JPH07301696A - X-ray projection and exposure method and device therefor - Google Patents

X-ray projection and exposure method and device therefor

Info

Publication number
JPH07301696A
JPH07301696A JP6094615A JP9461594A JPH07301696A JP H07301696 A JPH07301696 A JP H07301696A JP 6094615 A JP6094615 A JP 6094615A JP 9461594 A JP9461594 A JP 9461594A JP H07301696 A JPH07301696 A JP H07301696A
Authority
JP
Japan
Prior art keywords
diffraction grating
exposure
light source
ray projection
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6094615A
Other languages
Japanese (ja)
Inventor
Masaaki Ito
昌昭 伊東
Hiromasa Yamanashi
弘将 山梨
Takashi Matsuzaka
尚 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6094615A priority Critical patent/JPH07301696A/en
Publication of JPH07301696A publication Critical patent/JPH07301696A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70158Diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Abstract

PURPOSE:To provide an X-ray projection and exposure method high in the transfer accuracy and production efficiency of a pattern and enabling the realization of the long service life of a mask. CONSTITUTION:After diffracting emitted light from an X-ray source by a diffraction grating, only the exposure X-rays of desired wavelength are selectively taken out by a slit, and a mask is irradiated using these X-rays. A synchrotron light source 1 or a laser plasma light source, for instance, is used as the light source. As to the diffraction grating 3, it is desirable that the blaze wavelength is equal to the center wavelength of the exposure X-rays. It is also desirable that the half-width of a filter characteristic obtained by the combination of the diffraction grating 3 and slit 4 is set in a range of one time to twice the half-width of the reflectance wavelength characteristic of the mask 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路等の製
造工程に適用して好適なリソグラフィ技術に係り、特に
X線を用いる投影露光方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithographic technique suitable for application to a manufacturing process of semiconductor integrated circuits and the like, and more particularly to a projection exposure method and apparatus using X-rays.

【0002】[0002]

【従来の技術】半導体集積回路のリソグラフィ技術の主
流である縮小投影露光方法は、マスクに描かれたパター
ンを結像光学系によって被露光基板上のレジストに転写
するものである。投影露光の解像度D及び焦点深度DO
Fは、結像光学系の開口数をNA、露光波長をλとする
と、次式で与えられる。
2. Description of the Related Art A reduction projection exposure method, which is the mainstream of lithography technology for semiconductor integrated circuits, transfers a pattern drawn on a mask onto a resist on a substrate to be exposed by an imaging optical system. Projection exposure resolution D and depth of focus DO
F is given by the following equation, where NA is the numerical aperture of the imaging optical system and λ is the exposure wavelength.

【0003】[0003]

【数1】 D=k1λ/NA …(1)## EQU1 ## D = k 1 λ / NA (1)

【0004】[0004]

【数2】 DOF=k2λ/NA2 …(2) 式(1)及び式(2)において、k1 及びk2 は、マスクを
照明する光線の特性やレジストの種類または処理条件で
定まる定数である。例えば、k1 及びk2 がいずれも
0.5の場合、発光波長248nmの弗化クリプトンレ
−ザと開口数0.5の投影レンズを用いると、解像度は
0.25μm、焦点深度は0.5μmとなり、256メ
ガビットDRAMへ適用が可能である。
DOF = k 2 λ / NA 2 (2) In equations (1) and (2), k 1 and k 2 are determined by the characteristics of the light illuminating the mask, the type of resist, or the processing conditions. It is a constant. For example, when both k 1 and k 2 are 0.5, a resolution of 0.25 μm and a depth of focus of 0.1 are obtained by using a krypton fluoride laser having an emission wavelength of 248 nm and a projection lens having a numerical aperture of 0.5. It becomes 5 μm and can be applied to a 256-megabit DRAM.

【0005】半導体集積回路を高密度化するためには、
更に高い解像度が必要となり、例えば、4ギガビットD
RAMでは、0.1μm程度の解像度を必要とする。式
(1)から分かるように、解像度は、開口数を大きくする
か、又は、短波長化することにより向上する。しかし、
開口数をあまり大きくすると、式(2)に従って焦点深度
が低下するため、開口数を大きくすることには自ずから
限界がある。一方、露光波長をおよそ3nm〜20nm
まで短くすると、小さい開口数の結像光学系により、焦
点深度1μmを確保しながら、0.1μm以下の解像度
を達成することができる。なお、波長が3nm〜20n
mの光線は、X線のほか、極紫外線を含むが、本明細書
では纏めて「X線」と呼ぶこととする。
In order to increase the density of semiconductor integrated circuits,
Higher resolution is required, for example 4 Gigabit D
A RAM requires a resolution of about 0.1 μm. formula
As can be seen from (1), the resolution is improved by increasing the numerical aperture or shortening the wavelength. But,
If the numerical aperture is made too large, the depth of focus will decrease according to equation (2), so there is naturally a limit to increasing the numerical aperture. On the other hand, the exposure wavelength is about 3 nm to 20 nm
If it is shortened to, it is possible to achieve a resolution of 0.1 μm or less while securing a depth of focus of 1 μm by an imaging optical system having a small numerical aperture. The wavelength is 3 nm to 20n.
The rays of m include extreme ultraviolet rays in addition to X-rays, but in the present specification, they will be collectively referred to as “X-rays”.

【0006】X線領域では、物質の屈折率が1に極めて
近いため、結像光学系にレンズを使用することが実際上
困難であり、反射鏡を使用する必要がある。近年、屈折
率の異なる2種類の薄膜を交互に多数積層した多層膜反
射鏡が開発され、X線領域でも高い反射率が得られるよ
うになった結果、多層膜反射鏡で構成した結像光学系を
用いてX線投影露光を行なう試みが活発に行われてい
る。
In the X-ray region, since the refractive index of the substance is extremely close to 1, it is practically difficult to use a lens in the imaging optical system, and it is necessary to use a reflecting mirror. In recent years, a multilayer-film reflective mirror has been developed in which a large number of two types of thin films having different refractive indexes are alternately laminated. As a result, a high reflectance can be obtained even in the X-ray region. Attempts have been actively made to perform X-ray projection exposure using a system.

【0007】従来のX線投影露光方法の一例を図7に示
す〔放射光学会誌第5巻133頁〜142頁(1992
年)参照〕。シンクロトロン光源71の放射光線72
は、薄膜フィルタ73により、所望波長の露光用X線が
選択されてマスク74を照明する。マスク74は、非反
射性の基板上に反射性の材料をもってパターンを形成し
たものを使用する。マスク74で反射したX線は、結像
光学系を構成する反射鏡75,76で反射した後、被露
光基板77に結像する。マスク74及び反射鏡75,7
6の反射面は、高反射率を得るため、例えばモリブデン
及びシリコンからなる多層膜(以下「Mo/Si多層
膜」という)をもって構成する。
An example of a conventional X-ray projection exposure method is shown in FIG. 7 [Radiation Optics, Vol. 5, pp. 133-142 (1992).
Year)]). Radiant ray 72 of synchrotron light source 71
The X-ray for exposure having a desired wavelength is selected by the thin film filter 73 to illuminate the mask 74. As the mask 74, a mask having a pattern formed of a reflective material on a non-reflective substrate is used. The X-rays reflected by the mask 74 are reflected by the reflecting mirrors 75 and 76 forming the imaging optical system, and then are imaged on the substrate 77 to be exposed. Mask 74 and reflecting mirrors 75, 7
In order to obtain a high reflectance, the reflecting surface 6 is composed of a multilayer film made of molybdenum and silicon (hereinafter referred to as “Mo / Si multilayer film”).

【0008】露光用X線の波長は、例えば13nmであ
るが、シンクロトロン光源71の放射光は、X線領域か
ら可視領域にわたる連続スペクトル光である。そのた
め、露光に不要な波長成分を、薄膜フィルタ73を用い
て除去する。使用する薄膜フィルタは、厚さが例えば
0.5μmの炭素膜からなるものが一般的であり、その
特性の一例を図8に示す。薄膜フィルタの透過率は、波
長が13nmの場合、10%程度であり、露光用X線の
強度損失が著しい。このため、従来のX線露光方法は、
露光に長時間を必要とし、生産能率が低いという問題が
あった。また、図8から分かるように、薄膜フィルタ
は、露光波長(13nm)を含む短い波長(約17nm
以下)の光線を透過する性質がある。このため、露光に
必要としない光線がマスクに吸収されて全て熱に変わる
結果、被露光基板に転写したパターンの精度がマスクの
熱歪によって劣化したり、マスク自体が熱損傷を受けて
寿命が低下するという問題があった。ベリリウムやアル
ミニウム等を用いて薄膜フィルタを構成した場合でも、
これらの問題を解決することができなかった。
The wavelength of the X-ray for exposure is, for example, 13 nm, but the emitted light of the synchrotron light source 71 is a continuous spectrum light from the X-ray region to the visible region. Therefore, the wavelength component unnecessary for exposure is removed using the thin film filter 73. The thin film filter used is generally made of a carbon film having a thickness of, for example, 0.5 μm, and one example of its characteristics is shown in FIG. The transmittance of the thin film filter is about 10% when the wavelength is 13 nm, and the intensity loss of the exposure X-ray is remarkable. Therefore, the conventional X-ray exposure method is
There is a problem that the exposure requires a long time and the production efficiency is low. Further, as can be seen from FIG. 8, the thin film filter has a short wavelength (about 17 nm) including the exposure wavelength (13 nm).
(Below) has the property of transmitting light rays. As a result, the light rays not required for exposure are absorbed by the mask and all are converted to heat. As a result, the accuracy of the pattern transferred to the substrate to be exposed deteriorates due to the thermal distortion of the mask, or the mask itself is damaged by heat and its life is extended. There was a problem of lowering. Even when a thin-film filter is constructed using beryllium or aluminum,
We were unable to solve these problems.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、従来
技術の前記問題点を解決し、転写精度及び生産能率が高
く、かつ、マスクの長寿命化を実現することができる新
規なX線投影露光方法及び装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, to achieve high transfer accuracy and high production efficiency, and to realize a long mask life. It is to provide a projection exposure method and apparatus.

【0010】[0010]

【課題を解決するための手段】本発明の前記課題は、X
線光源からの放射光線を回折格子によって回折させた
後、スリットによって所望波長の露光用X線のみを選択
的に取り出し、当該X線を用いてマスクに照明すること
によって効果的に解決することが可能である。このよう
な手段を採用すれば、光源に含まれる不要な波長の光線
をほぼ完全に除去すると同時に、露光用X線の損失を従
来よりも著しく低減することができるからである。
The above-mentioned problems of the present invention are as follows.
An effective solution can be achieved by diffracting a radiation beam from a linear light source by a diffraction grating, selectively extracting only an exposure X-ray having a desired wavelength by a slit, and illuminating a mask with the X-ray. It is possible. By adopting such a means, it is possible to almost completely eliminate the rays of unnecessary wavelength contained in the light source, and at the same time, it is possible to significantly reduce the loss of the exposure X-rays as compared with the conventional case.

【0011】[0011]

【作用】光源からの放射光線は、回折格子により、その
波長に応じて異なる方向に回折される。従って、所望波
長の露光用X線が回折される方向にスリットを設けてお
くことにより、露光用X線はスリットを通過するが、当
該X線とは波長が異なる不要な光線は全てスリットで阻
止される。また、回折格子の回折効率(入射光線と回折
光線の強度比)は、薄膜フィルタの透過率よりも大きく
することができるため、露光用X線の強度損失を大幅に
低減することができる。なお、露光用X線の光源は、例
えばシンクロトロン光源又はレーザプラズマ光源を用い
ることが望ましい。これらの光源の発光波長は、X線領
域から可視光線領域までの広範囲にわたるが、高出力の
露光用X線を容易に得ることができるからである。
The radiation emitted from the light source is diffracted by the diffraction grating in different directions depending on its wavelength. Therefore, by providing a slit in the direction in which the exposure X-ray of the desired wavelength is diffracted, the exposure X-ray passes through the slit, but all unnecessary light rays having a different wavelength from the X-ray are blocked by the slit. To be done. Further, since the diffraction efficiency of the diffraction grating (the intensity ratio between the incident light beam and the diffracted light beam) can be made larger than the transmittance of the thin film filter, the intensity loss of the exposure X-ray can be greatly reduced. It is desirable to use, for example, a synchrotron light source or a laser plasma light source as the exposure X-ray light source. This is because the emission wavelengths of these light sources cover a wide range from the X-ray region to the visible light region, but a high-output X-ray for exposure can be easily obtained.

