JPH0730265B2 - Crystal type conversion method - Google Patents

Crystal type conversion method

Info

Publication number
JPH0730265B2
JPH0730265B2 JP14344386A JP14344386A JPH0730265B2 JP H0730265 B2 JPH0730265 B2 JP H0730265B2 JP 14344386 A JP14344386 A JP 14344386A JP 14344386 A JP14344386 A JP 14344386A JP H0730265 B2 JPH0730265 B2 JP H0730265B2
Authority
JP
Japan
Prior art keywords
type
crystal
oxytitanium phthalocyanine
type crystal
conversion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14344386A
Other languages
Japanese (ja)
Other versions
JPS63364A (en
Inventor
岩雄 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP14344386A priority Critical patent/JPH0730265B2/en
Publication of JPS63364A publication Critical patent/JPS63364A/en
Publication of JPH0730265B2 publication Critical patent/JPH0730265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はオキシチタニウムフタロシアニンの結晶型を変
換する方法に係わるものであり、更に詳しくはオキシチ
タニウムフタロシアニンのB型結晶をA型結晶に変換す
る方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for converting a crystalline form of oxytitanium phthalocyanine, and more specifically, for converting a B-type crystal of oxytitanium phthalocyanine into an A-type crystal. It is about the method.

(従来の技術と発明が解決しようとする問題点) フタロシアニン類は、塗料・印刷インキ・樹脂の着色・
触媒或は電子材料として有用な化合物であり、殊に電子
写真感光体用材料として盛んに用いられるようになつ
た。
(Problems to be solved by conventional techniques and inventions) Phthalocyanines are used for coating, printing ink, resin coloring,
It is a compound useful as a catalyst or an electronic material, and has been widely used as a material for electrophotographic photoreceptors.

本発明者は、オキシチタニウムフタロシアニンの製造方
法について詳細に検討した結果、製造条件の微妙な違い
によつて3種の結晶型(以下夫々「A型」、「B型」及
び「C型」という)が生成することを確認した。夫々の
粉末X線回折図を図−1、図−2、及び図−3に示す。
As a result of detailed examination of the method for producing oxytitanium phthalocyanine, the present inventor has found that there are three types of crystal forms (hereinafter referred to as “A type”, “B type” and “C type” respectively) due to subtle differences in production conditions. ) Is generated. The respective powder X-ray diffraction patterns are shown in FIGS. 1, 2 and 3.

A型は回折角(2θ)9.3゜、26.3゜にB型は7.6゜、2
8.6゜に、C型は7.0゜、15.6゜、23.4゜、25.5゜に夫々
特徴的な回折ピークを有する。
Diffraction angle (2θ) is 9.3 °, 26.3 ° for A type and 7.6 ° for B type, 2
At 8.6 °, C-type has characteristic diffraction peaks at 7.0 °, 15.6 °, 23.4 ° and 25.5 °.

上記3種の結晶は通常混合物として得られることが多い
が、夫々物性が異なるために、混合物のまま用いると物
性の夫安定性に由来する種々のトラブルが起こり易い。
従つて、その製造に際しては純粋な結晶型のオキシチタ
ニウムフタロシアニンを取得するのが望ましいことは言
うまでもない。更に望ましくは安定型の結晶を取得して
使用するのが好ましい。何故ならば、オキシチタニウム
フタロシアニンは単独で使用することは稀であり、通常
は使用に際して各種助剤の添加、分散処理等を施こすこ
とが多いが、これらの段階で結晶型が変化すると必然的
にその物性も変化するため、助剤との親和性不良、分散
安定型の低下等のトラブルの原因に易いからである。
The three types of crystals are usually obtained as a mixture in many cases, but since the physical properties are different from each other, if they are used as a mixture, various troubles due to the stability of the physical properties are likely to occur.
Therefore, it goes without saying that it is desirable to obtain pure crystalline form of oxytitanium phthalocyanine in the production thereof. More preferably, it is preferable to obtain and use a stable crystal. This is because oxytitanium phthalocyanine is rarely used alone, and is usually subjected to addition of various auxiliaries and dispersion treatment at the time of use, but it is inevitable that the crystal form changes at these stages. In addition, since the physical properties thereof change, it is easy to cause troubles such as poor affinity with the auxiliary agent and deterioration of dispersion stable type.

