JP2008191547A - Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope - Google Patents

Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope Download PDF

Info

Publication number
JP2008191547A
JP2008191547A JP2007027872A JP2007027872A JP2008191547A JP 2008191547 A JP2008191547 A JP 2008191547A JP 2007027872 A JP2007027872 A JP 2007027872A JP 2007027872 A JP2007027872 A JP 2007027872A JP 2008191547 A JP2008191547 A JP 2008191547A
Authority
JP
Japan
Prior art keywords
diffraction grating
multilayer
diffraction
incident
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007027872A
Other languages
Japanese (ja)
Inventor
Masahito Koike
雅人 小池
Masahiko Ishino
雅彦 石野
Takashi Imazono
孝志 今園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2007027872A priority Critical patent/JP2008191547A/en
Publication of JP2008191547A publication Critical patent/JP2008191547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polychromator which separates a plurality of light rays of desired wavelengths, included in soft X-ray which is made incident to the apparatus in the range of several keVs and focuses on a detector or a photosensitive material face. <P>SOLUTION: The difference in the directions of incident light at an incident slit, through which the soft X-ray to be measured is introduced to the polychrometor and at respective points on a diffraction grating surface, and the difference in the incident light and the vertical direction of the diffraction grating surface due to the curvature of the surface of the diffraction grating are used; the local incident angle at the respective points on the surface of the diffraction grating is varied, as far much possible, in the range in which the resolution of energy is unaffected; the position of the incident slit, the radius of curvature of the concave diffraction grating, structural materials of a multilayer film and the length of period of the film are decided so that the incident light simultaneously satisfies the formulae of the diffraction grating and extended-Bragg conditions, at any position on the diffraction grating surface in a predetermined photon energy range. Furthermore, the grooves of diffraction grating are nonuniform so that the diffracted light in meridian plane is focused substantially on a straight line. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軟X線領域で回折格子を用いて分光装置に入射する軟X線光に含まれる波長の光を空間的に分散し、検出器または感光物質面に結像させうる分光装置である多色計(ポリクロメータ)に関する。   The present invention is a spectroscopic device that spatially disperses light having a wavelength included in soft X-ray light incident on a spectroscopic device using a diffraction grating in a soft X-ray region and forms an image on a detector or a photosensitive material surface. It relates to a certain multicolor meter (polychromator).

なお、分光装置は一般に分光の機能を持った装置の総称であり、大きく分けて多色計と単色計とがある。前者は一度に多くの波長を測定又は利用できる装置で、後者は単一の波長を取り出すか又は測定できる装置である。   The spectroscopic device is a general term for devices having a spectroscopic function, and is broadly classified into a multicolor meter and a monochromator. The former is a device that can measure or use many wavelengths at once, and the latter is a device that can extract or measure a single wavelength.

何種類かの物質の薄膜を反射鏡となる基板の表面に何層か重ねて蒸着して、入射光の反射率を高めることは半世紀以上前行われている。このような光学薄膜は多層膜と呼ばれている。軟X線領域で入射光の反射率を高めるために用いられている多層膜は通常2種類の物質を交互に数十層から数百層規則的に蒸着したもので、入射光の波長、入射角、多層膜の平均屈折率(2種類の物質の屈折率のそれぞれの厚さに基づく加重平均値)、膜周期長(2種類の物質の厚さの和の値)は、結晶学でよく知られた「ブラッグ(Bragg)条件」で与えられる。軟X線多層膜を回折格子の回折効率を高めるために利用する場合、回折格子への入射光、回折格子からの回折光のそれぞれの角度方向は、回折格子の回折条件(回折格子の式)、多層膜回折格子の干渉条件(拡張Bragg条件)を同時に満たす必要があり、機械的な可動機構がない分光装置では一波長のみに対してしか、これらの条件を満足することが出来ない。従来技術においては一定の波長範囲内でこれらの条件を連続的に満たすためには補助的な光学的、機械的な機構を要し、多層膜を用いる効率上の利点を少なからず消し去ることになっていた(非特許文献1,2及び3)。   It has been performed more than half a century ago to increase the reflectance of incident light by depositing several layers of thin films of various substances on the surface of a substrate that becomes a reflecting mirror. Such an optical thin film is called a multilayer film. A multilayer film used to increase the reflectance of incident light in the soft X-ray region is usually a regular deposition of several tens to hundreds of two types of materials. Angle, average refractive index of multilayer film (weighted average value based on the thickness of each of the refractive indices of two kinds of materials), film period length (value of the sum of the thicknesses of two kinds of substances) Given the known “Bragg condition”. When a soft X-ray multilayer film is used to increase the diffraction efficiency of a diffraction grating, the angle direction of light incident on the diffraction grating and diffracted light from the diffraction grating depends on the diffraction conditions of the diffraction grating (diffraction grating equation) In addition, it is necessary to satisfy the interference conditions (extended Bragg conditions) of the multilayer diffraction grating at the same time, and a spectroscopic device without a mechanical movable mechanism can satisfy these conditions only for one wavelength. In the prior art, in order to continuously satisfy these conditions within a certain wavelength range, an auxiliary optical and mechanical mechanism is required, and the efficiency advantage of using the multilayer film is eliminated. (Non-Patent Documents 1, 2 and 3).

