JPH07303810A - Magnetic separator - Google Patents

Magnetic separator

Info

Publication number
JPH07303810A
JPH07303810A JP3125617A JP12561791A JPH07303810A JP H07303810 A JPH07303810 A JP H07303810A JP 3125617 A JP3125617 A JP 3125617A JP 12561791 A JP12561791 A JP 12561791A JP H07303810 A JPH07303810 A JP H07303810A
Authority
JP
Japan
Prior art keywords
magnetic
inner cylinder
permanent magnets
flow path
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3125617A
Other languages
Japanese (ja)
Inventor
Mitsushige Nakamura
充栄 中村
Koichi Ando
公一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURIINTETSUKU KOGYO KK
Kleentek Industrial Co Ltd
Original Assignee
KURIINTETSUKU KOGYO KK
Kleentek Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURIINTETSUKU KOGYO KK, Kleentek Industrial Co Ltd filed Critical KURIINTETSUKU KOGYO KK
Priority to JP3125617A priority Critical patent/JPH07303810A/en
Publication of JPH07303810A publication Critical patent/JPH07303810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the separation efficiency of a suspended magnetic particle by a magnetic separator by arranging a reticular magnetic substance in an annular flow path to be acted upon by a magnetic field and making permanent magnets rotate. CONSTITUTION:A magnetic separator is composed of an inner cylinder 2 incorporating permanent magnets 6 (including intermagnetic polar iron pieces), an outer cylinder 4 with a notch in part thereof, a reticular magnetic substance 5 laminated on an annular flow path 1 between both cylinders, a container 9 which has a liquid inlet 12 and a liquid outlet 15 and forms integrally with the outer cylinder 4, encircling the notch, a device to rotate the permanent magnets 6, and a sludge discharge device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、洗浄油や研削クーラン
ト等の液体中に懸濁された鉄粉等の磁性粒子を除去する
ための磁気分離機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic separator for removing magnetic particles such as iron powder suspended in a liquid such as cleaning oil or grinding coolant.

【0002】[0002]

【従来の技術】従来、この種の装置としては、例えば、
図4に示すようなものが用いられている。これを図につ
いて説明すると、aは容器、bは該容器aに回転自在に
取付けられたマグネットドラム、cはスクレーパ、dは
液入口、eは液出口、fはスラッジタンクを示す。鉄粉
等の磁性粒子を懸濁している液は液入口dから容器aに
流入しマグネットドラムbの下半面に接して流れ、懸濁
磁性粒子は磁力によってマグネットドラムbの表面に付
着する。懸濁磁性粒子を除かれた液は液出口eから流出
する。マグネットドラムbの表面に付着した磁性粒子は
マグネットドラムbの回転に伴って液面上に出てスクレ
ーパcによって掬いとられスラッジタンクfの中に落ち
るようになっている。ところで、この従来の技術におい
ては、懸濁磁性粒子に作用する磁力がマグネットドラム
bの表面から遠くなるにつれて弱くなるため、マグネッ
トドラムbの表面から遠いところにある懸濁磁性粒子の
一部はマグネットドラムbの表面に引付けきれずに液出
口eから液と共に流出する。そのため分離効率が低いと
いう欠点がある。
2. Description of the Related Art Conventionally, as this type of device, for example,
The one as shown in FIG. 4 is used. Referring to the drawings, a is a container, b is a magnetic drum rotatably attached to the container a, c is a scraper, d is a liquid inlet, e is a liquid outlet, and f is a sludge tank. The liquid in which magnetic particles such as iron powder are suspended flows into the container a through the liquid inlet d and flows in contact with the lower half surface of the magnet drum b, and the suspended magnetic particles adhere to the surface of the magnet drum b by magnetic force. The liquid from which the suspended magnetic particles have been removed flows out from the liquid outlet e. The magnetic particles adhering to the surface of the magnet drum b come out on the liquid surface as the magnet drum b rotates, are scooped by the scraper c, and fall into the sludge tank f. By the way, in this conventional technique, since the magnetic force acting on the suspended magnetic particles becomes weaker as the distance from the surface of the magnet drum b increases, a part of the suspended magnetic particles located far from the surface of the magnet drum b is magnetized. It cannot be attracted to the surface of the drum b and flows out together with the liquid from the liquid outlet e. Therefore, there is a drawback that the separation efficiency is low.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、磁気分離機による懸濁磁性粒子の分離効率
を高めることである。
The problem to be solved by the present invention is to increase the separation efficiency of suspended magnetic particles by a magnetic separator.

【0004】[0004]

【課題を解決するための手段】前記の課題を解決するた
め、本発明による磁気分離機は、磁場の作用する環状流
路に網状の磁性体を配設して懸濁磁性粒子を捕捉し、磁
性粒子団塊を形成させて、これを複数の永久磁石を回転
させて網状の磁性体から離脱させ、移動して、一箇所に
集めて排出するようにしたもので、環状流路の全幅にわ
たって懸濁磁性粒子を効率良く除去できるようにしたも
のである。即ち、本発明における磁気分離機は、複数の
永久磁石(磁極間鉄片を有するものも含む)を内蔵した
内筒と、一部分に切り欠きのある外筒と、前記両筒の間
の環状流路に積層して配設された網状の磁性体と、液入
口および液出口を有し前記切り欠きを囲んで前記外筒と
一体となる容器と、前記複数の永久磁石を回転するため
の装置と、スラッジ排出装置からなる構成としているも
のである。そして、前記網状の磁性体は前記環状流路を
横切るように配設し、その一端は外筒表面に接してお
り、また、その他端は内筒表面との間に間隔を置いて配
設した構成としているものである。
In order to solve the above-mentioned problems, the magnetic separator according to the present invention is arranged such that a reticulated magnetic body is arranged in an annular flow path where a magnetic field acts to capture suspended magnetic particles, A mass of magnetic particles is formed, and a plurality of permanent magnets are rotated so as to be separated from the mesh-like magnetic body, moved, collected and discharged at one place, and suspended over the entire width of the annular flow path. The turbid magnetic particles can be efficiently removed. That is, the magnetic separator according to the present invention includes an inner cylinder having a plurality of permanent magnets (including one having iron pieces between magnetic poles), an outer cylinder having a cutout in a part thereof, and an annular flow path between the both cylinders. And a container having a liquid inlet and a liquid outlet and surrounding the cutout and being integrated with the outer cylinder, and a device for rotating the plurality of permanent magnets. , A sludge discharge device. The mesh-like magnetic body is arranged so as to cross the annular flow path, one end of which is in contact with the outer cylinder surface, and the other end is arranged with a space from the inner cylinder surface. This is the structure.

【0005】[0005]