例えば、オキシチタニウムフタロシアニンは、その使用
形態として各種のポリマーや溶媒等に分散させた後、塗
料、乾燥を経て製品化する場合が多い。併しながら、そ
の結晶型の相異によつてポリマーや溶媒等との相互作用
が異なるために、結晶型の異なつたものの混合物或は不
安定型の結晶を用いると、分散性が阻害されたり、物性
が不安定になることが多い。かかる欠点を排除するため
には、純粋且つ安定型の単一結晶のオキシチタニウムフ
タロシアニンを製造する必要があり、その製造法の開発
が強く望まれている。
For example, oxytitanium phthalocyanine is often commercialized by dispersing it in various polymers, solvents, etc. as a usage form, then coating and drying it. At the same time, since the interaction with the polymer or solvent is different due to the difference in the crystal type, if a mixture of different crystal types or an unstable crystal is used, the dispersibility is hindered, Physical properties often become unstable. In order to eliminate such defects, it is necessary to produce pure and stable single crystal oxytitanium phthalocyanine, and development of a production method thereof is strongly desired.

(問題点を解決するための手段) 本発明者は、前記3種のオキシチタニウムフタロシアニ
ンの結晶の安定性について詳細に検討した結果、B型結
晶が最も不安定で他の結晶型に変化し易いことが判明し
た。又、A型及びC型はほぼ同等の安定性を示した。
(Means for Solving the Problems) As a result of detailed study on the stability of the above-mentioned three types of oxytitanium phthalocyanine crystals, the present inventor found that the B-type crystal is the most unstable and easily changes to another crystal type. It has been found. Further, the A type and the C type showed almost the same stability.

本発明者は、オキシチタニウムフタロシアニンのB型結
晶を、より安定なA型結晶に変換すべく鋭意検討を重ね
た結果、B型結晶を或特定の条件で処理することによ
り、A型結晶に変換し得ることを見出し、本発明に到達
した。即ち、本発明の要旨はオキシチタニウムフタロシ
アニンのB型結晶をA型結晶の存在下に有機溶剤中で加
熱することを特徴とするオキシチタニウムフタロシアニ
ンのB型結晶のA型結晶への変換方法に存する。
The present inventor has conducted diligent studies to convert a B-type crystal of oxytitanium phthalocyanine into a more stable A-type crystal, and as a result, converts the B-type crystal into an A-type crystal by treating the B-type crystal under certain conditions. The inventors have found that it is possible to achieve the present invention. That is, the gist of the present invention resides in a method for converting a B-type crystal of oxytitanium phthalocyanine into an A-type crystal, which comprises heating the B-type crystal of oxytitanium phthalocyanine in an organic solvent in the presence of the A-type crystal. .

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明に用いられる有機溶剤は特に制限はないが、沸点
が130℃以上のものが好適である。例えば、α−クロロ
ナフタレン、β−クロロナフタレン、α−ブロモナフタ
レン、α−メチルナフタレン、α−メトキシナフタレン
等のナフタレン類、ジフエニルエーテル、4,4′−ジク
ロロジフエニエーテル、3,3′−ジメチルジフエニルエ
ーテル等のジフエニルエーテル類、ジフエニルメタン、
4,4′−ジメチルジフエニルメタン、3,3′−ジクロロジ
フエニルメタン等のジフエニルメタン類、1,4−ジクロ
ロベンゼン、1,2,4−トリクロロベンゼン、ブロモベン
ゼン等のハロベンゼン類、ニトロベンゼン、1,3−ジニ
トロベンゼン、1,2,4−トリニトロベンゼン等のニトロ
ベンゼン類、N−メチルピロリドン、1,3−ジメチル−
2−イミダゾリジノン、ジメチルスルホキシド、N,N−
ジメチルホルムアミド、キノリン、スルホラン等が挙げ
られる。勿論、沸点が130℃以下の有機溶剤も使用可能
であるが、130℃以上の処理温度を採用する場合は、加
圧が必要になるので操作がやや煩雑になる。
The organic solvent used in the present invention is not particularly limited, but one having a boiling point of 130 ° C. or higher is suitable. For example, naphthalene such as α-chloronaphthalene, β-chloronaphthalene, α-bromonaphthalene, α-methylnaphthalene, α-methoxynaphthalene, diphenyl ether, 4,4′-dichlorodiphenyl ether, 3,3′- Diphenyl ethers such as dimethyl diphenyl ether, diphenyl methane,
Diphenylmethanes such as 4,4′-dimethyldiphenylmethane and 3,3′-dichlorodiphenylmethane, halobenzenes such as 1,4-dichlorobenzene, 1,2,4-trichlorobenzene and bromobenzene, nitrobenzene, 1 Nitrobenzenes such as 3,3-dinitrobenzene and 1,2,4-trinitrobenzene, N-methylpyrrolidone, 1,3-dimethyl-
2-imidazolidinone, dimethyl sulfoxide, N, N-
Examples thereof include dimethylformamide, quinoline, sulfolane and the like. Of course, an organic solvent having a boiling point of 130 ° C. or lower can be used, but when a treatment temperature of 130 ° C. or higher is used, pressurization is required and the operation becomes slightly complicated.

有機溶剤の使用量は任意に選択できるが、好ましくはオ
キシチタニウムフタロシアニンに対して4〜30倍の範囲
から選ばれる。有機溶剤の使用量がこの範囲より少ない
と処理液の粘度が高くなるため、均一な混合が難かしく
なり、又、この範囲より多いと単位容積当りの処理量が
少なくなるので、避けるのが望ましい。
The amount of the organic solvent used can be arbitrarily selected, but is preferably selected from the range of 4 to 30 times the oxytitanium phthalocyanine. If the amount of organic solvent used is less than this range, the viscosity of the treatment liquid will be high, making uniform mixing difficult, and if it is more than this range, the amount treated per unit volume will be small, so it is desirable to avoid it. .

加熱処理温度は、130〜300℃の範囲が好ましい。この範
囲より低い場合は変換速度が小さくなるので処理時間が
長くなる欠点がある。又、300℃以上の処理では使用す
る溶剤やオキシチタニウムフタロシアニンが、熱分解す
る恐れがあるので避けるのが好ましい。
The heat treatment temperature is preferably in the range of 130 to 300 ° C. If the value is lower than this range, the conversion speed becomes low and the processing time becomes long. Further, it is preferable to avoid it because the solvent and oxytitanium phthalocyanine used in the treatment at 300 ° C. or higher may be thermally decomposed.

共存させるオキシチタニウムフタロシアニンのA型結晶
の量は、任意に選択できるが、好ましくはB型結晶に対
して5〜60%の範囲である。B型結晶からA型結晶への
変換速度は共存させるA型結晶の量に比例するので、5
%以下では処理時間が長くなり実用的ではない。又、A
型結晶を共存させないと変換は全く起らない。
The amount of the oxytitanium phthalocyanine type A crystal to be coexistent can be arbitrarily selected, but it is preferably in the range of 5 to 60% relative to the type B crystal. Since the conversion rate from B-type crystals to A-type crystals is proportional to the amount of A-type crystals that coexist,
If it is less than%, the processing time becomes long and it is not practical. Also, A
No conversion occurs at all without the coexisting type crystals.

(実施例) 以下に実施例、比較例を挙げて本発明を更に具体的に説
明する。
(Example) Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1 温度計、撹拌器を備えた300mlのフラスコに、オキシチ
タニウムフタロシアニンのB型結晶とA型結晶を各6g宛
仕込み、α−クロロナフタレン200mlを加えて200℃に昇
温し、同温度で3時間懸濁撹拌した。この懸濁液を120
℃に冷却した後過し、オキシチタニウムフタロシアニ
ンの湿ケーキを得た。次いで湿ケーキに付着しているα
−クロロナフタレンをメタノールを用いて洗浄して除去
した後、60℃で減圧乾燥してオキシチタニウムフタロシ
アニン11.5gを得た。得られたオキシチタニウムフタロ
シアニンの粉末X線回折パターンは図−1に一致し、純
粋なA型結晶であつた。
Example 1 A 300 ml flask equipped with a thermometer and a stirrer was charged with 6 g each of B-type crystals and A-type crystals of oxytitanium phthalocyanine, 200 ml of α-chloronaphthalene was added and the temperature was raised to 200 ° C. The suspension was stirred for 3 hours. This suspension 120
After cooling to ℃, it was passed to obtain a wet cake of oxytitanium phthalocyanine. Then α attached to the wet cake
-Chloronaphthalene was removed by washing with methanol and then dried under reduced pressure at 60 ° C to obtain 11.5 g of oxytitanium phthalocyanine. The powder X-ray diffraction pattern of the obtained oxytitanium phthalocyanine was in agreement with Fig. 1 and it was a pure A-type crystal.

実施例2〜15、比較例1〜5 溶剤の種類、処理温度、A型結晶の添加量等を変えた以
外は実施例と同様に実験した結果を表1に示す。
Examples 2 to 15 and Comparative Examples 1 to 5 Table 1 shows the results of the same experiments as in Examples except that the type of solvent, the treatment temperature, the amount of A-type crystals added, and the like were changed.

【図面の簡単な説明】[Brief description of drawings]