数keV領域の軟X線域においては従来から用いられている金、白金等の金属単層膜を表面にもつ回折格子の場合に比較して、軟X線多層膜を蒸着した回折格子の回折効率は一桁から三桁程度増大し、10%以上の回折効率を得ることはそう困難なことではなくなって来ている。また、軟X線検出器の技術的進歩の結果、多くの利用分野においては回折格子1枚からなる分光系においては数%以上の回折効率が得られれば十分実用に供することが出来る。
M. Koike, T. Namioka, E. Gullikson, Y. Haradad, S. Ishikawa, T. Imazono, S. Mrowka, N. Miyata, M. Yanagihara, J. H. Underwood, K. Sano, T. Ogiwara, O. Yoda, S. Nagai, “Varied-line-spacing laminar-type holographic grating for the standard soft X-ray flat-field spectrograph,” Proc. SPIE, 4146, 163-170 (2000). M. Koike and T. Namioka, "Optimization and evaluation of varied line spacing plane grating monochromators for third generation synchrotron light sources, " J. Electron Spectroscopy and Related Phenomena, 80, 303-308 (1996). M. Ishino, P. A. Heimann, H. Sasai, M. Hatakeyama, H. Takenaka, K. Sano, E. M. Gullikson, and M. Koike, “Multilayer laminar-type diffraction gratings achieving high diffraction efficiencies in the 1-8 keV region,” Applid Optics, 45, 6741-6745 (2006).
In the soft X-ray region of several keV region, the diffraction of the diffraction grating deposited with a soft X-ray multilayer film compared to the conventional diffraction grating having a metal single layer film such as gold or platinum on the surface. Efficiency has increased by one to three orders of magnitude, and obtaining diffraction efficiency of 10% or more is no longer difficult. Further, as a result of technological advancement of the soft X-ray detector, in many fields of use, if a diffraction efficiency of several percent or more is obtained in a spectroscopic system composed of one diffraction grating, it can be sufficiently put into practical use.
M. Koike, T. Namioka, E. Gullikson, Y. Haradad, S. Ishikawa, T. Imazono, S. Mrowka, N. Miyata, M. Yanagihara, JH Underwood, K. Sano, T. Ogiwara, O. Yoda , S. Nagai, “Varied-line-spacing laminar-type holographic grating for the standard soft X-ray flat-field spectrograph,” Proc. SPIE, 4146, 163-170 (2000). M. Koike and T. Namioka, "Optimization and evaluation of varied line spacing plane grating monochromators for third generation synchrotron light sources," J. Electron Spectroscopy and Related Phenomena, 80, 303-308 (1996). M. Ishino, PA Heimann, H. Sasai, M. Hatakeyama, H. Takenaka, K. Sano, EM Gullikson, and M. Koike, “Multilayer laminar-type diffraction gratings achieving high diffraction efficiencies in the 1-8 keV region, ”Applid Optics, 45, 6741-6745 (2006).

本発明は、従来実験室光源を利用した分光測定では回折格子分光装置が実用とならなかった数keVの光子エネルギーをもつ軟X線領域において、分光装置に入射する一定の光子エネルギー幅の軟X線光をエネルギー別に分別し、検出器または感光物質面に結像させうる分光装置である多色計(ポリクロメータ)を提供するものである。   In the soft X-ray region having a photon energy of several keV in which the diffraction grating spectroscope has not been practically used in the spectroscopic measurement using a conventional laboratory light source, the present invention is a soft X having a certain photon energy width incident on the spectroscopic device. The present invention provides a polychromator (polychromator) which is a spectroscopic device capable of separating linear light according to energy and forming an image on a detector or a photosensitive material surface.

上記課題を解決するために成された本発明は、被測定の軟X線光が多色計内に導入される入射スリットと回折格子表面の各点における入射光の方向の差異、及び回折格子表面が曲率を持つことによる入射光と回折格子表面の垂線方向の差異を利用し、回折格子表面の各点におけるローカルな入射角をエネルギー分解能に影響しない範囲において可能な限り変化するようにし、一定の光子エネルギー範囲内の入射光が回折格子面上のいずれかの位置で、回折格子の回折条件(回折格子の式)及び回折格子のBragg条件(拡張Bragg条件)を同時に満たすように、入射スリットの位置、凹面回折格子の曲率半径、多層膜の構成物質、膜周期長などを決定する。また、子午面(回折格子表面に対する垂線面;図1のx−y面)内の回折光がほぼ同じ直線上に結像するように回折格子溝を不等間隔溝とする。   In order to solve the above problems, the present invention provides a difference in the direction of incident light at each point of the entrance slit and the surface of the diffraction grating where the soft X-ray light to be measured is introduced into the polychromator, and the diffraction grating. Utilizing the difference in perpendicular direction between the incident light and the diffraction grating surface due to the curvature of the surface, the local incidence angle at each point on the diffraction grating surface is changed as much as possible within a range that does not affect the energy resolution, and is constant The incident slit within the photon energy range of, so that the diffraction condition of the diffraction grating (diffraction grating equation) and the diffraction grating Bragg condition (extended Bragg condition) are simultaneously satisfied at any position on the diffraction grating surface. , The radius of curvature of the concave diffraction grating, the constituent material of the multilayer film, the film period length, and the like. Further, the diffraction grating grooves are non-uniformly spaced so that diffracted light in the meridian plane (perpendicular plane with respect to the diffraction grating surface; xy plane in FIG. 1) forms an image on substantially the same straight line.

本発明に係る回折格子及びそれを用いた分光装置は、機械的な可動部なしに一定の光子エネルギー範囲内の軟X線光をそれぞれの光子エネルギーにつき一次元以上の位置分解をもつ検出器で同時に計測することができる。   The diffraction grating and the spectroscopic device using the same according to the present invention are detectors having a position resolution of one or more dimensions for each photon energy of soft X-ray light within a certain photon energy range without mechanical moving parts. It can be measured simultaneously.

多層膜凹面回折格子の製作方法には各種有り、(1)凹面に研磨した基板上に多層膜を形成し、その後溝パターンをレーザー光を用いてホログラフィック法により形成し、これをマスクとしてエッチングを行い多層膜内に回折格子溝の形成を行う方法、(2)基板上に溝パターンをレーザー光を用いてホログラフィック法で溝パターンの形成を行い,次にこのパターンをマスクとして、イオンビームエッチング法により、ラミナー型などの溝形成を行い、その後多層膜を蒸着する方法、及び(3)機械刻線法により基板上に形成した軟金属内にブレーズド型等の度回折格子溝を形成し、その後多層膜を形成する方式等がある。本発明に係る多層膜回折格子を生成する場合はどの方式をとっても良い。   There are various methods for producing a multilayer concave diffraction grating. (1) A multilayer film is formed on a substrate polished on a concave surface, and then a groove pattern is formed by a holographic method using laser light, and this is used as a mask for etching. (2) A groove pattern is formed on the substrate by holographic method using a laser beam, and then this pattern is used as a mask to form an ion beam. A laminar type groove is formed by etching, and then a multilayer film is deposited. (3) A blazed-type diffraction grating groove is formed in a soft metal formed on a substrate by a mechanical engraving method. Thereafter, there is a method of forming a multilayer film. Any method may be used when generating the multilayer diffraction grating according to the present invention.

非特許文献1に記述されているように回折格子基板が凹面で、溝間隔が不等間隔である場合、多色計(ポリクロメータ)は回折格子一枚で構成する事ができ、所望の測定波長を持つ回折光は直線上に結像する。さらに、非特許文献2に記述されているように回折格子基板が平面で、溝間隔が不等間隔である場合、多色計(ポリクロメータ)は回折格子と凹面鏡一枚で構成する事ができ、所望の測定波長を持つ回折光は同じく直線上に結像する。ただ後者の場合凹面鏡に金属単層膜蒸着を付加する場合、斜入射角が0.5度以下の全反射を起こす条件で用いるか、凹面鏡にも回折格子の各区画に対応する複数の仕様をもつ多層膜を部分的に蒸着する必要がある。したがって、本発明を実施するための最も適した形態は非特許文献1で述べられた多色計である。   As described in Non-Patent Document 1, when the diffraction grating substrate is concave and the groove intervals are unequal, the polychromator (polychromator) can be composed of one diffraction grating, and the desired measurement can be performed. Diffracted light having a wavelength forms an image on a straight line. Furthermore, as described in Non-Patent Document 2, when the diffraction grating substrate is flat and the groove interval is unequal, the polychromator (polychromator) can be composed of a diffraction grating and a single concave mirror. The diffracted light having a desired measurement wavelength is also imaged on a straight line. However, in the latter case, when a metal single layer deposition is added to the concave mirror, it is used under conditions that cause total reflection with an oblique incident angle of 0.5 degrees or less, or the concave mirror has multiple specifications corresponding to each section of the diffraction grating. It is necessary to partially deposit the film. Therefore, the most suitable form for carrying out the present invention is the multicolor meter described in Non-Patent Document 1.

ここでは、非特許文献1で述べられた構成をもつ多色計を例にとり定量的な回折格子及び多色計の設計について述べる(図1参照)。回折格子は基板上に溝パターンをホログラフィック法で不等間隔溝パターンの形成を行い,次にこのパターンを元にラミナー型などの溝形成を行うものとする。   Here, taking a multicolor meter having the configuration described in Non-Patent Document 1 as an example, a quantitative diffraction grating and multicolor meter design will be described (see FIG. 1). In the diffraction grating, an unevenly spaced groove pattern is formed on a substrate by a holographic method, and then a laminar type groove is formed based on this pattern.

多層膜は、軽化合物(SiO2等)層と重元素(Mo等)または重化合物層とからなる層の組を多数回積層して生成する軟X線多層膜であり、その周期長をDとする。 The multilayer film is a soft X-ray multilayer film formed by laminating a set of layers composed of a light compound (SiO 2 etc.) layer and a heavy element (Mo etc.) or heavy compound layer many times. And

入射光の回折効率を最大にするには
1)回折格子の回折条件(回折格子の式)
To maximize the diffraction efficiency of incident light 1) Diffraction conditions of diffraction grating (diffraction grating equation)

2) 多層膜回折格子のBragg条件 2) Bragg condition of multilayer diffraction grating

を満たす必要がある。式(2)は拡張Bragg条件と呼ばれる場合もある。ここで、
λは入射光の波長、α、βは光の回折格子表面の垂線から計った入射光の入射角、回折光の回折角で、左廻りを正の角度とする(図3参照)。ここで、α、βは、入射点が回折格子中心である主光線については、α、β表すことにする。その他の点での入射角αはαと異なる(図2参照)。このため、回折格子面上のローカルな点(回折格子中心以外の点)で見た場合、式(1)、(2)を満たす波長はそれぞれ異なる。またその波長Rα,Rβはそれぞれ
It is necessary to satisfy. Expression (2) is sometimes called an extended Bragg condition. here,
λ is the wavelength of the incident light, α and β are the incident angle of the incident light and the diffraction angle of the diffracted light measured from the perpendicular to the surface of the light diffraction grating, and the counterclockwise direction is a positive angle (see FIG. 3). Here, α and β represent α 0 and β 0 for the principal ray whose incident point is the diffraction grating center. The incident angle α at other points is different from α 0 (see FIG. 2). For this reason, when viewed at a local point on the diffraction grating surface (a point other than the center of the diffraction grating), the wavelengths satisfying the expressions (1) and (2) are different. The wavelengths R α and R β are respectively

であり、且つnを多層膜の平均屈折率 (多層膜に使用される2つの物質の複素屈折率の実部の膜厚に基づく加重平均値)とするとδ=n―1である。さらに、式(1)及び式(2)のmG,mCはそれぞれ回折格子の回折次数、多層膜の干渉次数であるが、本実施例ではmG=mC=1であるとする。 And n is an average refractive index of the multilayer film (a weighted average value based on the film thickness of the real part of the complex refractive index of the two substances used in the multilayer film), δ = n−1. Further, m G and m C in the equations (1) and (2) are the diffraction order of the diffraction grating and the interference order of the multilayer film, respectively, but in this embodiment, it is assumed that m G = m C = 1.

さらに、最適溝深さhは、   Furthermore, the optimum groove depth h is

となる。また、最適なDuty比(D.R.)は溝の深さをh、凸部の幅、凹部の幅をそれぞれg1,g2とすると(Duty比とは、ラミナー型回折格子の溝が矩形波形状をしているので、図7のa/σの値で示される)、 It becomes. Also, the optimum duty ratio (DR) is that the groove depth is h, the width of the convex part, and the width of the concave part are g 1 and g 2 respectively. (Duty ratio means that the groove of the laminar diffraction grating is a rectangular wave shape. Is indicated by the value of a / σ in FIG. 7),

となる。実際は式(5)で与えられる数値近辺で回折効率計算を行い決定する。 It becomes. Actually, it is determined by calculating the diffraction efficiency around the numerical value given by Equation (5).

凹面回折格子の一種である球面回折格子で、格子溝が不等間隔溝の場合、回折格子の結像特性は曲率半径(R)、格子定数(σ)、不等間隔溝はパラメータn2,n3,n4で表される。この3個のパラメータを用いると回折格子中心の溝を零番とした場合回折格子面上のy軸方向の値がwの点の溝番号は A spherical diffraction grating, which is a type of concave diffraction grating, where the grating grooves are non-uniformly spaced, the imaging characteristics of the diffraction grating are the radius of curvature (R), the lattice constant (σ), and the nonuniformly spaced grooves are parameters n 2 , It is represented by n 3 and n 4 . Using these three parameters, if the groove at the center of the diffraction grating is zero, the groove number at the point where the value in the y-axis direction on the diffraction grating surface is w is

で与えられる。 Given in.

先ず、基本的なパラメータである回折格子の有効格子定数(回折格子中心での溝間隔)sを1/2400mm、回折格子の回折次数mを+1次とする。また測定対象とする軟X線の光子エネルギーの範囲は1610〜1770eV、波長範囲としては0.70〜0.77nmとする。さら入射光の主光線方向(回折格子中心に入射する光線方向)は87°、入口スリット(または発光点)と回折格子中心との距離(r)を150mmとする。また分光されたスペクトルが結像する結像面は回折格子中心での接平面と垂直で、結像面と回折格子中心での接平面との交点と、回折格子中心との距離(L)は407mmとする。さらに回折格子の大きさは幅50mm(y軸方向)、高さ30mm(z軸方向)とした。   First, the effective grating constant (groove interval at the center of the diffraction grating) s, which is a basic parameter, is 1/2400 mm, and the diffraction order m of the diffraction grating is the + 1st order. The range of the photon energy of the soft X-ray to be measured is 1610 to 1770 eV, and the wavelength range is 0.70 to 0.77 nm. Furthermore, the principal ray direction of incident light (the ray direction incident on the diffraction grating center) is 87 °, and the distance (r) between the entrance slit (or light emitting point) and the diffraction grating center is 150 mm. The image plane on which the spectral spectrum is imaged is perpendicular to the tangent plane at the center of the diffraction grating, and the distance (L) between the intersection of the image plane and the tangent plane at the center of the diffraction grating and the center of the diffraction grating is 407mm. Furthermore, the size of the diffraction grating was set to a width of 50 mm (y-axis direction) and a height of 30 mm (z-axis direction).

結像特性の最適化は通常の金属薄膜蒸着の回折格子と全く同じく光線追跡法により決定した。その結果、球面回折格子の曲率半径は4320mm、不等間隔溝のパラメータはn2 = -8.66870×10-4mm-1, n3 = -1.49594×10-5 mm-2, n4 = -1.61648×10-7 mm-3となった。 The optimization of the imaging characteristics was determined by the ray tracing method exactly as in the diffraction grating of ordinary metal thin film deposition. As a result, the radius of curvature of the spherical diffraction grating is 4320 mm, and the parameters of the unevenly spaced grooves are n 2 = -8.66870 × 10 -4 mm -1 , n 3 = -1.49594 × 10 -5 mm -2 , n 4 = -1.61648 × 10 -7 mm -3

多層膜の物質対は重物質Moと軽物質SiO2からなり、重物質層の厚さの比を0.4とし、回折格子中心において測定対象の波長範囲のほぼ中央の波長(約0.7nm)において回折効率が高くなるように周期長Dを決定する。本実施例ではこのような考察からD=6nmとした。 The material pair of the multilayer film consists of heavy material Mo and light material SiO 2 , the ratio of the thickness of the heavy material layer is 0.4, and diffraction is performed at the center of the diffraction grating at the wavelength in the middle of the wavelength range to be measured (about 0.7 nm) The period length D is determined so as to increase the efficiency. In this example, D = 6 nm was set based on such consideration.

図4はこの系で計算した、子午面内の入射光の各入射点でのローカルな入射角 α(点線、右軸)、αに対応する多層膜の拡張Bragg条件を満たす光子エネルギー(実線、左軸)、及び回折光バンドパス(半値全幅で約±40eV、一点鎖線、左軸)を示す。図から判るように、刻線幅50mmに対し同時測定可能光子エネルギー幅は1540eVから1810eV迄の270eVとなる。検出器面での逆線分散は約0.08nm/mmであるので、検出器の1ピクセルの幅が20mmの場合、検出器によるエネルギー分解は4.9eVとなる。   FIG. 4 shows the photon energy satisfying the extended Bragg condition of the multilayer film corresponding to α (dotted line, right axis) and α corresponding to the incident angle α (dotted line, right axis) at the incident point of the incident light in the meridian plane calculated by this system (solid line, (Left axis) and diffracted light bandpass (full width at half maximum of about ± 40 eV, alternate long and short dash line, left axis). As can be seen from the figure, the photon energy width that can be measured simultaneously is 270 eV from 1540 eV to 1810 eV with respect to the marking line width of 50 mm. Since the inverse dispersion at the detector surface is about 0.08 nm / mm, when the width of one pixel of the detector is 20 mm, the energy decomposition by the detector is 4.9 eV.

なお、図4は、本発明の実施例に係わる多色計内の多層膜球面回折格子面上において各光子エネルギーを持つ入射光に対して有効な回折格子面上の領域を示す図であり、回折格子面上のy方向の値が25mmの位置では大体1720〜1820eVの光に対して有効領域(回折効率が存在する)であることを示している。   FIG. 4 is a diagram showing a region on the diffraction grating surface effective for incident light having each photon energy on the multilayer spherical diffraction grating surface in the multicolor meter according to the embodiment of the present invention, When the value in the y direction on the diffraction grating surface is 25 mm, it is an effective region (having diffraction efficiency) for light of about 1720 to 1820 eV.

図5は入射スリットの開口の大きさが10μm×1mmの場合について光線追跡法で計算した光線分布図を示す。追跡した波長は各図の上に示した中心波長λと分解能として100に相当するλ±λ/100の3波長について行った。この図から分解能は中心波長が0.70nmの時436、以下同様に0.72nmで545nm,0.74nmで589、0.76nmで537、0.78nmで484と概ね500以上である。   FIG. 5 shows a ray distribution diagram calculated by the ray tracing method when the aperture size of the entrance slit is 10 μm × 1 mm. The traced wavelengths were measured for three wavelengths of λ ± λ / 100 corresponding to the central wavelength λ and the resolution of 100 shown in each figure. From this figure, the resolution is 436 when the center wavelength is 0.70 nm, and similarly 545 at 0.72 nm, 589 at 0.74 nm, 537 at 0.76 nm, 537 at 0.78 nm, and 484 at 0.78 nm.

なお、図5は、本発明の実施例に係わる多色計について光線追跡法により作成した光線分布図であり、WIDTHとHIGHTは像面上における幅(横位置)、高さ(縦位置)を示し、その分解能は波長λにおいて分解できる波長間隔をΔλとするとλ/Δλで表せ、ここでは分解能として100に相当するλ−λ/100、λ+λ/100の3波長の光の光線を追跡しており、それに対応する3つの像(線)が見えている。言い換えればこの3本の線が分かれて見えれば100の分解能があることを意味している。   FIG. 5 is a ray distribution diagram created by the ray tracing method for the multicolor meter according to the embodiment of the present invention. WIDTH and HIGH are the width (horizontal position) and height (vertical position) on the image plane. The resolution is expressed as λ / Δλ where the wavelength interval that can be resolved at the wavelength λ is Δλ. Here, the resolution is to trace light beams of three wavelengths of λ−λ / 100 and λ + λ / 100 corresponding to 100. The three images (lines) corresponding to it are visible. In other words, if these three lines are seen separately, it means that there is 100 resolution.

図6は以上述べた多層膜球面回折格子のローカルな入射角に対応する+1次光の回折効率を示す図である。計算では溝の深さhは3nm、Duty比(D.R.)は0.5とした。また入射角は、w = +25mm,0mm,-25mmの位置に対応する86.7776度、87.0000度、87.1173度とした。図から判るように波長0.69〜0.77nmの範囲で0.3(30%)以上の回折効率を示している。即ち、図6は、入射角が86.7776,87.0000.87.1173であると、その波長が約0.69、0.73.0.77nmの場合に回折効率の頂点が見られることを示している。   FIG. 6 is a diagram showing the diffraction efficiency of + 1st order light corresponding to the local incident angle of the multilayer spherical diffraction grating described above. In the calculation, the depth h of the groove was 3 nm, and the duty ratio (D.R.) was 0.5. The incident angles were 86.7776 degrees, 87.0000 degrees, and 87.1173 degrees corresponding to the positions of w = + 25 mm, 0 mm, and -25 mm. As can be seen from the figure, the diffraction efficiency is 0.3 (30%) or more in the wavelength range of 0.69 to 0.77 nm. That is, in FIG. 6, when the incident angles are 86.7777, 87.0000.871173, the peak of diffraction efficiency is seen when the wavelengths are about 0.69 and 0.73.0.77 nm. Is shown.

このように本発明の実施例によれば、多層膜球面回折格子を多色計に応用する際の測定可能光子エネルギー幅を、分解能を低下させずに拡張することが可能となる。   As described above, according to the embodiment of the present invention, it is possible to extend the measurable photon energy width when the multilayer spherical diffraction grating is applied to a polychromometer without reducing the resolution.

図8は、回折格子面形状が平面である回折格子と凹面鏡を組合わせ、複数の波長の子午面内の光線のスペクトル像点がほぼ直線上に結像するようにした回折格子分光装置を示す図である。光源点(A)から出た光が平面鏡面上で反射されて不等間隔溝平面回折格子面に入射し、その格子の回転による反射光が出口スリットに(B)入射する。図中、r’は不等間隔溝平面回折格子と出口スリット(B)との間の距離、rは光源点(A)と球面鏡間の距離、D’は球面鏡と不等間隔溝平面回折格子との距離、2Kは不等間隔溝平面回折格子上の入射角と回折角との張る角、θは球面鏡上の入射角、αは不等間隔溝平面回折格子上の入射角、βは不等間隔溝平面回折格子上の回折角、rは球面鏡による光源点(A)の像点の不等間隔溝平面回折格子からの距離を示す。 FIG. 8 shows a diffraction grating spectroscope in which a diffraction grating surface shape is a plane and a concave mirror are combined so that the spectral image points of light rays in a meridian plane of a plurality of wavelengths are formed on a substantially straight line. FIG. The light emitted from the light source point (A) is reflected on the plane mirror surface and is incident on the unevenly spaced groove plane diffraction grating surface, and the reflected light due to the rotation of the grating is incident on the exit slit (B). In the figure, r 0 ′ is the distance between the unevenly spaced groove plane diffraction grating and the exit slit (B), r M is the distance between the light source point (A) and the spherical mirror, and D ′ is the spherical mirror and the unevenly spaced groove plane. The distance from the diffraction grating, 2K is the angle between the incident angle and the diffraction angle on the unequal spacing groove plane diffraction grating, θ is the incidence angle on the spherical mirror, α is the incidence angle on the unequal spacing groove plane diffraction grating, β 0 indicates the diffraction angle on the unevenly spaced groove plane diffraction grating, and r indicates the distance from the unevenly spaced groove plane diffraction grating of the image point of the light source point (A) by the spherical mirror.

本発明の実施例に係わる多色計を示す鳥瞰図である。It is a bird's-eye view which shows the multicolor meter concerning the Example of this invention. 本発明の実施例に係わる多色計内の球面回折格子面上のローカルな入射角を説明する図である。It is a figure explaining the local incident angle on the spherical diffraction grating surface in the multicolor meter concerning the Example of this invention. 本発明の実施例に係わるラミナー型多層膜球面回折格子の断面構造を示す図である。It is a figure which shows the cross-section of the laminar type | mold multilayer spherical diffraction grating concerning the Example of this invention. 本発明の実施例に係わる多色計内の多層膜球面回折格子面上において各光子エネルギーを持つ入射光に対して有効な回折格子面上の領域を示す図である。It is a figure which shows the area | region on a diffraction grating surface effective with respect to the incident light which has each photon energy on the multilayer film spherical diffraction grating surface in the polychromator concerning the Example of this invention. 本発明の実施例に係わる多色計について光線追跡法により作成し光線分布図である。It is a ray distribution map produced by the ray tracing method about the multicolor meter concerning the Example of this invention. 本発明の実施例に係わる多層膜平面回折格子のローカルな入射角に対応する+1次光の回折効率を示す図である。It is a figure which shows the diffraction efficiency of the + 1st order light corresponding to the local incident angle of the multilayer film diffraction grating concerning the Example of this invention. 式(5)におけるDuty比の意味を示す図である。It is a figure which shows the meaning of Duty ratio in Formula (5). 回折格子面形状が平面である回折格子と凹面鏡とからなる回折格子分光装置を示す図である。It is a figure which shows the diffraction grating spectroscopy apparatus which consists of a diffraction grating with which a diffraction grating surface shape is a plane, and a concave mirror. 近似直線(請求項7)を示す図である。It is a figure which shows an approximate line (Claim 7).

符号の説明Explanation of symbols

1: ラミナー型多層膜球面回折格子
2: 入射光線
3: 回折光線
4: 入口スリット
5: 検出器面(結像面)
6: 球面回折格子の曲率半径中心
’: 不等間隔溝平面回折格子と出口スリット(B)との間の距離
: 光源点(A)と球面鏡間の距離
D’: 球面鏡と不等間隔溝平面回折格子との距離
2K: 不等間隔溝平面回折格子上の入射角と回折角との張る角
θ: 球面鏡上の入射角α: 不等間隔溝平面回折格子上の入射角
β:不等間隔溝平面回折格子上の回折角
r: 球面鏡による光源点(A)の像点の不等間隔溝平面回折格子からの距離
1: Laminar multilayer spherical diffraction grating 2: Incident beam 3: Diffraction beam 4: Entrance slit 5: Detector surface (imaging surface)
6: Center of curvature radius r 0 ′ of spherical diffraction grating: Distance r M between uneven groove plane diffraction grating and exit slit (B) M M : Distance between light source point (A) and spherical mirror D ′: Spherical mirror and non-uniformity Distance 2K from the equidistant groove plane diffraction grating: Angle between the incident angle and diffraction angle on the unequally spaced groove plane diffraction grating θ: Incident angle α on the spherical mirror α: Incident angle β on the unequally spaced groove plane diffraction grating 0 : Diffraction angle on unevenly spaced groove plane diffraction grating r: Distance of image point of light source point (A) by spherical mirror from unevenly spaced groove plane diffraction grating

Claims (9)

回折格子溝が設けられた多層膜型凹面回折格子において、一点から入射する一定の波長範囲の光に対して最大回折効率が得られる様に、前記凹面回折格子の曲率半径、多層膜の膜周期長及び多層膜の平均屈折率を、回折格子表面上の各位置で入射光波長の一つに対して回折格子の回折条件及び拡張ブラッグ(Bragg)条件を同時に満足するようにした多層膜回折格子。   In a multilayer concave grating having a diffraction grating groove, the radius of curvature of the concave grating, the film period of the multilayer film, so that the maximum diffraction efficiency can be obtained for light in a certain wavelength range incident from one point. Multi-layer diffraction grating in which the average refractive index of the long and multi-layer films simultaneously satisfies the diffraction grating diffraction condition and the extended Bragg condition for one of the incident light wavelengths at each position on the diffraction grating surface. . 請求項1に記載の多層膜型凹面回折格子において、回折格子面が球面である回折格子。   2. The multilayer concave diffraction grating according to claim 1, wherein the diffraction grating surface is a spherical surface. 請求項1に記載の多層膜型凹面回折格子において、溝間隔を不等間隔とした回折格子。   2. The multi-layer concave diffraction grating according to claim 1, wherein the groove intervals are unequal intervals. 請求項1に記載の多層膜型凹面回折格子において、溝間隔を不等間隔且つ回折格子面形状が球面である回折格子。   2. The multilayer-type concave diffraction grating according to claim 1, wherein the groove intervals are unequal and the diffraction grating surface is spherical. 多層膜型回折格子を用いた回折格子分光装置において、回折格子面形状が平面である回折格子と凹面鏡を組み合わせ複数の波長の子午面内の光線のスペクトル像点がほぼ直線上に結像するようにした回折格子分光装置。   In a diffraction grating spectrometer using a multilayered diffraction grating, a diffraction grating with a flat diffraction grating surface is combined with a concave mirror so that the spectral image points of rays in the meridional plane of multiple wavelengths are formed on a substantially straight line. A diffraction grating spectrometer. 請求項4に記載の多層膜型凹面回折格子を用いた回折格子分光装置において、入射光の複数の波長の子午面内の回折光線のスペクトルの検出面上の結像点がほぼ直線上に結像する回折格子分光装置。   5. The diffraction grating spectroscopic device using the multilayer concave diffraction grating according to claim 4, wherein the imaging points on the detection surface of the spectrum of the diffracted light beam in the meridional plane having a plurality of wavelengths of the incident light are connected almost linearly. Diffraction grating spectrometer for imaging. 請求項6に記載の回折格子分光装置においてスペクトル像点群(焦線)の近似直線が回折格子からの回折光線方向となす角が90度±20度以下で有る回折格子分光装置。   The diffraction grating spectroscope according to claim 6, wherein an angle formed by an approximate straight line of a spectral image point group (focal line) and a direction of a diffracted light beam from the diffraction grating is 90 degrees ± 20 degrees or less. 請求項6に記載の回折格子分光装置において、回折格子面に付加された多層膜が回折格子面全面わたり同じ膜周期長、平均屈折率条件で蒸着された多層膜回折格子を用いる回折格子分光装置。   7. The diffraction grating spectrometer according to claim 6, wherein the multilayer film added to the diffraction grating surface uses a multilayer film diffraction grating deposited on the entire diffraction grating surface under the same film period length and average refractive index conditions. . 請求項6に記載の回折格子分光装置において、回折格子面を複数の区画に区分し、それぞれに区画において異なる膜周期長、平均屈折率条件で蒸着された多層膜回折格子を用いる回折格子分光装置。   7. The diffraction grating spectrometer according to claim 6, wherein the diffraction grating surface is divided into a plurality of sections, and each of the sections uses a multilayer film diffraction grating deposited under different film period length and average refractive index conditions. .
JP2007027872A 2007-02-07 2007-02-07 Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope Pending JP2008191547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027872A JP2008191547A (en) 2007-02-07 2007-02-07 Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027872A JP2008191547A (en) 2007-02-07 2007-02-07 Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope

Publications (1)

Publication Number Publication Date
JP2008191547A true JP2008191547A (en) 2008-08-21

Family

ID=39751684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027872A Pending JP2008191547A (en) 2007-02-07 2007-02-07 Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope

Country Status (1)

