is put into a desired molding die and centrifuged. Moisture is applied to the concrete while squeezing out water in the concrete. Centrifugal force conditions can be 3 G to 40 G and 5 to 30 minutes. At first, the rotational speed is set to a low speed and centrifugal force is applied to homogenize the components in the concrete, and then centrifugal force is applied at medium speed and high speed. It is preferable to form concrete by applying it.
Specifically, for example, an initial speed of 2G to 5G takes 1 to 5 minutes, a medium speed of 10G to 20G takes 1 to 5 minutes, and a high speed of 30G to 40G takes 5 to 5.
It can be 20 minutes. After completion of such centrifugal force molding, the molded body is left at room temperature for 2 to 3 hours for precuring, and then normal pressure steam curing. In the atmospheric pressure steam curing, the temperature of the steam is gradually increased at a temperature rising rate of 10 to 30 ° C./hr, and the temperature is maintained at 60 to 75 ° C. for 2 to 4 hours, preferably about 3 hours, and then naturally cooled, and then molded. Remove the body. In this way, a high-strength concrete compact of 800 kg / m 2 or more can be produced in one day.
【0015】[0015]
【発明の効果】本発明によれば、オートクレーブ等の特
別な設備を必要とせずに高強度のコンクリート成形体を
容易に製造することができ、工業的に有利な製造方法で
ある。EFFECTS OF THE INVENTION According to the present invention, a high-strength concrete compact can be easily produced without the need for special equipment such as an autoclave, which is an industrially advantageous production method.
【0016】[0016]
【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
【0017】実施例1〜3及び比較例1〜4 表1に示すコンクリート原料を混合して90秒間強制ミ
キサーで混練りし、得られたコンクリートのスランプ及
び空気量を測定した。結果を表2に示す。なお、セメン
ト分散剤は単位水量の一部として用いた。また、表1に
おいてポリカルボン酸系分散剤の添加量は単位セメント
量に対する割合を示す。次に、強度試験用供試体として
直径10cm、長さ20cmの円柱供試体型枠に上記で
得られたコンクリートを充填し、テーブルバイブレータ
ーを用いて成形した。次に、3時間室温中で前置養生
し、次に20℃/hrの昇温速度で昇温し、75℃で3
時間保持することによって蒸気養生し、自然冷却を行
い、24時間後の脱型時の圧縮強度を測定した。その
後、空気中養生を行い、材令7日、14日強度を測定し
た。また、該コンクリートを用い、遠心力を3Gで2分
間、10Gで2分間、35Gで9分間順次かけて遠心成
形した以外は上記と同様にして小型試験管(ヒューム
管:直径20cm、長さ30cm)を作製し、常圧蒸気
養生後、材令14日で外圧強さ試験を行った。これらの
試験結果を表2に示す。Examples 1 to 3 and Comparative Examples 1 to 4 The concrete raw materials shown in Table 1 were mixed and kneaded with a forced mixer for 90 seconds, and the slump and air content of the obtained concrete were measured. The results are shown in Table 2. The cement dispersant was used as a part of the unit amount of water. Further, in Table 1, the addition amount of the polycarboxylic acid type dispersant shows the ratio to the unit cement amount. Next, as a strength test specimen, a cylinder specimen mold having a diameter of 10 cm and a length of 20 cm was filled with the concrete obtained above and molded using a table vibrator. Next, pre-curing is performed at room temperature for 3 hours, and then the temperature is raised at a heating rate of 20 ° C./hr, and the temperature is raised at 75 ° C. for 3 hours.
It was steam-cured by holding for a period of time, naturally cooled, and the compressive strength at the time of demolding after 24 hours was measured. Then, curing was performed in the air, and the strength was measured for 7 days and 14 days. Further, a small test tube (fume tube: diameter 20 cm, length 30 cm) was used in the same manner as above, except that the concrete was centrifugally molded using a centrifugal force of 3 G for 2 minutes, 10 G for 2 minutes, and 35 G for 9 minutes. ) Was prepared, and after the atmospheric pressure steam curing, an external pressure strength test was conducted on the material age 14 days. The results of these tests are shown in Table 2.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】実施例4〜8 ポリカルボン酸系分散剤として表3に示すものを用いた
以外は実施例1と同様にして強度試験用供試体及び小型
試験管を作製し、実施例1と同様の試験を行った。結果
を表3に示す。Examples 4 to 8 Strength test specimens and small test tubes were prepared in the same manner as in Example 1 except that the polycarboxylic acid dispersants shown in Table 3 were used. Was tested. The results are shown in Table 3.
【0021】[0021]
【表3】 [Table 3]
【0022】比較例5〜6 表4に示すコンクリート原料を90秒間強制ミキサーで
混練りし、実施例1と同様にして強度試験用供試体及び
小型試験管を作製し、実施例1と同様の試験を行った。
結果を表5に示す。なお、表4において、超高強度混和
材は砂の一部とし、高性能減水剤は水の一部とした。Comparative Examples 5 to 6 The concrete raw materials shown in Table 4 were kneaded with a forced mixer for 90 seconds to prepare a specimen for strength test and a small test tube in the same manner as in Example 1, and the same as in Example 1. The test was conducted.
The results are shown in Table 5. In Table 4, the super high-strength admixture was part of sand, and the high-performance water reducing agent was part of water.
【0023】[0023]
【表4】 [Table 4]
【0024】[0024]
【表5】 [Table 5]
【0025】比較例7〜8 表6に示すコンクリート原料を90秒間強制ミキサーで
混練りし、実施例1と同様にして強度試験用供試体及び
小型試験管を作製し、実施例1と同様の試験を行った。
結果を表7に示す。なお、圧縮強度試験は材令24時間
にて行った。Comparative Examples 7 to 8 The concrete raw materials shown in Table 6 were kneaded with a forced mixer for 90 seconds to prepare specimens for strength test and small test tubes in the same manner as in Example 1, and the same as in Example 1. The test was conducted.
The results are shown in Table 7. The compressive strength test was conducted for 24 hours.
【0026】[0026]
【表6】 [Table 6]
【0027】[0027]
【表7】 [Table 7]
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08F 290/06 MRS //(C04B 28/04 24:26 H 14:02) Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C08F 290/06 MRS // (C04B 28/04 24:26 H 14:02) Z
Claims (3)
メントを単位セメント量400〜600kg/m3 、水
セメント比32重量%以下、及びポリカルボン酸系セメ
ント分散剤を単位セメント量に対して0.1〜2.0重
量%配合したコンクリート原料を成形し、常圧蒸気養生
することを特徴とする高強度遠心力コンクリート成形体
の製造方法。1. A high-strength and / or ultra-rapid early-strength Portland cement with a unit cement amount of 400 to 600 kg / m 3 , a water cement ratio of 32% by weight or less, and a polycarboxylic acid-based cement dispersant per unit cement amount. A method for producing a high-strength centrifugal concrete molding, which comprises molding a concrete raw material mixed with 0.1 to 2.0% by weight and steam-curing at atmospheric pressure.
請求項1記載の高強度遠心力コンクリート成形体の製造
方法。2. The method for producing a high-strength centrifugal concrete molding according to claim 1, wherein the water-cement ratio is 20 to 28% by weight.
の式 【化1】 (式中、Aは炭素数1〜5のアルキレン基を示し、nは
5〜20の数を示し、mは重量平均で20〜50の数を
示し、Rは炭素数1〜5のアルキル基を示す)で表わさ
れるものである請求項1又は2記載の高強度遠心力コン
クリート成形体の製造方法。3. A polycarboxylic acid type cement dispersant has the following formula: (In the formula, A represents an alkylene group having 1 to 5 carbon atoms, n represents a number of 5 to 20, m represents a weight average number of 20 to 50, and R represents an alkyl group of 1 to 5 carbon atoms. The method for producing a high-strength centrifugal-force concrete molding according to claim 1 or 2, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10037694A JP2887561B2 (en) | 1994-05-16 | 1994-05-16 | Method for manufacturing high strength centrifugal concrete compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10037694A JP2887561B2 (en) | 1994-05-16 | 1994-05-16 | Method for manufacturing high strength centrifugal concrete compact |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07304014A true JPH07304014A (en) | 1995-11-21 |
JP2887561B2 JP2887561B2 (en) | 1999-04-26 |
Family
ID=14272316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10037694A Expired - Lifetime JP2887561B2 (en) | 1994-05-16 | 1994-05-16 | Method for manufacturing high strength centrifugal concrete compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2887561B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004131322A (en) * | 2002-10-09 | 2004-04-30 | Kao Corp | Dispersing agent for hydraulic composition |
JP2006168997A (en) * | 2003-11-20 | 2006-06-29 | Mitani Sekisan Co Ltd | High-strength concrete-molded body and material to be charged in mold |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4775058B2 (en) * | 2006-03-24 | 2011-09-21 | 宇部興産株式会社 | Centrifugal force forming concrete composition and method for producing the same |
-
1994
- 1994-05-16 JP JP10037694A patent/JP2887561B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004131322A (en) * | 2002-10-09 | 2004-04-30 | Kao Corp | Dispersing agent for hydraulic composition |
JP2006168997A (en) * | 2003-11-20 | 2006-06-29 | Mitani Sekisan Co Ltd | High-strength concrete-molded body and material to be charged in mold |
Also Published As
Publication number | Publication date |
---|---|
JP2887561B2 (en) | 1999-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115231893A (en) | Shrinkage-compensating self-compacting expansive concrete and preparation method thereof | |
JP2018168003A (en) | Method for producing high-strength precast concrete | |
JP2887561B2 (en) | Method for manufacturing high strength centrifugal concrete compact | |
JP2000301531A (en) | Manufacture of concrete product | |
JP2005179149A (en) | Method for producing high strength centrifugally formed concrete product | |
CA1241028A (en) | Method of preparing and molding mortar or like | |
JPH11246260A (en) | Cement composition and production of hardened body using the same | |
JPH07138060A (en) | Admixture for concrete, concrete mixture using the same and production of concrete | |
JP2005289657A (en) | Method for producing high-strength centrifugally molded article and high-strength centrifugally molded article produced thereby | |
JP4141976B2 (en) | Manufacturing method of high-strength centrifugal force molded product and high-strength centrifugal force molded product | |
JP3290171B2 (en) | Manufacturing method of porous concrete | |
JP4188941B2 (en) | Manufacturing method of concrete products | |
JP4932348B2 (en) | Hydraulic composition for centrifugal molded cured body | |
JPH0454629B2 (en) | ||
JP2005219404A (en) | Manufacturing process of high strength spun concrete shaped body | |
RU2165398C1 (en) | Method of preparing concrete mortar | |
JP4301076B2 (en) | Cement composition | |
JP3343163B2 (en) | Concrete and method for producing high-strength concrete compact using the same | |
JPH11228251A (en) | Production of light-weight foamed concrete | |
JPH02302353A (en) | Concrete composition for hume concrete pipe and production of centrifugal hume concrete pipe | |
JP2000178053A (en) | Cement composition and production of concrete hardened body using the same | |
JP2005169814A (en) | Manufacturing method of centrifugally molded concrete | |
JPH07115903B2 (en) | Manufacturing method of concrete | |
RU2033406C1 (en) | Method of light-concrete mixture preparing | |
CN111848024A (en) | High-strength large-volume concrete and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090219 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090219 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100219 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100219 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100219 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110219 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110219 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120219 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120219 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |