JPH0730170A - Ferromagnetic magnetoresistance element - Google Patents

Ferromagnetic magnetoresistance element

Info

Publication number
JPH0730170A
JPH0730170A JP5170225A JP17022593A JPH0730170A JP H0730170 A JPH0730170 A JP H0730170A JP 5170225 A JP5170225 A JP 5170225A JP 17022593 A JP17022593 A JP 17022593A JP H0730170 A JPH0730170 A JP H0730170A
Authority
JP
Japan
Prior art keywords
ferromagnetic
magnetoresistive element
magnetic field
magnetoresistive
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5170225A
Other languages
Japanese (ja)
Other versions
JP2576763B2 (en
Inventor
Izumi Fukui
泉 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5170225A priority Critical patent/JP2576763B2/en
Publication of JPH0730170A publication Critical patent/JPH0730170A/en
Application granted granted Critical
Publication of JP2576763B2 publication Critical patent/JP2576763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a ferromagnetic magnetoreistance element wherein the area of a magnetism-sensitive part is small and a manufacturing margin is large. CONSTITUTION:Two nonmagnetic insulator substrates 16A, 16B in which magnetoreistance elements 12A, 12B composed of a ferro-magnetic-substance thin film provided with a magnetoresistance effect have been formed are overlapped, and a ferromagnetic magnetoresistance element is formed. Thereby, the area of a magnetism-sensitive park can be reduced, and a resolution with reference to the intensity (direction) of a magnetic field is enhanced when the magnetic field is not uniform. In addition, the ferromagnetic magnetoresistance element can be manufactured of a substance on which a plurality of magnetoresistance elements have been formed while the magnetoresistance elements whose resistance value is close are combined. As a result, a manufacturing margin can be made large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性磁気抵抗素子に
係わり、たとえば、回転検出や、位置検出に用いられる
強磁性磁気抵抗素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic magnetoresistive element, for example, a ferromagnetic magnetoresistive element used for rotation detection and position detection.

【0002】[0002]

【従来の技術】強磁性磁気抵抗素子は、強磁性金属の電
気抵抗が外部磁界によって変化する現象(磁気抵抗効
果)を利用して、磁界の強度を検出する素子である。強
磁性磁気抵抗体の抵抗は、磁化の大きさに依存するの
で、外部磁界変化に対する抵抗変化は、磁化曲線に対応
した飽和特性を示す。このため、ある強度以上の磁界の
検出には用いることができず、通常、100Oe(エル
ステッド)程度までの磁界の測定か、磁界の変化を測定
することにより、被検出対象の回転角や位置を検出する
センサとして用いられる。
2. Description of the Related Art A ferromagnetic magnetoresistive element is an element that detects the strength of a magnetic field by utilizing a phenomenon (magnetoresistance effect) in which the electric resistance of a ferromagnetic metal changes with an external magnetic field. Since the resistance of the ferromagnetic magnetoresistor depends on the magnitude of the magnetization, the resistance change with respect to the change of the external magnetic field shows a saturation characteristic corresponding to the magnetization curve. For this reason, it cannot be used to detect a magnetic field of a certain strength or higher, and usually, by measuring the magnetic field up to about 100 Oe (Oersted) or measuring the change in the magnetic field, the rotation angle and position of the detection target can be determined. Used as a sensor to detect.

【0003】図4を用いて、強磁性磁気抵抗素子で磁界
の方向を検出する場合の動作原理を簡単に説明する。こ
の図は、磁気抵抗要素を2つ組み合せた素子の電気的接
続を簡略化して示したものである。強磁性磁気抵抗素子
11は、2つの磁気抵抗要素12A と12B で構成され
る。磁気抵抗要素12A と12B は、磁化されていない
状態で同一の抵抗を有する薄膜状の強磁性体であり、そ
れらは互いに直交して配置され、直列に接続される。こ
れらの磁気抵抗要素には、定電圧電源15から一定の電
圧V0 が供給される。
The operating principle when the direction of the magnetic field is detected by the ferromagnetic magnetoresistive element will be briefly described with reference to FIG. This figure shows a simplified electrical connection of an element in which two magnetoresistive elements are combined. The ferromagnetic magnetoresistive element 11 is composed of two magnetoresistive elements 12 A and 12 B. The magnetoresistive elements 12 A and 12 B are thin-film ferromagnets having the same resistance in the non-magnetized state, and they are arranged orthogonal to each other and connected in series. A constant voltage V 0 is supplied from the constant voltage power supply 15 to these magnetoresistive elements.

【0004】ここで、強磁性磁気抵抗素子11が、一定
強度の外部磁界13下におかれた場合を考えると、各磁
気抵抗要素12A 、12B の抵抗RA 、RB と電極14
1 で測定される電圧Vは、次式で外部磁界の回転角θと
関係づけられる。
[0004] Here, the ferromagnetic magnetoresistive element 11, considering a case placed under the external magnetic field 13 of constant intensity, the magneto-resistive element 12 A, 12 B of the resistor R A, R B and the electrode 14
The voltage V measured at 1 is related to the rotation angle θ of the external magnetic field by the following equation.

【0005】[0005]

【数1】 [Equation 1]

【0006】ここで、θは、磁気抵抗要素12A の電流
方向と磁界のなす角であり、R1 は、θ=π/2のとき
の磁気抵抗要素12A 、12B の抵抗、R2 は、θ=0
のときの抵抗である。(3)式の右辺、第2項が外部磁
界の角度の変化による電圧変化である。このように、θ
に応じて電圧Vが変化するため、電圧Vから、磁界の方
向が検出できる。
Here, θ is the angle formed by the magnetic field and the magnetic field of the magnetoresistive element 12 A , and R 1 is the resistance of the magnetoresistive elements 12 A and 12 B when θ = π / 2, and R 2 Is θ = 0
It is the resistance when. The second term on the right side of the equation (3) is the voltage change due to the change in the angle of the external magnetic field. Thus, θ
Since the voltage V changes according to, the direction of the magnetic field can be detected from the voltage V.

【0007】原理上は、1つの磁気抵抗要素から磁界の
方向を検出することができるにも関わらず、図4のよう
に、磁気抵抗要素を組み合わせて強磁性磁気抵抗素子を
構成するのは、以下の理由による。まず、(1)、
(2)式が成立するため、2つの磁気抵抗要素の抵抗の
和、RA +RB が、磁界の回転角に依存せず一定値、R
1+R2 になる。このため、定電圧電源15の負荷抵抗
が常に一定値であることになり、簡単な回路で定電圧を
供給することができるようになる。また、(3)式から
明らかなように、抵抗の比を測定することになり、温度
変化による抵抗変化の影響をキャンセルすることができ
る。このため、従来の強磁性磁気抵抗素子は、2つの磁
気抵抗要素を同一平面上に形成することにより作製され
ていた。
In principle, although the direction of the magnetic field can be detected from one magnetoresistive element, as shown in FIG. 4, the magnetoresistive elements are combined to form a ferromagnetic magnetoresistive element. The reason is as follows. First, (1),
Since the expression (2) is established, the sum of the resistances of the two magnetoresistive elements, R A + R B, is a constant value R R independent of the rotation angle of the magnetic field.
It becomes 1 + R 2 . Therefore, the load resistance of the constant voltage power supply 15 is always a constant value, and the constant voltage can be supplied with a simple circuit. Further, as is clear from the equation (3), the resistance ratio is measured, and the influence of the resistance change due to the temperature change can be canceled. For this reason, the conventional ferromagnetic magnetoresistive element has been manufactured by forming two magnetoresistive elements on the same plane.

【0008】図5に、実際の強磁性磁気抵抗素子の外観
を示す。強磁性磁気抵抗素子11は、2つの磁気抵抗要
素12A と12B が、互いにその電流方向が直交するよ
うな形で、たとえばシリコン(Si)のような非磁性絶
縁基板16上に形成される。図4では、磁気抵抗要素を
直線で示したが、実際には、この図のように、折れ線状
に形成される。これは、磁気抵抗要素の抵抗値を、使用
に適当な値にするためである。
FIG. 5 shows the appearance of an actual ferromagnetic magnetoresistive element. In the ferromagnetic magnetoresistive element 11, two magnetoresistive elements 12 A and 12 B are formed on a non-magnetic insulating substrate 16 such as silicon (Si) so that their current directions are orthogonal to each other. . Although the magnetoresistive element is shown by a straight line in FIG. 4, it is actually formed in a polygonal line shape as shown in this figure. This is to make the resistance value of the magnetoresistive element appropriate for use.

【0009】図6に、強磁性磁気抵抗素子の他の構成例
を示す。この強磁性磁気抵抗素子11では、4つの磁気
抵抗要素121 〜124 が設けられている。この強磁性
磁気抵抗素子11では、電圧は、電極142 と143
間に印加され、電極141 または電極144 における電
圧を測定することにより、磁界の変化の検出が行われ
る。なお、この素子では、これら2つの電極から、位相
が180度異なる2つの検出信号を得ることができる。
FIG. 6 shows another configuration example of the ferromagnetic magnetoresistive element. In this ferromagnetic magnetoresistive element 11, four magnetoresistive elements 12 1 to 12 4 are provided. In this ferromagnetic magnetoresistive element 11, a voltage is applied between the electrodes 14 2 and 14 3 , and the change in the magnetic field is detected by measuring the voltage at the electrode 14 1 or the electrode 14 4 . In this device, two detection signals having a phase difference of 180 degrees can be obtained from these two electrodes.

【0010】[0010]

【発明が解決しようとする課題】前述の動作説明におい
ては、外部磁界が一様な強度を有するものとして説明を
行ったが、強磁性磁気抵抗素子が、一様な磁界の測定に
用いられることはないといってよい。たとえば、回転角
の検出では、被検出対象の周囲に異なる極性の磁力源を
交互に配置して、その回転に伴う磁界変化を、側方から
検出する。この場合には、その被検出対象である回転体
から離れた位置の磁界は弱くなるため、一つの磁気抵抗
要素内で、磁界の強度分布に応じた抵抗率分布が生じて
しまう。このような抵抗率分布が発生すると、磁気抵抗
要素の抵抗と磁界の方向との関係が複雑になり、測定さ
れた電圧から磁界の方向を算出することが困難になる。
この問題を解決するためには、磁気抵抗要素が形成され
ている部分、すなわち、感磁部の面積をできるがぎり小
さくすることが必要となる。
In the above description of the operation, the external magnetic field has been described as having a uniform strength. However, a ferromagnetic magnetoresistive element is used for measuring a uniform magnetic field. It can be said that there is no. For example, in the detection of the rotation angle, magnetic force sources having different polarities are alternately arranged around the object to be detected, and the change in the magnetic field due to the rotation is detected from the side. In this case, the magnetic field at a position distant from the rotating body that is the object to be detected becomes weak, so that a resistivity distribution according to the strength distribution of the magnetic field occurs in one magnetoresistive element. When such a resistivity distribution occurs, the relationship between the resistance of the magnetoresistive element and the magnetic field direction becomes complicated, and it becomes difficult to calculate the magnetic field direction from the measured voltage.
In order to solve this problem, it is necessary to make the area where the magnetoresistive element is formed, that is, the area of the magnetic sensitive portion as small as possible.

【0011】しかし、従来の強磁性磁気抵抗素子では、
同一平面上に2つ以上の磁気抵抗要素を形成していたた
め、感磁部の面積が、1つの磁気抵抗要素の少なくとも
2倍の面積を必要とするといった問題があった。また、
前述のように2つの磁気抵抗要素の抵抗は等しいことが
望まれるため、従来のような、磁気抵抗要素がパターニ
ングにより一括して作製される強磁性磁気抵抗素子で
は、作製時に膜厚分布が生じないように正確に成膜プロ
セスを制御することが必要であった。
However, in the conventional ferromagnetic magnetoresistive element,
Since two or more magnetoresistive elements are formed on the same plane, there is a problem that the area of the magnetically sensitive portion requires at least twice the area of one magnetoresistive element. Also,
As described above, since it is desired that the two magnetoresistive elements have the same resistance, in a conventional ferromagnetic magnetoresistive element in which the magnetoresistive elements are collectively manufactured by patterning, a film thickness distribution occurs during manufacturing. It was necessary to control the film formation process accurately so that there was no such problem.

【0012】そこで本発明の目的は、感磁部の面積が小
さい強磁性磁気抵抗素子を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a ferromagnetic magnetoresistive element having a small magnetic sensitive area.

【0013】また、本発明の他の目的は、作製マージン
の大きな強磁性磁気抵抗素子を提供することにある。
Another object of the present invention is to provide a ferromagnetic magnetoresistive element having a large manufacturing margin.

【0014】[0014]

【課題を解決するための手段】[Means for Solving the Problems]

【0015】請求項1ないし請求項3記載の発明では、
磁気抵抗効果を有する強磁性体からなる磁気抵抗要素が
形成された第1および第2の非磁性絶縁体基板を重ね合
わせて形成する。すなわち、本発明では、2つの磁気抵
抗要素を異なる基板上に作製し、これらを組み合わせる
ことにより、感磁部の面積を小さくする。
In the inventions according to claims 1 to 3,
The first and second non-magnetic insulating substrates on which the magnetoresistive element made of a ferromagnetic material having a magnetoresistive effect is formed are overlapped and formed. That is, in the present invention, two magnetoresistive elements are formed on different substrates, and these are combined to reduce the area of the magnetic sensing section.

【0016】また、請求項2記載の発明では、用いる2
つの磁気抵抗要素を同一形状とする。これにより、複数
の磁気抵抗要素を形成した基板から、磁気抵抗要素の抵
抗値が近いもの同士を組み合わせて強磁性磁気抵抗素子
を作製することができる。
According to the second aspect of the invention, 2
The two magnetoresistive elements have the same shape. This makes it possible to fabricate a ferromagnetic magnetoresistive element by combining substrates having a plurality of magnetoresistive elements having similar resistance values with each other.

【0017】[0017]

【実施例】以下、実施例につき本発明を詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0018】図1に、実施例による強磁性磁気抵抗素子
の概要を示す。強磁性磁気抵抗素子は、所定の形状の強
磁性薄膜からなる磁気抵抗要素12A と12B が形成さ
れた2枚の非磁性絶縁体基板16A と16B を、互いに
直交するように配置したものである。磁気抵抗要素12
A と12B は、パーマロイで形成された薄膜パターンで
あり、これらは、同一プロセスにより、同一形状のシリ
コン基板16上に形成したものである。なお、図中の符
号は、図4に示した動作説明図に対応させてあり、電極
142 と電極143 との間に定電圧が印加され、電極1
2 と電極14 1 の間の電圧が外部磁界の検出に用いら
れる。
FIG. 1 shows a ferromagnetic magnetoresistive element according to an embodiment.
The outline of is shown. A ferromagnetic magnetoresistive element is a
Magnetoresistive element 12 comprising magnetic thin filmAAnd 12BFormed
Two non-magnetic insulating substrates 16AAnd 16BTo each other
They are arranged so as to be orthogonal to each other. Magnetoresistive element 12
AAnd 12BIs a thin film pattern made of permalloy
Yes, they have the same shape and shape by the same process.
It is formed on the control board 16. Note that the symbols in the figure
No. corresponds to the operation explanatory diagram shown in FIG.
142And electrode 143A constant voltage is applied between the
Four2And electrode 14 1The voltage between is used to detect the external magnetic field.
Be done.

【0019】この強磁性磁気抵抗素子の特性評価は、素
子をケースに組み込み、実際のセンサ形状にしてから行
った。
The characteristic evaluation of this ferromagnetic magnetoresistive element was carried out after the element was assembled in a case and formed into an actual sensor shape.

【0020】図2に、この強磁性磁気抵抗素子を用いた
センサの概要を示す。強磁性磁気抵抗素子を構成する2
つの磁気抵抗要素が形成された基板16A と16B は、
リードフレーム21上に、積み重ねられ、接着剤により
接続される。リード端子22と強磁性磁気抵抗素子の電
極の接続は、リード線23により行われる。このとき、
基板16A 上の電極141 と、基板16B 上の電極14
2 の電気的接続も合わせて行う。このようにリード端子
22と接続された素子を、エポキシ材等のモールド樹脂
からなるケース24にて封止して、センサを得た。
FIG. 2 shows an outline of a sensor using this ferromagnetic magnetoresistive element. Constructing a ferromagnetic magnetoresistive element 2
Substrates 16 A and 16 B having two magnetoresistive elements are
They are stacked on the lead frame 21 and connected by an adhesive. The lead terminal 22 and the electrode of the ferromagnetic magnetoresistive element are connected by a lead wire 23. At this time,
The electrode 14 1 on the substrate 16 A and the electrode 14 1 on the substrate 16 B
Also make the electrical connection of 2 . The element thus connected to the lead terminal 22 was sealed with a case 24 made of a mold resin such as an epoxy material to obtain a sensor.

【0021】実施例の強磁性磁気抵抗素子は、図1およ
び図5から明らかなように、従来例の素子に比べて小さ
いため、ケースも小さくすることができた。また、実施
例と従来例の強磁性磁気抵抗素子を用いて作製したセン
サにより、実際に、周囲に磁力源を配置した回転体の回
転角の測定を行ったところ、実施例の強磁性磁気抵抗素
子では、従来例のそれにくらべ、被検出対象である回転
体からの距離マージンが大きいことが確認できた。
As is apparent from FIGS. 1 and 5, the ferromagnetic magnetoresistive element of the example is smaller than the element of the conventional example, so that the case can be made smaller. In addition, the sensor manufactured using the ferromagnetic magnetoresistive element of the example and the conventional example was actually used to measure the rotation angle of the rotating body around which a magnetic force source was arranged. It was confirmed that the element has a larger distance margin from the rotating body as the detection target, as compared with the conventional example.

【0022】また、図1に示した強磁性磁気抵抗素子で
は、1つの基板上に1つの磁気抵抗要素を形成したが、
図3に示すように、各基板にそれぞれ2つの磁気抵抗要
素を形成してもよい。この図の強磁性磁気抵抗素子は、
図6に示した構成の素子を、本発明により実現したもの
であり、対応する部分には、図6と同一の符号を付けて
ある。このように、4つ以上の磁気抵抗要素で構成され
る強磁性磁気抵抗素子にも、本発明は、適用可能であ
る。この強磁性磁気抵抗素子も、感磁部が小さくなるた
め、従来の強磁性磁気抵抗素子より、磁界の変化を正確
に検出することができる。
In the ferromagnetic magnetoresistive element shown in FIG. 1, one magnetoresistive element is formed on one substrate,
As shown in FIG. 3, two magnetoresistive elements may be formed on each substrate. The ferromagnetic magnetoresistive element in this figure is
The element having the configuration shown in FIG. 6 is realized by the present invention, and the corresponding portions are denoted by the same reference numerals as those in FIG. As described above, the present invention can be applied to a ferromagnetic magnetoresistive element including four or more magnetoresistive elements. Since this ferromagnetic magnetoresistive element also has a smaller magnetic sensitive portion, it is possible to more accurately detect changes in the magnetic field than conventional ferromagnetic magnetoresistive elements.

【0023】実施例の強磁性磁気抵抗素子では、2枚の
基板間の電極の接続をリード線を用いて行っているが、
基板にスルーホールを設けて、これにより、電気的接続
を行うようにすることもできる。また、実施例では、強
磁性金属として、パーマロイを用いてたが、CoNi
(コバルトニッケル)合金等の他の磁気抵抗効果を有す
る金属を用いてもよいことは当然である。
In the ferromagnetic magnetoresistive element of the embodiment, lead wires are used to connect the electrodes between the two substrates.
It is also possible to provide through holes in the substrate so that electrical connection can be made. Further, although Permalloy was used as the ferromagnetic metal in the examples, CoNi
Of course, other metals having a magnetoresistive effect such as (cobalt nickel) alloy may be used.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
2枚の基板上に形成した抵抗成分を重ねて強磁性磁気抵
抗素子を構成しているため、感磁部の面積が小さくな
る。このため、磁界の変化を正確に検出することができ
る。また、センサ形状にした場合の大きさも小さくなる
ため、センサの配置が容易になる。
As described above, according to the present invention,
Since the ferromagnetic magnetoresistive element is constructed by superposing the resistance components formed on the two substrates, the area of the magnetic sensitive portion becomes small. Therefore, the change in the magnetic field can be accurately detected. Further, since the size of the sensor is reduced, the sensor can be easily arranged.

【0025】また、請求項2および請求項3記載の発明
では、同一形状の磁気抵抗要素を組み合わせて、強磁性
磁気抵抗素子を形成するため、作製マージンが大きくな
る。すなわち、作製したそれぞれの磁気抵抗要素の抵抗
が異なっていても、近い抵抗値をもつ磁気抵抗要素同士
を組み合わせることにより、素子の全抵抗が磁界の方向
に依存しない強磁性磁気抵抗素子を構成することができ
る。
Further, in the inventions according to claims 2 and 3, since the ferromagnetic magnetoresistive element is formed by combining the magnetoresistive elements having the same shape, the manufacturing margin becomes large. That is, even if the resistance of each manufactured magnetoresistive element is different, by combining magnetoresistive elements having similar resistance values, a ferromagnetic magnetoresistive element in which the total resistance of the element does not depend on the direction of the magnetic field is formed. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による強磁性磁気抵抗素子の概
要を示す構成図である。
FIG. 1 is a configuration diagram showing an outline of a ferromagnetic magnetoresistive element according to an example of the present invention.

【図2】実施例の強磁性磁気抵抗素子を組み込んだセン
サの概要を示す説明図である。
FIG. 2 is an explanatory diagram showing an outline of a sensor incorporating the ferromagnetic magnetoresistive element of the example.

【図3】実施例による4つの磁気抵抗要素を有する強磁
性磁気抵抗素子の概要を示す構成図である。
FIG. 3 is a configuration diagram showing an outline of a ferromagnetic magnetoresistive element having four magnetoresistive elements according to an example.

【図4】従来例の強磁性磁気抵抗素子の動作原理を示す
ための説明図である。
FIG. 4 is an explanatory diagram showing an operating principle of a conventional ferromagnetic magnetoresistive element.

【図5】従来例による2つの磁気抵抗要素を用いた強磁
性磁気抵抗素子の概要を示す構成図である。
FIG. 5 is a configuration diagram showing an outline of a ferromagnetic magnetoresistive element using two magnetoresistive elements according to a conventional example.

【図6】従来例による4つの磁気抵抗要素を用いた強磁
性磁気抵抗素子の概要を示す構成図である。
FIG. 6 is a configuration diagram showing an outline of a ferromagnetic magnetoresistive element using four magnetoresistive elements according to a conventional example.

【符号の説明】[Explanation of symbols]

11…強磁性磁気抵抗素子 12…磁気抵抗要素 13…磁界 14…電極 15…電源 16…基板 21…リードフレーム 22…リード端子 23…リード線 24…ケース 11 ... Ferromagnetic magnetoresistive element 12 ... Magnetoresistive element 13 ... Magnetic field 14 ... Electrode 15 ... Power supply 16 ... Substrate 21 ... Lead frame 22 ... Lead terminal 23 ... Lead wire 24 ... Case

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 10/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01F 10/00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果を有する強磁性体薄膜から
なる磁気抵抗要素が形成された第1および第2の非磁性
絶縁体基板を重ね合わせて形成したことを特徴とする強
磁性磁気抵抗素子。
1. A ferromagnetic magnetoresistive element formed by stacking first and second nonmagnetic insulating substrates on which magnetoresistive elements made of a ferromagnetic thin film having a magnetoresistive effect are formed. .
【請求項2】 前記第1および第2の非磁性絶縁体基板
に形成された前記磁気抵抗要素が同一形状であることを
特徴とする請求項1記載の強磁性磁気抵抗素子。
2. The ferromagnetic magnetoresistive element according to claim 1, wherein the magnetoresistive elements formed on the first and second non-magnetic insulating substrates have the same shape.
【請求項3】 前記第1および第2の非磁性絶縁体基板
に形成された前記磁気抵抗要素が、その電流方向が直交
するように配置された2つの磁気抵抗要素で構成されて
いることを特徴とする請求項1および請求項2記載の強
磁性磁気抵抗素子。
3. The magnetoresistive element formed on the first and second non-magnetic insulator substrates is composed of two magnetoresistive elements arranged so that their current directions are orthogonal to each other. The ferromagnetic magnetoresistive element according to claim 1 or 2, which is characterized in that.
JP5170225A 1993-07-09 1993-07-09 Ferromagnetic magnetoresistive element Expired - Lifetime JP2576763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5170225A JP2576763B2 (en) 1993-07-09 1993-07-09 Ferromagnetic magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5170225A JP2576763B2 (en) 1993-07-09 1993-07-09 Ferromagnetic magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH0730170A true JPH0730170A (en) 1995-01-31
JP2576763B2 JP2576763B2 (en) 1997-01-29

Family

ID=15900993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5170225A Expired - Lifetime JP2576763B2 (en) 1993-07-09 1993-07-09 Ferromagnetic magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2576763B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit
CN100440565C (en) * 2004-09-17 2008-12-03 日本电产三协株式会社 Magnetoresistive element
JP2009052963A (en) * 2007-08-24 2009-03-12 Denso Corp Magnetic vector distribution measuring probe
JP2011517766A (en) * 2007-06-27 2011-06-16 ブルックス オートメーション インコーポレイテッド Multi-dimensional position sensor
WO2015083601A1 (en) * 2013-12-02 2015-06-11 コニカミノルタ株式会社 Three-dimensional magnetic sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750863A (en) * 1980-09-09 1982-03-25 Koichi Ogawa Non-caloric food

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750863A (en) * 1980-09-09 1982-03-25 Koichi Ogawa Non-caloric food

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159542A (en) * 1999-12-03 2001-06-12 Hitachi Metals Ltd Rotation angle sensor and rotation angle sensor unit
JP4543350B2 (en) * 1999-12-03 2010-09-15 日立金属株式会社 Rotation angle sensor and rotation angle sensor unit
CN100440565C (en) * 2004-09-17 2008-12-03 日本电产三协株式会社 Magnetoresistive element
JP2011517766A (en) * 2007-06-27 2011-06-16 ブルックス オートメーション インコーポレイテッド Multi-dimensional position sensor
JP2009052963A (en) * 2007-08-24 2009-03-12 Denso Corp Magnetic vector distribution measuring probe
WO2015083601A1 (en) * 2013-12-02 2015-06-11 コニカミノルタ株式会社 Three-dimensional magnetic sensor

Also Published As

Publication number Publication date
JP2576763B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP3623367B2 (en) Potentiometer with giant magnetoresistive element
US5049809A (en) Sensing device utilizing magneto electric transducers
US10184959B2 (en) Magnetic current sensor and current measurement method
JP3560821B2 (en) Encoder with giant magnetoresistive element
JP3465059B2 (en) Magnetic field sensor comprising magnetization reversal conductor and one or more magnetoresistive resistors
KR960018612A (en) Magnetic field sensor, bridge circuit magnetic field sensor and manufacturing method thereof
JPH11513128A (en) Magnetic field sensor with magnetoresistive bridge
KR19990022160A (en) Magnetic field sensor including bridge circuit of magnetoresistive bridge element
JP2005529338A (en) Sensor and method for measuring the flow of charged particles
TW201908760A (en) Magnetic field sensing device and magnetic field sensing apparatus
JP2001159542A (en) Rotation angle sensor and rotation angle sensor unit
US11009569B2 (en) Magnetic field sensing device
JP2576763B2 (en) Ferromagnetic magnetoresistive element
JP2000180524A (en) Magnetic field sensor
JP2008209224A (en) Magnetic sensor
JP2000193407A (en) Magnetic positioning device
JP3705702B2 (en) Magnetic device
JPH0329875A (en) Magnetoresistance element made of ferromagnetic body
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP4237855B2 (en) Magnetic field sensor
CN104880678B (en) A kind of magnetic sensing device and its preparation process
JPH10170619A (en) Magnetic sensor and alternating bias magnetic field impressing method therefor
JPH08316548A (en) Magnetoresistive element
JP3555412B2 (en) Magnetoresistive sensor
JP2923959B2 (en) Magnetic bearing detector