【作用】鉄粉等の磁性粒子を懸濁している液は前記環状
流路を流れ、前記内筒の表面に近いところにある懸濁磁
性粒子は、永久磁石の磁力が強く作用するので、速やか
に内筒表面に引寄せられる。内筒表面から遠いところは
永久磁石の磁場は弱いが、網状の磁性体が積層されてい
て図5に示すようにその細線gの回りの磁力線hは細線
gに向かって集中し従って磁気勾配が高いため強い磁力
が作用し懸濁磁性粒子は速やかに細線gに付着し磁性粒
子団塊iを形成する。そして、図6(1)に示すように
磁性粒子団塊iおよび細線gは永久磁石jの磁場によっ
て磁化され、磁性粒子団塊iと細線gの境界では相互が
異極性に磁化していて引力が作用し相互に付着してい
る。永久磁石が図示矢印の方向に移動して図6(2)の
状態になったときは、図示のように、やはり、境界では
異極性に磁化していて引力が作用し付着している。とこ
ろが、永久磁石が更に図示矢印の方向に移動して図6
(3)の状態になったときは図示のように境界では同極
性に磁化し斥力が作用して磁性粒子団塊iは細線gから
離れて図示矢印Fの方向に引寄せられる。磁性粒子団塊
iが小さいと、細線gの磁化の方向が変わっても磁性粒
子団塊iは細線gの近傍で旋回するだけであるが、長さ
1mm程度以上の大きさに成長すれば前記の動きをす
る。このようにして懸濁磁性粒子は、環状流路のどこに
あるものであっても、結局は、内筒表面に引寄せられ
る。そして、懸濁磁性粒子を除かれた液は環状流路の他
端から流出する。内筒表面に引付けられた磁性粒子団塊
は、内筒内部に設けられた複数の永久磁石(磁極間鉄片
あり)の回転により、或るいは、内筒と複数の永久磁石
(磁極間鉄片なし)の両者が一体になっての回転により
移動する。前者の場合について説明を加えると、内筒の
表面に引付けられた磁性粒子団塊は、永久磁石の回転に
伴い磁力で牽引され内筒表面上を滑って移動する。即
ち、図7に示すように磁極間の内筒表面近傍の磁力線h
の分布は、磁極間鉄片kがあるため歪みを生じていて磁
気勾配は内筒表面に対して接線方向となっており、従っ
て、図示矢印Fの方向の力が磁性粒子団塊iに作用し、
磁性粒子団塊iは永久磁石の移動に伴って同方向に内筒
表面上を滑って移動する。この内筒表面上の移動は、内
筒表面と網状の磁性体との間には間隔があるので、網状
の磁性体によつて阻害されることなく円滑に行われる。
前記後者の場合、即ち、内筒とその内部の複数の永久磁
石(磁極間鉄片なし)の両者が一体になって回転するよ
うにした場合は、磁性粒子団塊は内筒表面に付着したま
まの状態で移動する。以上述べたように、懸濁磁性粒子
は、内筒の表面に引付けられ集められて移動し、集積し
て、そして、スラッジ排出装置によって運び去られる。
The liquid in which magnetic particles such as iron powder are suspended flows through the annular channel, and the magnetic particles of the permanent magnets act strongly on the suspended magnetic particles near the surface of the inner cylinder. Is attracted to the inner cylinder surface. The magnetic field of the permanent magnet is weak in the place far from the inner cylinder surface, but the magnetic field lines h around the fine line g are concentrated toward the fine line g as shown in FIG. Since it is high, a strong magnetic force acts, and the suspended magnetic particles quickly adhere to the fine line g to form a magnetic particle nodule i. Then, as shown in FIG. 6 (1), the magnetic particle nodules i and the thin wires g are magnetized by the magnetic field of the permanent magnet j, and at the boundary between the magnetic particle nodules i and the thin wires g, they are magnetized to have different polarities and attractive force acts. And they are attached to each other. When the permanent magnet moves in the direction of the arrow in the figure to reach the state of FIG. 6 (2), as shown in the figure, the boundary is still magnetized with a different polarity and attracted by the attractive force. However, the permanent magnet moves further in the direction of the arrow shown in FIG.
In the state (3), as shown in the figure, the boundary is magnetized to have the same polarity and a repulsive force acts to pull the magnetic particle nodules i away from the thin line g in the direction of the arrow F in the figure. If the magnetic particle nodules i are small, the magnetic particle nodules i will only swirl in the vicinity of the thin lines g even if the direction of magnetization of the thin lines g changes. do. In this way, the suspended magnetic particles, regardless of where they are in the annular flow path, are eventually attracted to the inner cylinder surface. Then, the liquid from which the suspended magnetic particles have been removed flows out from the other end of the annular channel. The agglomerates of magnetic particles attracted to the surface of the inner cylinder are rotated by the rotation of a plurality of permanent magnets (with iron pieces between magnetic poles) provided inside the inner cylinder, or with the inner cylinder and a plurality of permanent magnets (without iron pieces between magnetic poles). ) Both move by rotation as a unit. To explain the former case, the magnetic particle agglomerates attracted to the surface of the inner cylinder are pulled by magnetic force as the permanent magnet rotates, and slide on the surface of the inner cylinder. That is, as shown in FIG. 7, magnetic force lines h near the surface of the inner cylinder between the magnetic poles.
In the distribution of, there is distortion due to the iron piece k between the magnetic poles, and the magnetic gradient is tangential to the surface of the inner cylinder. Therefore, the force in the direction of the arrow F in the figure acts on the magnetic particle nodule i
The magnetic particle nodule i slides on the inner cylinder surface in the same direction as the permanent magnet moves. Since there is a space between the inner cylinder surface and the net-like magnetic body, the movement on the inner cylinder surface is smoothly performed without being hindered by the net-like magnetic body.
In the latter case, that is, when the inner cylinder and a plurality of permanent magnets inside the inner cylinder (without iron pieces between magnetic poles) are rotated integrally, the magnetic particle nodules remain attached to the inner cylinder surface. Move in the state. As described above, the suspended magnetic particles are attracted to the surface of the inner cylinder, collected, moved, accumulated, and then carried away by the sludge discharging device.

【0006】[0006]

【実施例】【Example】

(第一実施例)本発明の第一実施例を示す図1におい
て、環状流路1は、内筒2と一部分に切り欠き3のある
外筒4および両筒の間の環状部分の両端面を塞ぐ板(図
示省略)によって形成される。網状の磁性体5は、環状
流路1を横切るようにそして、その一端は外筒4に接す
るように、また他端は内筒2の表面との間に間隔を置い
て、環状流路1の略半円周に亙って積層して装着され
る。前記網状の磁性体5は、具体的には、目開き2mm
×3mm程度、板厚0.3mm程度の磁性ステンレス鋼
製のエキスパンドメタルが好適である。複数の永久磁石
6と複数の磁極間鉄片7はボス8に装着されて一体とな
り、内筒2の内側に回転自在に設けられて、モータ(図
示省略)によつて環状流路1内の液の流れに沿う方向に
回転駆動される。容器9は前記切り欠き3の下部に該切
り欠き3を囲んで設けられ外筒4と一体となって液密な
容器本体10を形成する。仕切り板11は前記切り欠き
3の一端から離れた位置に容器9の空間の一部を仕切る
ように設けられ、液入口12から環状流路1に連通する
流路13を形成する。邪魔板14は容器9内に前記切り
欠き3の他端から離れた位置に設けられ、環状流路1か
ら液出口15に連通する出口流路16を形成する。図1
中17は、スラッジ排出装置を示し、コンベア18とス
クリュウフィーダ19で構成される。外周に軸方向全長
に亙る複数の突起20を有するコンベア18は内筒2と
の間に若干の隙間を設けて回転自在に取付けられる。そ
してコンベア18は容器9の側板を貫通し液密に軸封さ
れた軸(図示省略)を介してモータ(図示省略)によつ
て永久磁石6の回転方向と逆の方向に回転駆動される。
スクリュウフィーダ19は、容器9の底に沈澱したスラ
ッジを排出するためのものであって、キャップ21を外
し、ハンドル22でスクリュウ23を回転することによ
りスラッジを排出する。なお、内筒2、外筒4、容器
9、仕切り板11および邪魔板14などは非磁性材、好
適には非磁性ステンレス鋼を用いて造られる。 (第二実施例)図2は、本発明の第二実施例を示す図
で、前記第一実施例と異なるところは外筒4の切り欠き
3を内筒2の上部に配設し、容器9を切り欠き3の上部
に設けて外筒4と一体となし、その上部が開放された容
器本体10としたこと。また、スラッジ排出手段を、複
数の突起20を有するコンベア18としたことである。
なお、図2中24は、スラッジタンクを示す。その他の
部分については、第一実施例と同番号を付してあるの
で、逐一の説明は省略する。 (第三実施例)図3は、本発明の第三実施例を示す図
で、前記第二実施例と異なるところは、内筒2と複数の
永久磁石6とボス8が三者一体になって回転するように
したことと、スラッジ排出手段をスクレーパ25にした
ことである。そして、本第三実施例においては、磁極間
鉄片、仕切り板および邪魔板は設けていない点で第二実
施例と異なる。その他の部分については、第二実施例と
同番号を付してあるので、逐一の説明は省略する。
(First Embodiment) In FIG. 1 showing a first embodiment of the present invention, an annular flow path 1 includes an inner cylinder 2, an outer cylinder 4 having a notch 3 in a part thereof, and both end surfaces of an annular portion between the both cylinders. It is formed by a plate (not shown) that closes. The mesh-shaped magnetic body 5 is formed so as to traverse the annular flow path 1, one end of which is in contact with the outer cylinder 4, and the other end of which is spaced from the surface of the inner cylinder 2. It is installed by stacking it on the approximately semicircle of. Specifically, the mesh-shaped magnetic body 5 has an opening of 2 mm.
Expanded metal made of magnetic stainless steel with a thickness of about 3 mm and a plate thickness of about 0.3 mm is suitable. A plurality of permanent magnets 6 and a plurality of iron pieces 7 between magnetic poles are attached to a boss 8 so as to be integrated with each other, and are rotatably provided inside the inner cylinder 2 so that liquid in the annular flow path 1 can be rotated by a motor (not shown). Is driven to rotate in the direction along the flow of. The container 9 is provided below the notch 3 so as to surround the notch 3 and forms a liquid-tight container body 10 integrally with the outer cylinder 4. The partition plate 11 is provided at a position away from one end of the notch 3 so as to partition a part of the space of the container 9, and forms a flow path 13 that communicates with the annular flow path 1 from the liquid inlet 12. The baffle plate 14 is provided in the container 9 at a position distant from the other end of the notch 3 and forms an outlet channel 16 communicating with the liquid channel 15 from the annular channel 1. Figure 1
The middle part 17 shows a sludge discharging device, which is composed of a conveyor 18 and a screw feeder 19. The conveyor 18 having a plurality of projections 20 on the outer circumference over the entire length in the axial direction is rotatably attached with a slight gap provided between the conveyor 18 and the inner cylinder 2. Then, the conveyor 18 is rotationally driven in the direction opposite to the rotational direction of the permanent magnet 6 by a motor (not shown) via a shaft (not shown) that penetrates the side plate of the container 9 and is sealed in a liquid-tight manner.
The screw feeder 19 is for discharging the sludge settled on the bottom of the container 9, and removes the cap 21 and rotates the screw 23 with the handle 22 to discharge the sludge. The inner cylinder 2, the outer cylinder 4, the container 9, the partition plate 11 and the baffle plate 14 are made of a non-magnetic material, preferably non-magnetic stainless steel. (Second Embodiment) FIG. 2 is a view showing a second embodiment of the present invention. The difference from the first embodiment is that the notch 3 of the outer cylinder 4 is disposed above the inner cylinder 2 and the container is 9 is provided on the upper portion of the notch 3 to be integrated with the outer cylinder 4, and the container body 10 is opened at the upper portion. Further, the sludge discharging means is the conveyor 18 having the plurality of protrusions 20.
In addition, 24 in FIG. 2 shows a sludge tank. The other parts are given the same numbers as in the first embodiment, so a detailed description is omitted. (Third Embodiment) FIG. 3 is a view showing a third embodiment of the present invention. The difference from the second embodiment is that the inner cylinder 2, the plurality of permanent magnets 6 and the boss 8 are integrated into one. And the scraper 25 is used as the sludge discharging means. The third embodiment is different from the second embodiment in that the iron piece between magnetic poles, the partition plate and the baffle plate are not provided. The other parts are given the same numbers as in the second embodiment, so a detailed description is omitted.

【0007】[0007]

【発明の効果】以上の説明で明らかなように本発明の磁
気分離機は、磁場の作用する環状流路に網状の磁性体を
配設して懸濁磁性粒子を捕捉し磁性粒子団塊を形成さ
せ、これを複数の永久磁石を回転させて網状の磁性体か
ら離脱させ、移動して、一箇所に集めて排出するように
したので、環状流路の全幅にわたり懸濁磁性粒子を効率
良く除去することが可能となり、分離効率を高めること
ができる。
As is apparent from the above description, in the magnetic separator of the present invention, a reticulated magnetic body is arranged in the annular flow path where a magnetic field acts to trap suspended magnetic particles to form agglomerated magnetic particles. By rotating multiple permanent magnets to separate them from the net-like magnetic material, move them, and collect and discharge them in one place, suspended magnetic particles can be efficiently removed over the entire width of the annular channel. It becomes possible to improve the separation efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気分離機の第一実施例を示す図
である。
FIG. 1 is a diagram showing a first embodiment of a magnetic separator according to the present invention.

【図2】本発明による磁気分離機の第二実施例を示す図
である。
FIG. 2 is a diagram showing a second embodiment of the magnetic separator according to the present invention.

【図3】本発明による磁気分離機の第三実施例を示す図
である。
FIG. 3 is a diagram showing a third embodiment of the magnetic separator according to the present invention.

【図4】従来の磁気分離機の概略図である。FIG. 4 is a schematic view of a conventional magnetic separator.

【図5】網状の磁性体の作用説明図である。FIG. 5 is an explanatory view of the action of a reticulated magnetic body.

【図6】本発明による磁気分離機の作用説明図である。FIG. 6 is an explanatory view of the operation of the magnetic separator according to the present invention.

【図7】本発明による磁気分離機の作用説明図である。FIG. 7 is an explanatory view of the operation of the magnetic separator according to the present invention.

【符号の説明】[Explanation of symbols]

1 環状流路 11 仕切り板 2 内筒 12 液入口 4 外筒 14 邪魔板 5 網状の磁性体 15 液出口 6 永久磁石 18 コンベア 7 磁極間鉄片 19 スクリュウ
フィーダ 9 容器 25 スクレーパ
DESCRIPTION OF SYMBOLS 1 Annular flow path 11 Partition plate 2 Inner cylinder 12 Liquid inlet 4 Outer cylinder 14 Baffle plate 5 Reticulated magnetic body 15 Liquid outlet 6 Permanent magnet 18 Conveyor 7 Inter-pole iron piece 19 Screw feeder 9 Container 25 Scraper

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の永久磁石(磁極間鉄片を有するも
のも含む)を内蔵した内筒と、一部分に切り欠きのある
外筒と、前記両筒の間の環状流路に積層して配設された
網状の磁性体と、液入口および液出口を有し前記切り欠
きを囲んで前記外筒と一体となる容器と、前記複数の永
久磁石を回転するための装置と、スラッジ排出装置によ
り構成されたことを特徴とする磁気分離機。
1. An inner cylinder containing a plurality of permanent magnets (including one having an iron piece between magnetic poles), an outer cylinder having a notch in a part thereof, and a laminate arranged in an annular flow path between the both cylinders. By a net-like magnetic body provided, a container having a liquid inlet and a liquid outlet and surrounding the notch and being integrated with the outer cylinder, a device for rotating the plurality of permanent magnets, and a sludge discharge device. A magnetic separator characterized by being configured.
JP3125617A 1991-03-10 1991-03-10 Magnetic separator Pending JPH07303810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125617A JPH07303810A (en) 1991-03-10 1991-03-10 Magnetic separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125617A JPH07303810A (en) 1991-03-10 1991-03-10 Magnetic separator

Publications (1)

Publication Number Publication Date
JPH07303810A true JPH07303810A (en) 1995-11-21

Family

ID=14914511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125617A Pending JPH07303810A (en) 1991-03-10 1991-03-10 Magnetic separator

Country Status (1)

Country Link
JP (1) JPH07303810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183271A (en) * 2010-03-05 2011-09-22 Hitachi Plant Technologies Ltd Magnetic separation apparatus and wastewater treatment apparatus
KR101277747B1 (en) * 2011-10-28 2013-06-24 현대제철 주식회사 Sleg selecting apparatus and selg selecting method
JP2014087800A (en) * 2014-02-18 2014-05-15 Hitachi Ltd Magnetic separation apparatus and waste water treatment apparatus
CN117000741A (en) * 2023-09-12 2023-11-07 武安市铭诚混凝土有限公司 Concrete recycling device and method with separation function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183271A (en) * 2010-03-05 2011-09-22 Hitachi Plant Technologies Ltd Magnetic separation apparatus and wastewater treatment apparatus
US8562829B2 (en) 2010-03-05 2013-10-22 Hitachi Plant Technologies, Ltd. Magnetic separation apparatus and waste water treatment apparatus
KR101277747B1 (en) * 2011-10-28 2013-06-24 현대제철 주식회사 Sleg selecting apparatus and selg selecting method
JP2014087800A (en) * 2014-02-18 2014-05-15 Hitachi Ltd Magnetic separation apparatus and waste water treatment apparatus
CN117000741A (en) * 2023-09-12 2023-11-07 武安市铭诚混凝土有限公司 Concrete recycling device and method with separation function
CN117000741B (en) * 2023-09-12 2024-02-06 武安市铭诚混凝土有限公司 Concrete recycling device and method with separation function

Similar Documents

Publication Publication Date Title
EP3024585B1 (en) Filter device and method for removing magnetizable particles from a fluid
US3489280A (en) Magnetic separator having field shaping poles
JPH08155331A (en) Magnetic separator
AU2009294674A1 (en) Device and method for separating ferromagnetic particles from a suspension
KR100990507B1 (en) Magnetic separator
CN111699045B (en) Bar-shaped magnet and magnetic foreign matter removing device
AU2009294831B2 (en) Device for separating ferromagnetic particles from a suspension
JP3325010B2 (en) Magnetic solid-liquid separator
US3980562A (en) Magnetic disk separator with scraper means
US3959145A (en) Magnetic separator with scraper means
JPH07303810A (en) Magnetic separator
RU2460584C1 (en) Magnetic separator
US2696301A (en) Magnetic separating device
JP2934834B2 (en) Magnetic sorting machine
RU2365421C1 (en) Magnetic separator
CA1090295A (en) Vertical rotor-type high intensity wet magnetic separator with countercurrent flushing
JPH10244424A (en) Chip separation device for electrical discharge machine
RU2177369C1 (en) Centrifugal concentrator
JPH084758B2 (en) Induction magnetic drum type magnetic separator
JPH0753717Y2 (en) Non-magnetic metal separation belt conveyor device
RU2211732C1 (en) Magnetic separator
JPH05200321A (en) Nonmagnetic metal separation belt conveyor
JPS61118153A (en) Magnet filter
JPH11104514A (en) Drum type magnetic foreign matter recovering device
JPS59162962A (en) Magnetic separator