【0012】回折格子は、反射型回折格子及び透過型回
折格子を適宜選択して使用することができる。鋸歯状格
子溝を有する反射型回折格子を用いる場合は、その構造
によって定まるブレーズ波長を露光用X線の中心波長と
等しくすることが望ましく、そのようにすれば、回折格
子の回折効率を高めることができる。また、回折格子及
びスリットの組み合わせによって得られるフィルタ特性
の半値幅は、マスクの反射率波長特性の半値幅の等倍乃
至2倍の範囲に設定することが望ましく、そのようにす
れば、所望波長の露光用X線を効率良く取り出すことが
できる。
As the diffraction grating, a reflection type diffraction grating and a transmission type diffraction grating can be appropriately selected and used. When using a reflection type diffraction grating having a saw-toothed grating groove, it is desirable to make the blaze wavelength determined by the structure equal to the central wavelength of the exposure X-rays, which increases the diffraction efficiency of the diffraction grating. You can Further, it is desirable that the full width at half maximum of the filter characteristic obtained by the combination of the diffraction grating and the slit is set to the range of 1 to 2 times the full width at half maximum of the reflectance wavelength characteristic of the mask. X-rays for exposure can be efficiently extracted.

【0013】[0013]

【実施例】以下、本発明に係るX線投影露光方法及び装
置を図面に示した幾つかの実施例を参照して更に詳細に
説明する。なお、図1〜図6における同一の記号は、同
一物又は類似物を表示するものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The X-ray projection exposure method and apparatus according to the present invention will be described below in more detail with reference to some embodiments shown in the drawings. The same symbols in FIGS. 1 to 6 indicate the same or similar items.

【0014】〈実施例1〉図1において、1は、所望波
長の露光用X線を含む光線を放射するシンクロトロン光
源、3は、光源1からの放射光線を回折するために使用
する平面反射型回折格子、4は、回折光線の中から所望
波長の露光用X線のみを選択的に取り出すためのスリッ
ト、5は、表面に所定のパターンを描いたマスク、6,
7は、結像光学系を構成する反射鏡、8は被露光基板を
示す。
<Embodiment 1> In FIG. 1, reference numeral 1 is a synchrotron light source for emitting a light beam including an X-ray for exposure having a desired wavelength, and 3 is a plane reflection used for diffracting a light beam emitted from the light source 1. The type diffraction grating, 4 is a slit for selectively extracting only X-rays for exposure having a desired wavelength from diffracted light rays, 5 is a mask having a predetermined pattern drawn on its surface, 6,
Reference numeral 7 denotes a reflecting mirror which constitutes an image forming optical system, and 8 denotes a substrate to be exposed.

【0015】光源1から放射された光線2は、回折格子
3により、その波長に応じて異なる方向に回折される。
シンクロトロン光源の発光点の大きさは0.1mm程度
であり、点光源とみなすことができる。回折格子3は、
平面状の基板に不等間隔で多数の格子溝を形成したもの
であり、所望波長の露光用X線は、スリット4に収束
し、同スリットを通過してマスク5を照明する。一方、
露光用X線と異なる波長の不所望の光線は、スリット4
で阻止される。マスク5は、非反射性の基板上に反射性
材料をもって所定のパターンを描いたものである。マス
ク5で反射されたX線は、結像光学系を構成する反射鏡
6,7で反射されて被露光基板8に結像する。結像光学
系の開口数は0.08であり、被露光基板8上に0.1
μmの解像度でパターンを転写することができた。
The light beam 2 emitted from the light source 1 is diffracted by the diffraction grating 3 in different directions depending on its wavelength.
The size of the light emitting point of the synchrotron light source is about 0.1 mm and can be regarded as a point light source. The diffraction grating 3 is
A large number of grating grooves are formed on a flat substrate at unequal intervals, and an X-ray for exposure having a desired wavelength converges on a slit 4 and passes through the slit to illuminate a mask 5. on the other hand,
Undesired light rays having a wavelength different from that of the exposure X-rays are reflected by the slit 4
Is blocked by. The mask 5 is formed by drawing a predetermined pattern with a reflective material on a non-reflective substrate. The X-rays reflected by the mask 5 are reflected by the reflecting mirrors 6 and 7 which form the imaging optical system and form an image on the substrate 8 to be exposed. The numerical aperture of the imaging optical system is 0.08, and the numerical aperture on the substrate 8 to be exposed is 0.18.
The pattern could be transferred with a resolution of μm.

【0016】マスク5及び反射鏡6,7の反射面は、高
い反射率を得るため、Mo/Si多層膜をもって形成し
た。同膜の周期長は6.7nm、層対数は40であり、
その反射率は、図2に示す通りである。反射率波長特性
の中心波長は13nm、半値幅は0.4nmとすること
ができた。
The mask 5 and the reflecting surfaces of the reflecting mirrors 6 and 7 are formed of Mo / Si multilayer films in order to obtain high reflectance. The period length of the film is 6.7 nm and the number of layer pairs is 40.
The reflectance is as shown in FIG. The center wavelength of the reflectance wavelength characteristic could be 13 nm, and the half width could be 0.4 nm.

【0017】不等間隔の鋸歯状格子溝を有する平面回折
格子についての一般的説明は、例えば特開平3−710
24号公報に記載されているが、その要点は、次の通り
である(図3参照)。いま、溝間隔がdである一つの格
子溝を原点、aを定数とし、当該格子溝と直角方向の位
置wにおける他の任意の格子溝の番号をnとすると、格
子溝配列は、式(3)により定義することができる。ま
た、原点とした上記格子溝の位置から、物点(シンクロ
トロン光源1の発光点)と像点(スリット4の位置)ま
での距離をr1 及びr2 とすると、回折光線がスリット
4に収束する条件は、式(4)で表わすことができる(図
1参照)。
A general description of a plane diffraction grating having sawtooth-shaped grating grooves of unequal intervals is given in, for example, Japanese Patent Laid-Open No. 3-710.
This is described in Japanese Patent No. 24, but the main points are as follows (see FIG. 3). Now, assuming that one lattice groove whose groove interval is d is the origin, a is a constant, and the number of any other lattice groove at the position w in the direction perpendicular to the lattice groove is n, the lattice groove array is expressed by the formula ( It can be defined by 3). Further, if the distances from the position of the above-mentioned lattice groove which is the origin to the object point (light emitting point of the synchrotron light source 1) and the image point (position of the slit 4) are r 1 and r 2 , the diffracted light beam is transmitted to the slit 4. The condition for convergence can be expressed by equation (4) (see FIG. 1).

【0018】[0018]

【数3】 n=(w+aw2)/d …(3)N = (w + aw 2 ) / d (3)

【0019】[0019]

【数4】 cos2α/r1+cos2β/r2=−2mλa/d …(4) 式(4)において、α及びβは入射光線32及び回折光線
33のそれぞれの中心をなす光線(主光線)が回折格子
4の法線となす角、λは波長、mは回折次数であり、こ
れらの間には、次式の関係が成立する。
## EQU4 ## cos 2 α / r 1 + cos 2 β / r 2 = −2 mλa / d (4) In the equation (4), α and β are rays that form the centers of the incident ray 32 and the diffracted ray 33 ( The angle formed by the principal ray) with the normal line of the diffraction grating 4, λ is the wavelength, and m is the diffraction order, and the relationship of the following equation is established between them.

【0020】[0020]

【数5】 sinα+sinβ=mλ/d …(5) 本実施例では、シンクロトロン光源1の発光点を物点、
スリット4の位置を像点とし、m=1、λ=13nm、
d=1/300mm、α=87度、β=−84.115
度、a=−0.002871/mm、r1 =2,000
mm、r2 =500mmと定めた。
## EQU5 ## sinα + sinβ = mλ / d (5) In this embodiment, the light emitting point of the synchrotron light source 1 is the object point,
With the position of the slit 4 as the image point, m = 1, λ = 13 nm,
d = 1/300 mm, α = 87 degrees, β = −84.115
Every time, a = -0.002871 / mm, r 1 = 2,000
mm, r 2 = 500 mm.

【0021】回折格子3とスリット4との組み合わせに
よって得られるフィルタ特性の半値幅Δλは、回折格子
の逆線分散K(単位スリット幅当たりの波長差)とスリ
ット幅Δsとの関数であり、式(6)及び(7)で与えるこ
とができる。
The full width at half maximum Δλ of the filter characteristic obtained by the combination of the diffraction grating 3 and the slit 4 is a function of the inverse linear dispersion K (wavelength difference per unit slit width) of the diffraction grating and the slit width Δs. It can be given in (6) and (7).

【0022】[0022]

【数6】 Δλ=K×Δs …(6)(6) Δλ = K × Δs (6)

【0023】[0023]

【数7】 K=dcosβ/mr2 …(7) 本実施例の場合、式(6)における定数Kの値は、式(7)
により0.684nm/mmとなる。そこで、スリット
幅Δsの値を0.58mmに設定することにより、半値
幅Δλの値を0.4nmとした。このように設定したの
は、フィルタ特性をマスク5の反射率波長特性と一致さ
せることにより、露光用X線を効率良く取り出すためで
ある。なお、フィルタ特性の半値幅Δλは、マスク5の
反射率波長特性の半値幅の2倍まで広げることが可能で
あり、この程度であれば、マスク5に格別の熱負荷の問
題を発生させないで、その反射率の全域を有効に利用す
ることができる。
Equation 7] K = dcosβ / mr 2 ... ( 7) In this embodiment, the value of the constant K in equation (6), (7)
Is 0.684 nm / mm. Therefore, the value of the half width Δλ was set to 0.4 nm by setting the value of the slit width Δs to 0.58 mm. The reason for setting in this way is that the X-ray for exposure is efficiently extracted by matching the filter characteristic with the reflectance wavelength characteristic of the mask 5. The full width at half maximum Δλ of the filter characteristic can be widened to twice the full width at half maximum of the reflectance wavelength characteristic of the mask 5, and at this level, the mask 5 does not cause a particular heat load problem. , The entire range of the reflectance can be effectively used.

【0024】回折格子の回折効率を最大限に高めるため
には、ブレーズ波長を露光用X線の中心波長に一致させ
ることが望ましい。ブレーズ波長とは、入射光線32及
び回折光線33のそれぞれが反射面31となす角が等し
くなるような波長である。格子溝の反射面31は、格子
の周期方向に対して角θ(ブレーズ角)をなしているの
で、ブレーズ角θとα及びβに間には、次式の関係が成
立する。
In order to maximize the diffraction efficiency of the diffraction grating, it is desirable to match the blaze wavelength with the center wavelength of the X-ray for exposure. The blaze wavelength is a wavelength at which the incident light beam 32 and the diffracted light beam 33 form the same angle with the reflecting surface 31. Since the reflecting surface 31 of the grating groove forms an angle θ (blaze angle) with respect to the periodic direction of the grating, the following equation is established between the blaze angle θ and α and β.

【0025】[0025]

【数8】 θ=(α+β)/2 …(8) 本実施例の場合、αが+87度であり、βが−84.1
15度であるから、ブレーズ角θは1.44度に設定し
た。この結果、ブレーズ波長が露光用X線の中心波長λ
と等しい13nmとなり、反射面31の材料に金を用い
た回折格子により、45%の回折効率を実現することが
できた。
## EQU00008 ## .theta. = (. Alpha. +. Beta.) / 2 (8) In this example, .alpha. Is +87 degrees and .beta. Is -84.1.
Since it is 15 degrees, the blaze angle θ is set to 1.44 degrees. As a result, the blaze wavelength is the central wavelength λ of the exposure X-ray.
Which is equal to 13 nm, and the diffraction grating using gold as the material of the reflecting surface 31 made it possible to realize a diffraction efficiency of 45%.

【0026】本実施例による回折格子のフィルタ特性
は、図4に示す通りであり、マスクの反射率波長特性と
同一の中心波長13nmで半値幅0.4nmの特性を得
た。この結果、所望波長の露光用X線のみを選択的に取
り出すことが可能となり、不所望な波長の光線によるマ
スクの熱負荷を回避することができた。また、露光用X
線の中心波長13nmにおける回折効率は45%であ
り、マスクを照明する露光用X線の強度を著しく高める
ことができた。
The filter characteristic of the diffraction grating according to the present embodiment is as shown in FIG. 4, and a characteristic having a half-value width of 0.4 nm at a center wavelength of 13 nm, which is the same as the reflectance wavelength characteristic of the mask, was obtained. As a result, only the X-rays for exposure having the desired wavelength can be selectively extracted, and the thermal load on the mask due to the light having the undesired wavelength can be avoided. Also, for exposure X
The diffraction efficiency at the center wavelength of the line of 13 nm was 45%, and the intensity of the exposure X-ray illuminating the mask could be significantly increased.

【0027】以上、本実施例では、露光用X線の波長を
13nmとした場合について説明したが、露光用X線の
波長は、およそ3nm〜20nmの範囲内で必要な解像
度に応じて任意に選択することが可能である。本発明者
等は、本実施例の変形例として、波長7nmの露光用X
線により、開口数0.08の結像光学系を用いて解像度
0.05μmを得るための試作実験を行なった。マスク
及び反射鏡(結像光学系)の反射面には、ルテニュウム
と窒化硼素からなるRu/BN多層膜を形成した。多層
膜の周期長は3.6nm、層対数は200であり、反射
率波長特性の中心波長は7nm、半値幅は0.1nmと
なった。但し、m=1、d=1/600mm、α=87
度、β=−83.950度、a=0.002808/m
m、r1=2,000mm、r2 =500mmとした。
逆線分散は0.351nm/mmであるので、スリット
幅を0.29mmに設定することにより、シンクロトロ
ン光源から中心波長7nm、半値幅0.1nmのX線の
みを選択的に取り出してマスク5を照明した。また、回
折格子のブレーズ角を1.53度と定めることにより、
ブレーズ波長を7nmとし、反射面の材料に金を用いた
回折格子を用いて回折効率40%を得ることができた。
この結果、本変形例の場合も、充分に高い強度の露光用
X線を使用して線幅0.05μmの微細パターンを被露
光基板上に転写することができた。
Although the present embodiment has been described with respect to the case where the wavelength of the exposing X-ray is 13 nm, the wavelength of the exposing X-ray is within the range of about 3 nm to 20 nm, and is arbitrarily set according to the required resolution. It is possible to select. As a modified example of the present embodiment, the inventors of the present invention have used an exposure X-ray having a wavelength of 7 nm.
A line was used to perform a trial experiment for obtaining a resolution of 0.05 μm using an imaging optical system having a numerical aperture of 0.08. A Ru / BN multilayer film made of ruthenium and boron nitride was formed on the mask and the reflecting surface of the reflecting mirror (imaging optical system). The cycle length of the multilayer film was 3.6 nm, the number of layer pairs was 200, the center wavelength of the reflectance wavelength characteristics was 7 nm, and the half width was 0.1 nm. However, m = 1, d = 1/600 mm, α = 87
Degree, β = −83.950 degree, a = 0.002808 / m
m, r 1 = 2,000 mm and r 2 = 500 mm.
Since the inverse linear dispersion is 0.351 nm / mm, by setting the slit width to 0.29 mm, only the X-ray having the central wavelength of 7 nm and the half-value width of 0.1 nm is selectively taken out from the synchrotron light source and the mask 5 Illuminated. Also, by setting the blaze angle of the diffraction grating to 1.53 degrees,
It was possible to obtain a diffraction efficiency of 40% by setting the blaze wavelength to 7 nm and using a diffraction grating using gold as the material of the reflecting surface.
As a result, also in the case of this modification, it was possible to transfer a fine pattern having a line width of 0.05 μm onto the substrate to be exposed by using an X-ray for exposure having a sufficiently high intensity.

【0028】〈実施例2〉実施例1における平面反射型
回折格子を透過型平面回折格子に変更した実施例を図5
に示す。本実施例では、実施例1の場合と同様、中心波
長13nm、半値幅0.4nmの露光用X線のみを選択
的に取り出してマスク5を照明した。透過型回折格子
は、格子溝の断面形状が矩形状であるため、鋸歯状格子
溝を有する反射型回折格子に比較して容易に製作するこ
とができた。
Example 2 An example in which the plane reflection type diffraction grating in Example 1 is changed to a transmission type plane diffraction grating is shown in FIG.
Shown in. In this embodiment, as in the case of the first embodiment, the mask 5 is illuminated by selectively extracting only the exposure X-ray having the center wavelength of 13 nm and the half width of 0.4 nm. Since the transmissive diffraction grating has a rectangular groove cross-section, it can be manufactured more easily than a reflective diffraction grating having a sawtooth grating groove.

【0029】〈実施例3〉凹面反射型回折格子を使用し
た本発明の別の実施例を図6に示す。多数の格子溝が等
間隔に配列した凹面反射型回折格子では、いわゆるロー
ランド円配置を採用するのが普通である。いま、凹面の
曲率半径をRとすると、回折光線が収束するための条件
は、式(9)及び式(10)で表わすことができ、かつ、入射
光線及び回折光線の中心をなす光線(主光線)が凹面回
折格子の法線となす角α,βと波長λ及び回折次数mと
の間には、式(11)に示す関係が成立する。
<Embodiment 3> FIG. 6 shows another embodiment of the present invention using a concave reflection type diffraction grating. In a concave reflection type diffraction grating in which a large number of grating grooves are arranged at equal intervals, it is usual to adopt a so-called Rowland circle arrangement. Now, assuming that the radius of curvature of the concave surface is R, the conditions for converging the diffracted light rays can be expressed by the equations (9) and (10), and the rays forming the center of the incident light ray and the diffracted light ray (main The relationship shown in Expression (11) is established between the angles α and β formed by the light beam) with the normal line of the concave diffraction grating, the wavelength λ, and the diffraction order m.

【0030】[0030]

【数9】 r1=Rcosα …(9)## EQU00009 ## r 1 = Rcos α (9)

【0031】[0031]

【数10】 r2=Rcosβ …(10)[Equation 10] r 2 = Rcos β (10)

【0032】[0032]

【数11】 sinα+sinβ=mλ/d …(11) 本実施例では、m=1、λ=13nm、d=1/300
mm、α=87度、β=−84.115度、R=10,
000mm、r1 =523.360mm、r2=1,0
25.336mmとした。逆線分散は、dcosβ/mr2
= 0.333nm/mmとなる。このため、スリット
4の幅を1.2mmに設定することにより、マスク5の
反射率波長特性と同一の中心波長13nmで半値幅0.
4nmのフィルタ特性を得ることが可能となり、所望波
長の露光用X線のみを選択的に取り出してマスク5を照
明することができた。凹面回折格子は、格子溝が等間隔
であるため、不等間隔格子溝の平面回折格子に比較して
容易に製作することができた。なお、本実施例では、ス
リット4とマスク5との間に凹面反射鏡9を配設するこ
とにより、スリット4から発散する露光用X線を集光し
てマスク5を照明した。この結果、露光用X線を集光し
ない場合に比較して、その強度を高めることができた。
(11) sinα + sinβ = mλ / d (11) In the present embodiment, m = 1, λ = 13 nm, d = 1/300
mm, α = 87 degrees, β = −84.115 degrees, R = 10,
000 mm, r 1 = 523.360 mm, r 2 = 1,0
It was set to 25.336 mm. The inverse linear dispersion is dcos β / mr 2
= 0.333 nm / mm. Therefore, by setting the width of the slit 4 to 1.2 mm, the half-value width of 0.
It was possible to obtain a filter characteristic of 4 nm, and it was possible to selectively extract only the X-rays for exposure having a desired wavelength and illuminate the mask 5. The concave diffraction grating can be easily manufactured as compared with the plane diffraction grating having the non-equidistant grating grooves because the grating grooves are at regular intervals. In the present embodiment, the concave reflecting mirror 9 is provided between the slit 4 and the mask 5 to collect the exposure X-rays diverging from the slit 4 and illuminate the mask 5. As a result, the intensity of the exposure X-rays could be increased as compared with the case where the exposure X-rays were not focused.

【0033】なお、凹面反射鏡9は実施例1、2にも同
様に使用でき、同じ効果が得られることは云うまでもな
い。
Needless to say, the concave reflecting mirror 9 can be used in the same manner as in the first and second embodiments, and the same effect can be obtained.

【0034】[0034]

【発明の効果】本発明によれば、光源に含まれる不所望
な波長の光線を除去すると同時に、露光用X線の強度損
失を大幅に低減することができるため、生産能率を向上
させることができるとともに、パターンの転写精度を高
めることが可能となるほか、マスクの寿命を延ばすこと
ができる。なお、前記実施例では、光源にシンクロトロ
ン光源を用いた場合について説明したが、本発明は、レ
ーザプラズマ光源を用いた場合にも、その適用が当然可
能である。レーザプラズマ光源は、シンクロトロン光源
と同様に連続スペクトル光源であり、露光に不要な波長
の光線を除去するために本発明を適用することができ
る。しかも、レーザプラズマ光源は、シンクロトロン光
源に比べて小型かつ安価であり、リソグラフィ工程のコ
スト低減の効果がある。
As described above, according to the present invention, it is possible to remove a light beam having an undesired wavelength contained in a light source, and at the same time, to significantly reduce the intensity loss of exposure X-rays, thereby improving the production efficiency. In addition to being able to improve the transfer accuracy of the pattern, the life of the mask can be extended. It should be noted that in the above-described embodiment, the case where the synchrotron light source is used as the light source has been described, but the present invention can be naturally applied to the case where the laser plasma light source is used. The laser plasma light source is a continuous spectrum light source similarly to the synchrotron light source, and the present invention can be applied to remove light rays having a wavelength unnecessary for exposure. Moreover, the laser plasma light source is smaller and cheaper than the synchrotron light source, and has the effect of reducing the cost of the lithography process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るX線投影露光方法及び装置の第1
の実施例を説明するための配置構成図。
FIG. 1 is a first X-ray projection exposure method and apparatus according to the present invention.
FIG. 6 is a layout configuration diagram for explaining the embodiment of FIG.

【図2】マスクの反射率波長特性を説明するための曲線
図。
FIG. 2 is a curve diagram for explaining reflectance wavelength characteristics of a mask.

【図3】回折格子のブレーズ条件を説明するための断面
図。
FIG. 3 is a sectional view for explaining a blaze condition of a diffraction grating.

【図4】回折格子のフィルタ特性を説明するための曲線
図。
FIG. 4 is a curve diagram for explaining filter characteristics of a diffraction grating.

【図5】本発明の第2の実施例を説明するための配置構
成図。
FIG. 5 is an arrangement configuration diagram for explaining a second embodiment of the present invention.

【図6】本発明の第3の実施例を説明するための配置構
成図。
FIG. 6 is an arrangement configuration diagram for explaining a third embodiment of the present invention.

【図7】従来のX線投影露光方法を説明するための配置
構成図。
FIG. 7 is an arrangement configuration diagram for explaining a conventional X-ray projection exposure method.

【図8】図7に示した従来における薄膜フィルタ特性を
説明するための曲線図。
FIG. 8 is a curve diagram for explaining the conventional thin film filter characteristics shown in FIG. 7.

【符号の説明】[Explanation of symbols]

1…シンクロトロン光源 3…回折格子 4…スリット 5…マスク 6,7…反射鏡(結像光学系) 8…被露光基板 9…凹面反射鏡 31…反射面 32…入射光線 33…回折光線 1 ... Synchrotron light source 3 ... Diffraction grating 4 ... Slit 5 ... Mask 6 ...

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】転写すべきパターンを描いたマスクをX線
で照明し、その反射光線を被露光基板に結像させること
により、マスク上のパターンを被露光基板に転写するX
線投影露光方法において、光源からの放射光線を回折格
子によって回折させた後、所望波長の露光用X線のみを
スリットを用いて選択的に取り出し、当該X線によって
マスクを照明することを特徴とするX線投影露光方法。
1. A method for transferring a pattern on a mask to an exposure substrate by illuminating a mask on which a pattern to be transferred is drawn with X-rays and forming an image of the reflected light beam on the exposure substrate.
In the line projection exposure method, after diffracting a radiation beam from a light source by a diffraction grating, only X-rays for exposure having a desired wavelength are selectively taken out using a slit, and the mask is illuminated by the X-rays. X-ray projection exposure method.
【請求項2】前記回折格子として平面反射型回折格子を
用いることを特徴とする請求項1に記載のX線投影露光
方法。
2. The X-ray projection exposure method according to claim 1, wherein a plane reflection type diffraction grating is used as the diffraction grating.
【請求項3】前記回折格子として凹面反射型回折格子を
用いることを特徴とする請求項1に記載のX線投影露光
方法。
3. The X-ray projection exposure method according to claim 1, wherein a concave reflection type diffraction grating is used as the diffraction grating.
【請求項4】前記回折格子として透過型回折格子を用い
ることを特徴とする請求項1に記載のX線投影露光方
法。
4. The X-ray projection exposure method according to claim 1, wherein a transmission diffraction grating is used as the diffraction grating.
【請求項5】前記回折格子として、ブレ−ズ波長が露光
用X線の中心波長と等しい回折格子を用いることを特徴
とする請求項1〜請求項3のいずれか一に記載のX線投
影露光方法。
5. The X-ray projection according to claim 1, wherein the diffraction grating is a diffraction grating having a blaze wavelength equal to the central wavelength of the X-ray for exposure. Exposure method.
【請求項6】前記回折格子と前記スリットの組み合わせ
によって得られるフィルタ特性の半値幅が前記マスクの
反射率波長特性の半値幅の等倍乃至2倍の範囲となるよ
うに設定することを特徴とする請求項1〜請求項5のい
ずれか一に記載のX線投影露光方法。
6. The full width at half maximum of the filter characteristic obtained by the combination of the diffraction grating and the slit is set so as to be in the range of 1 to 2 times the full width at half maximum of the reflectance wavelength characteristic of the mask. The X-ray projection exposure method according to any one of claims 1 to 5.
【請求項7】露光用X線の光源としてシンクロトロン光
源を用いることを特徴とする請求項1〜請求項6のいず
れか一に記載のX線投影露光方法。
7. The X-ray projection exposure method according to claim 1, wherein a synchrotron light source is used as a light source of X-rays for exposure.
【請求項8】露光用X線の光源としてレ−ザプラズマ光
源を用いることを特徴とする請求項1〜請求項6のいず
れか一に記載のX線投影露光方法。
8. The X-ray projection exposure method according to claim 1, wherein a laser plasma light source is used as a light source of X-rays for exposure.
【請求項9】所望波長の露光用X線を含む光線を放射す
るための光源と、当該光源からの放射光線を回折させる
ための回折格子と、当該回折格子によって回折された光
線のうち、所望波長の露光用X線のみを選択的に取り出
すためのスリットと、当該スリットによって取り出した
露光用X線でマスクを照明し、その反射光線を結像光学
系を介して被露光基板に結像させるための手段を少なく
とも備えてなるX線投影露光装置。
9. A light source for emitting a light beam including an X-ray for exposure having a desired wavelength, a diffraction grating for diffracting a light beam emitted from the light source, and a light beam diffracted by the diffraction grating. The mask is illuminated with a slit for selectively extracting only the exposure X-rays of the wavelength and the exposure X-rays extracted by the slit, and the reflected light beam is imaged on the substrate to be exposed through the imaging optical system. An X-ray projection exposure apparatus comprising at least means for:
【請求項10】平面反射型回折格子をもって前記回折格
子を構成したことを特徴とする請求項9に記載のX線投
影露光装置。
10. The X-ray projection exposure apparatus according to claim 9, wherein the diffraction grating is composed of a plane reflection type diffraction grating.
【請求項11】凹面反射型回折格子をもって前記回折格
子を構成したことを特徴とする請求項9に記載のX線投
影露光装置。
11. The X-ray projection exposure apparatus according to claim 9, wherein the diffraction grating is composed of a concave reflection type diffraction grating.
【請求項12】透過型回折格子をもって前記回折格子を
構成したことを特徴とする請求項9に記載のX線投影露
光装置。
12. The X-ray projection exposure apparatus according to claim 9, wherein the diffraction grating is composed of a transmission type diffraction grating.
【請求項13】ブレ−ズ波長が露光用X線の中心波長と
等しい回折格子をもって前記回折格子を構成したことを
特徴とする請求項9〜請求項11のいずれか一に記載の
X線投影露光装置。
13. The X-ray projection according to claim 9, wherein the diffraction grating is constructed with a diffraction grating having a blaze wavelength equal to the center wavelength of the X-ray for exposure. Exposure equipment.
【請求項14】前記回折格子と前記スリットの組み合わ
せによって得られるフィルタ特性の半値幅が前記マスク
の反射率波長特性の半値幅の等倍乃至2倍の範囲となる
ように設定されていることを特徴とする請求項9〜請求
項13のいずれか一に記載のX線投影露光装置。
14. The full width at half maximum of the filter characteristic obtained by the combination of the diffraction grating and the slit is set to be in the range of 1 to 2 times the full width at half maximum of the reflectance wavelength characteristic of the mask. The X-ray projection exposure apparatus according to any one of claims 9 to 13, which is characterized by the above.
【請求項15】シンクロトロン光源をもって前記光源を
構成したことを特徴とする請求項9〜請求項14のいず
れか一に記載のX線投影露光装置。
15. The X-ray projection exposure apparatus according to claim 9, wherein the light source comprises a synchrotron light source.
【請求項16】レ−ザプラズマ光源をもって前記光源を
構成したことを特徴とする請求項9〜請求項14のいず
れか一に記載のX線投影露光装置。
16. The X-ray projection exposure apparatus according to claim 9, wherein the light source is constituted by a laser plasma light source.
【請求項17】前記スリットと前記マスクとの間に露光
用X線を集光するための少なくとも一つの凹面反射鏡を
配設したことを特徴とする請求項9〜請求項16のいず
れか一に記載のX線投影露光装置。
17. The at least one concave reflecting mirror for condensing X-rays for exposure is arranged between the slit and the mask, according to any one of claims 9 to 16. The X-ray projection exposure apparatus according to.
JP6094615A 1994-05-09 1994-05-09 X-ray projection and exposure method and device therefor Pending JPH07301696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6094615A JPH07301696A (en) 1994-05-09 1994-05-09 X-ray projection and exposure method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6094615A JPH07301696A (en) 1994-05-09 1994-05-09 X-ray projection and exposure method and device therefor

Publications (1)

Publication Number Publication Date
JPH07301696A true JPH07301696A (en) 1995-11-14

Family

ID=14115161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6094615A Pending JPH07301696A (en) 1994-05-09 1994-05-09 X-ray projection and exposure method and device therefor

Country Status (1)

Country Link
JP (1) JPH07301696A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1202291A2 (en) * 2000-09-29 2002-05-02 Carl Zeiss Illumination system with a grid unit
US6469827B1 (en) * 1998-08-06 2002-10-22 Euv Llc Diffraction spectral filter for use in extreme-UV lithography condenser
EP1197803A3 (en) * 2000-10-10 2004-09-29 ASML Netherlands B.V. Lithographic apparatus
JP2005302998A (en) * 2004-04-12 2005-10-27 Canon Inc Exposure device and exposure method using euv (extreme ultra violet) light
KR100589241B1 (en) * 2000-10-10 2006-06-14 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7248667B2 (en) 1999-05-04 2007-07-24 Carl Zeiss Smt Ag Illumination system with a grating element
US7319509B2 (en) 2002-08-26 2008-01-15 Carl Zeiss Smt Ag Attenuator for attenuating wavelengths unequal to a used wavelength
JP2008191547A (en) * 2007-02-07 2008-08-21 Japan Atomic Energy Agency Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope
JPWO2007105406A1 (en) * 2006-03-10 2009-07-30 株式会社ニコン Projection optical system, exposure apparatus, and semiconductor device manufacturing method
JP2010014418A (en) * 2008-07-01 2010-01-21 Japan Atomic Energy Agency Multilayer film grating spectroscope

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469827B1 (en) * 1998-08-06 2002-10-22 Euv Llc Diffraction spectral filter for use in extreme-UV lithography condenser
US7248667B2 (en) 1999-05-04 2007-07-24 Carl Zeiss Smt Ag Illumination system with a grating element
EP1307768B1 (en) * 2000-08-04 2016-03-09 EUV Limited Liability Corporation Condenser with diffractive spectral filter for euv lithography
KR100931335B1 (en) * 2000-09-29 2009-12-11 칼 짜이스 에스엠티 아게 Lighting system with grid element
EP1202291A2 (en) * 2000-09-29 2002-05-02 Carl Zeiss Illumination system with a grid unit
EP1202291A3 (en) * 2000-09-29 2006-04-19 Carl Zeiss SMT AG Illumination system with a grid unit
EP1197803A3 (en) * 2000-10-10 2004-09-29 ASML Netherlands B.V. Lithographic apparatus
KR100589241B1 (en) * 2000-10-10 2006-06-14 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7319509B2 (en) 2002-08-26 2008-01-15 Carl Zeiss Smt Ag Attenuator for attenuating wavelengths unequal to a used wavelength
JP2005302998A (en) * 2004-04-12 2005-10-27 Canon Inc Exposure device and exposure method using euv (extreme ultra violet) light
JP4508708B2 (en) * 2004-04-12 2010-07-21 キヤノン株式会社 Exposure apparatus and exposure method using EUV light
JPWO2007105406A1 (en) * 2006-03-10 2009-07-30 株式会社ニコン Projection optical system, exposure apparatus, and semiconductor device manufacturing method
JP4924604B2 (en) * 2006-03-10 2012-04-25 株式会社ニコン Projection optical system, exposure apparatus, and semiconductor device manufacturing method
JP2008191547A (en) * 2007-02-07 2008-08-21 Japan Atomic Energy Agency Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope
JP2010014418A (en) * 2008-07-01 2010-01-21 Japan Atomic Energy Agency Multilayer film grating spectroscope

Similar Documents

Publication Publication Date Title
US6930760B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US6469827B1 (en) Diffraction spectral filter for use in extreme-UV lithography condenser
US7319509B2 (en) Attenuator for attenuating wavelengths unequal to a used wavelength
US7436490B2 (en) Exposure apparatus using blaze type diffraction grating to diffract EUV light and device manufacturing method using the exposure apparatus
US5848119A (en) Illumination system and exposure apparatus having the same
US5003567A (en) Soft x-ray reduction camera for submicron lithography
US6636295B2 (en) Exposure apparatus and device manufacturing method
US6707602B2 (en) Reflective spectral filtering of high power extreme ultra-violet radiation
US7248667B2 (en) Illumination system with a grating element
US6522465B1 (en) Transmitting spectral filtering of high power extreme ultra-violet radiation
US20050057735A1 (en) Reduction Smith-Talbot interferometer prism for micropatterning
JPH07301696A (en) X-ray projection and exposure method and device therefor
TWI516873B (en) Projection objective for a microlithographic euv projection exposure apparatus
KR100931335B1 (en) Lighting system with grid element
EP1197803B1 (en) Lithographic apparatus
US5754340A (en) Projection optical system and projection exposure apparatus using the same
JPH0868897A (en) Reflection mirror and its production method
US5703374A (en) Telecentric NUV-DUV irradiator for out-of-contact exposure of large substrates
JPS6344726A (en) Illumination optical device of stepper using excimer laser
JPH07244199A (en) Projective exposure method and device
JP3521506B2 (en) Illumination device and exposure device
JPH0487318A (en) Manufacture of multilayer film
La Fontaine et al. Performance of a Two-Mirror, Four-Reflection, Ring-Field Optical System Operating at λ= 13nm
JPH06177002A (en) Projection aligner