Country Link
JP (1) JP2008191547A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075850A (en) * 2009-09-30 2011-04-14 Japan Atomic Energy Agency Multilayer film laminar diffraction grating and spectrometer
JP2011106842A (en) * 2009-11-13 2011-06-02 Japan Atomic Energy Agency Diffraction grating spectrometer
KR101154714B1 (en) * 2009-08-31 2012-06-14 전남대학교산학협력단 Planar spectrometer
CN102621820A (en) * 2012-04-13 2012-08-01 中国科学院光电技术研究所 Preparation method of high-efficiency super-resolution focusing device for photoetching
JP2015531493A (en) * 2012-10-10 2015-11-02 クヮンジュ・インスティテュート・オブ・サイエンス・アンド・テクノロジー Spectroscopic apparatus and spectral method
CN113720795A (en) * 2021-09-03 2021-11-30 上海科技大学 High-flux extreme ultraviolet multilayer film grating spectrometer
CN115031838A (en) * 2022-05-05 2022-09-09 西安应用光学研究所 Wavelength calibration method for scanning type double-layer secondary diffraction linear array spectrometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120001A (en) * 1984-07-09 1986-01-28 Nippon Telegr & Teleph Corp <Ntt> Diffraction gating and its manufacture
JPH07301696A (en) * 1994-05-09 1995-11-14 Hitachi Ltd X-ray projection and exposure method and device therefor
JPH1073698A (en) * 1996-08-30 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> Vacuum ultra-violet spectroscope for laser plasma x ray
JP2004251866A (en) * 2002-09-06 2004-09-09 Fuji Electric Holdings Co Ltd Instrument and method for measuring x-ray diffraction
JP2005265604A (en) * 2004-03-18 2005-09-29 Chikoji Gakuen Method and device for reducing cross section of x-ray beam, and device and method for generating x rays
JP2005534921A (en) * 2002-08-02 2005-11-17 エックス−レイ オプティカル システムズ インコーポレーテッド Optical device and method for directing x-rays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120001A (en) * 1984-07-09 1986-01-28 Nippon Telegr & Teleph Corp <Ntt> Diffraction gating and its manufacture
JPH07301696A (en) * 1994-05-09 1995-11-14 Hitachi Ltd X-ray projection and exposure method and device therefor
JPH1073698A (en) * 1996-08-30 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> Vacuum ultra-violet spectroscope for laser plasma x ray
JP2005534921A (en) * 2002-08-02 2005-11-17 エックス−レイ オプティカル システムズ インコーポレーテッド Optical device and method for directing x-rays
JP2004251866A (en) * 2002-09-06 2004-09-09 Fuji Electric Holdings Co Ltd Instrument and method for measuring x-ray diffraction
JP2005265604A (en) * 2004-03-18 2005-09-29 Chikoji Gakuen Method and device for reducing cross section of x-ray beam, and device and method for generating x rays

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154714B1 (en) * 2009-08-31 2012-06-14 전남대학교산학협력단 Planar spectrometer
JP2011075850A (en) * 2009-09-30 2011-04-14 Japan Atomic Energy Agency Multilayer film laminar diffraction grating and spectrometer
JP2011106842A (en) * 2009-11-13 2011-06-02 Japan Atomic Energy Agency Diffraction grating spectrometer
CN102621820A (en) * 2012-04-13 2012-08-01 中国科学院光电技术研究所 Preparation method of high-efficiency super-resolution focusing device for photoetching
JP2015531493A (en) * 2012-10-10 2015-11-02 クヮンジュ・インスティテュート・オブ・サイエンス・アンド・テクノロジー Spectroscopic apparatus and spectral method
US10458843B2 (en) 2012-10-10 2019-10-29 Gwangju Institute Of Science And Technology Spectrometry apparatus and spectrometry method
CN113720795A (en) * 2021-09-03 2021-11-30 上海科技大学 High-flux extreme ultraviolet multilayer film grating spectrometer
CN113720795B (en) * 2021-09-03 2024-03-01 上海科技大学 High flux extreme ultraviolet multi-layer film grating spectrometer
CN115031838A (en) * 2022-05-05 2022-09-09 西安应用光学研究所 Wavelength calibration method for scanning type double-layer secondary diffraction linear array spectrometer

Similar Documents

Publication Publication Date Title
US4798446A (en) Aplanatic and quasi-aplanatic diffraction gratings
JP2008191547A (en) Multilayer nonuniform pitch grooves concave diffraction grating and diffraction grating spectroscope
Renner et al. High-luminosity, high-resolution, x-ray spectroscopy of laser-produced plasma by vertical-geometry Johann spectrometer
US3865490A (en) Filter spectrograph
CN104777540B (en) A kind of transmission-type self-focusing single diffraction order grating
JP5170488B2 (en) Conical diffraction oblique incidence spectrometer and diffraction grating for the spectrometer
Goh et al. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range
JP2011228699A (en) Reflective optical element, projection system and projection/exposure device
Yumoto et al. Ellipsoidal mirror for two-dimensional 100-nm focusing in hard X-ray region
Seely et al. Efficiency of a grazing-incidence off-plane grating in the soft-x-ray region
Günther et al. Lynx soft x-ray critical-angle transmission grating spectrometer
CN115398563A (en) Soft X-ray optics with improved filtering
US20170292830A1 (en) Method for determining the thickness of a contaminating layer and/or the type of contaminating material, optical element and euv-lithography system
Heilmann et al. Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors
Koike et al. Plane gratings for high-resolution grazing-incidence monochromators: holographic grating versus mechanically ruled varied-line-spacing grating
Maystre Diffraction gratings
Behring et al. Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas
Tu et al. A coma-free super-high resolution optical spectrometer using 44 high dispersion sub-gratings
JP2011106842A (en) Diffraction grating spectrometer
JP2008090030A (en) High-efficiency heat-resistant multilayer diffraction grating
JP2007515689A (en) Two-dimensional grating network with alternating multi-layer stacks, its production and spectroscope equipped with these networks
Voronov et al. 6000 lines/mm blazed grating for a high-resolution x-ray spectrometer
JP2011075850A (en) Multilayer film laminar diffraction grating and spectrometer
Awaki et al. Measuring the atomic scattering factors near the iridium L-edges for the Athena silicon pore optics reflector
Tutt et al. Diffraction efficiency testing of sinusoidal and blazed off-plane reflection gratings

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A02 Decision of refusal

Effective date: 20121120

Free format text: JAPANESE INTERMEDIATE CODE: A02