図−1はオキシチタニウムフタロシアニンのA型結晶の
粉末X線回折図であり、回折角(2θ)9.3゜、26.3゜
に特徴的な強い回折ピークを有する。 図−2はオキシチタニウムフタロシアニンのB型結晶の
粉末X線回折図であり、回折角(2θ)7.6゜、28.6゜
に特徴的な強い回折ピークを有する。 図−3はオキシチタニウムフタロシアニンのC型結晶の
粉末X線回折図であり、回折角(2θ)7.0゜、15.6
゜、23.4゜、25.5゜に特徴的な強い回折ピークを有す
る。
FIG. 1 is a powder X-ray diffraction pattern of the A-type crystal of oxytitanium phthalocyanine, which has strong diffraction peaks at diffraction angles (2θ) of 9.3 ° and 26.3 °. FIG. 2 is a powder X-ray diffraction pattern of the B-type crystal of oxytitanium phthalocyanine, which has strong diffraction peaks characteristic at diffraction angles (2θ) of 7.6 ° and 28.6 °. Figure 3 is a powder X-ray diffraction pattern of the C-type crystal of oxytitanium phthalocyanine. The diffraction angles (2θ) 7.0 °, 15.6
It has strong diffraction peaks characteristic at °, 23.4 ° and 25.5 °.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】オキシチタニウムフタロシアニンのB型結
晶を、A型結晶の存在下に有機溶媒中で加熱することを
特徴とする、オキシチタニウムフタロシアニンのB型結
晶のA型結晶への変換方法。
1. A method for converting a B-type crystal of oxytitanium phthalocyanine into an A-type crystal, which comprises heating the B-type crystal of oxytitanium phthalocyanine in an organic solvent in the presence of the A-type crystal.
JP14344386A 1986-06-19 1986-06-19 Crystal type conversion method Expired - Fee Related JPH0730265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14344386A JPH0730265B2 (en) 1986-06-19 1986-06-19 Crystal type conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14344386A JPH0730265B2 (en) 1986-06-19 1986-06-19 Crystal type conversion method

Publications (2)

Publication Number Publication Date
JPS63364A JPS63364A (en) 1988-01-05
JPH0730265B2 true JPH0730265B2 (en) 1995-04-05

Family

ID=15338819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14344386A Expired - Fee Related JPH0730265B2 (en) 1986-06-19 1986-06-19 Crystal type conversion method

Country Status (1)

Country Link
JP (1) JPH0730265B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482922B1 (en) * 1990-10-24 1997-01-08 Canon Kabushiki Kaisha Process for producing crystalline oxytitanium phthalocyanine
JPH08209023A (en) * 1994-11-24 1996-08-13 Fuji Electric Co Ltd Titaniloxyphthalocyanine crystal, its production and photosensitizer for electrophotography
US5874570A (en) * 1995-11-10 1999-02-23 Fuji Electric Co., Ltd. Titanyloxyphthalocyanine crystals, and method of preparing the same
US6797446B2 (en) 1999-12-31 2004-09-28 Samsung Electronics Co., Ltd. Electrophotographic photoreceptors
US6668148B2 (en) 2000-12-20 2003-12-23 Ricoh Company, Ltd. Latent electrostatic image developing apparatus and image forming apparatus including such developing apparatus
JP5402279B2 (en) 2008-06-27 2014-01-29 株式会社リコー Electrophotographic photoreceptor, method for producing the same, and image forming apparatus using the same
JP5553198B2 (en) 2008-11-26 2014-07-16 株式会社リコー Electrophotographic photoreceptor, image forming apparatus using the same, and process cartridge for image forming apparatus
US8206880B2 (en) 2009-06-05 2012-06-26 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor

Also Published As

Publication number Publication date
JPS63364A (en) 1988-01-05

Similar Documents

Publication Publication Date Title
JPH0730267B2 (en) Crystalline oxytitanium phthalocyanine and method for producing the same
JPS6393735A (en) Manufacture of (2,2)-paracyclophane and derivatives of same
JPH0730265B2 (en) Crystal type conversion method
JPH075846B2 (en) Method for producing A-type oxytitanium phthalocyanine
JPS647108B2 (en)
US3351481A (en) Process of producing phthalocyanine pigments
JPS62135568A (en) Production of dimethylaminomethyl copper phthalocyanine and derivative thereof
JP2782809B2 (en) Method for producing oxytitanium phthalocyanine
JPS63365A (en) Method of converting crystalline form
JPS63207858A (en) Production of copper phthalocyanine pigment
JP2782782B2 (en) Method for producing oxytitanium phthalocyanine
JPH05179153A (en) Preparation of pigment
JP2001172519A (en) Production method for organic pigment applying supercritical field
JP3865426B2 (en) Method for producing clear copper phthalocyanine pigment
JP2782815B2 (en) Method for producing oxytitanium phthalocyanine
JPS6248769A (en) Production of copper phthalocyanine
JPS6357670A (en) Method of converting crystalline form
EP0399430B1 (en) Process for preparation of crystal-line oxytitanium phthalocyanine
JP3680862B2 (en) Benzimidazolone compounds
JP3496276B2 (en) Method for producing copper phthalocyanine
JP2001181529A (en) Production method for copper phthalocyanine semicrude and production method for copper phthalocyanine crude
WO2018155096A1 (en) Coloring composition comprising xanthene dye, coloring agent for color filters and color filter
JP2536563B2 (en) New crystalline copper phthalocyanine
JPS58147462A (en) Purification of quinacridone
JP2003105220A (en) Method for producing quinacrydones

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees