JPH07301591A - Moisture measuring method - Google Patents

Moisture measuring method

Info

Publication number
JPH07301591A
JPH07301591A JP9490394A JP9490394A JPH07301591A JP H07301591 A JPH07301591 A JP H07301591A JP 9490394 A JP9490394 A JP 9490394A JP 9490394 A JP9490394 A JP 9490394A JP H07301591 A JPH07301591 A JP H07301591A
Authority
JP
Japan
Prior art keywords
bacteriorhodopsin
water
resonance frequency
moisture
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9490394A
Other languages
Japanese (ja)
Inventor
Hiromasa Katou
弘眞 加藤
Masuko Tanaka
満寿子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9490394A priority Critical patent/JPH07301591A/en
Publication of JPH07301591A publication Critical patent/JPH07301591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure the moisture in a gas quickly and selectively without requiring any reagent by bringing the gas to be measure into contact with a quartz oscillator coated with bacteriorhodopsin. CONSTITUTION:5mg of bacteriorhodopsin is added with 1ml of water to prepare 5mg/ml of water suspension. It is then dripped by 5mul onto one side of a quartz oscillator and dried by leaving it t room temperature to produce a film of bacteriorhodopsin of about 10mum thick. The quartz oscillator is then secured to the upper end of a cylindrical vessel having sample gas inlet and outlet and a resonance frequency F1 is determined while supplying the dehydrated atmosphere at a rate of 1l/min. A resonance frequency F. is measured again while supplying the atmosphere at a rate of 1l/min in order to determine the content of moisture in the atmosphere according to a formula F2-F1=DELTAF. This method realizes quick and reversible response thus realizing quick and selective measurement without requiring any reagent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水分測定方法に関するも
のであり、詳しくはガス中の水分を精度よく測定する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring water content, and more particularly to a method for accurately measuring water content in a gas.

【0002】[0002]

【従来の技術】気体や液体のような流体中の水分を測定
する方法はいくつか知られており、且つ、実際にも用い
られている。その一つは水分子が赤外部に吸収を有する
ことを利用する方法である。しかし、この方法は、水分
子と同じ位置に吸収を有する試料中の水分測定には適用
できない。また、この方法は微量の水分の測定には適し
ていない。もう一つ常用されている方法はカールフィッ
シャー試薬を用いて滴定する方法である。この方法によ
れば数ppm程度の微量水分まで測定することが出来る
が、測定は回分式とならざるを得ず、また1回の測定に
少なくとも数分の時間を要する。この他にも水晶振動子
に被覆したポリマー膜が、大気中の湿度に応じて水分を
吸脱着することを利用した湿度センサがあるが、ポリマ
ー膜の作成は繁雑であり、大気中に水分子と同程度の大
きさの分子が存在した場合は選択性に乏しい。
2. Description of the Related Art Several methods for measuring water in a fluid such as a gas or a liquid are known and used in practice. One of them is a method utilizing the fact that water molecules have absorption in the infrared region. However, this method cannot be applied to the measurement of water content in a sample having absorption at the same position as a water molecule. Moreover, this method is not suitable for measuring a very small amount of water. Another commonly used method is a titration method using Karl Fischer reagent. According to this method, even a trace amount of water of several ppm can be measured, but the measurement must be a batch method, and one measurement requires at least several minutes. In addition to this, there is a humidity sensor that utilizes a polymer film coated on a crystal unit that absorbs and desorbs water according to the humidity in the atmosphere. If there is a molecule of the same size as, the selectivity is poor.

【0003】[0003]

【発明が解決しようとする課題】このように、ガス中の
水分を選択的且つ連続的に測定することは困難であっ
た。
As described above, it is difficult to selectively and continuously measure the water content in the gas.

【0004】[0004]

【課題を解決するための手段】本発明者らは、バクテリ
オロドプシンが水分を吸脱着する性質を利用し、水晶振
動子にバクテリオロドプシンを被覆すると吸着水分量に
応じて共振周波数が変化すること、および、この変化は
可逆的であり、且つ、選択性に優れているため、共振周
波数の変化量より気体中の水分濃度を精度良く、連続的
に測定することが出来ることを見出し、本発明に到達し
た。
Means for Solving the Problems The inventors of the present invention utilize the property that bacteriorhodopsin adsorbs and desorbs water, and when a crystal oscillator is coated with bacteriorhodopsin, the resonance frequency changes according to the amount of adsorbed water. And, since this change is reversible and is excellent in selectivity, it was found that the water concentration in the gas can be measured accurately and continuously from the change amount of the resonance frequency, and the present invention has been made. Arrived

【0005】すなわち、本発明の目的は、気体中の含水
量を試薬を用いることなく、高精度で、かつ、連続的に
測定可能な水分測定方法を提供することにある。さら
に、本発明の目的は、作成が容易で耐久性に優れたセン
サを用いる水分測定方法を提供することにある。しかし
て、かかる本発明の目的は、含水量を測定しようとする
気体とバクテリオロドプシンを被覆した水晶振動子とを
接触させ、該水晶振動子の共振周波数の変化から水分量
を測定することを特徴とする水分測定方法、によって容
易に達成される。
That is, an object of the present invention is to provide a moisture measuring method which can measure the water content in a gas with high accuracy and continuously without using a reagent. Further, it is an object of the present invention to provide a moisture measuring method using a sensor that is easy to make and has excellent durability. Thus, the object of the present invention is to bring the gas whose water content is to be measured into contact with a crystal oscillator coated with bacteriorhodopsin, and to measure the water content from the change in the resonance frequency of the crystal oscillator. It is easily achieved by the method for measuring water content.

【0006】以下、本発明を詳細に説明する。本発明で
は、バクテリオロドプシンを水晶振動子上に薄膜状に被
覆して水分測定に用いる。該バクテリオロドプシンは紫
膜に含まれている蛋白質であって、単離して用いてもよ
く、紫膜として用いてもよい。紫膜とは高度好塩歯(H
alobacteria)の形質膜中に存在するもの
で、脂質が25%、蛋白質が75%含まれており、その
蛋白質はバクテリオロドプシン1種のみであることが知
られている(膜、9,73−91,1984)。
The present invention will be described in detail below. In the present invention, a crystal oscillator is coated with bacteriorhodopsin in a thin film and used for moisture measurement. The bacteriorhodopsin is a protein contained in the purple membrane, and may be isolated and used, or may be used as the purple membrane. What is purple membrane?
It is present in the plasma membrane of Alobacteria, contains 25% of lipids and 75% of proteins, and it is known that the protein is only one kind of bacteriorhodopsin (membrane, 9,73-91). , 1984).

【0007】菌体中の紫膜は、以下の方法により取り出
される。バクテリア菌体を蒸留水中に投入して菌体を破
裂させ、遠心分離機にかけて膜分画を取得し、次いで膜
分画からショ糖の密度勾配遠心法により紫膜分画を取り
出し、透析によりショ糖を除去すると紫膜が得られる。
紫膜中のバクテリオロドプシンは分子量約26,000
で、紫膜中では三量体として存在しており、熱や酸、ア
ルカリに強く、変質し難いという特性を有していること
が知られている。
The purple membrane in the cells is taken out by the following method. Bacterial cells were poured into distilled water to rupture the cells and centrifuged to obtain a membrane fraction.Next, the purple membrane fraction was extracted from the membrane fraction by density gradient centrifugation of sucrose and dialysis was performed. Removal of sugar gives a purple membrane.
The molecular weight of bacteriorhodopsin in purple membrane is about 26,000.
It is known that it exists as a trimer in the purple film, has a property of being resistant to heat, acid, and alkali, and being hard to be deteriorated.

【0008】また、バクテリオロドプシンは化学修飾剤
により部分的に変性させても水分に対して応答するの
で、グルタルアルデヒド等の架橋剤で紫膜を架橋させ、
これをガラス板に塗布して架橋したバクテリオロドプシ
ンの薄膜をガラス板上に形成させてもよい。バクテリオ
ロドプシンを水晶振動子上に被覆するには、最も簡単に
は、バクテリオロドプシンの水懸濁液をシリンジを用い
て水晶振動子の片面に滴下し、室温で放置して乾燥すれ
ば良い。但し、このようにして形成された薄膜は、極端
に乾燥がすすむと、ときによりガラスから剥離すること
がある。バクテリオロドプシンはマイナス電荷を有して
いるので、ガラス面上に予じめポリリジン等のプラス電
荷を有するものを塗布しておき、その上にバクテリオロ
ドプシンの薄膜を形成するようにすれば、剥離を軽減す
るのに有効である。
Since bacteriorhodopsin responds to moisture even if it is partially modified with a chemical modifier, the purple membrane is crosslinked with a crosslinking agent such as glutaraldehyde.
This may be applied to a glass plate to form a crosslinked thin film of bacteriorhodopsin on the glass plate. The simplest way to coat the crystal oscillator with bacteriorhodopsin is to drop an aqueous suspension of bacteriorhodopsin on one side of the crystal oscillator using a syringe, leave it at room temperature and dry it. However, the thin film thus formed may sometimes peel from the glass when it is extremely dried. Bacteriorhodopsin has a negative charge, so if you coat a glass surface with a positive charge such as polylysine beforehand and form a thin film of bacteriorhodopsin on it, peeling will occur. It is effective in reducing it.

【0009】被覆した膜の厚さは極薄いもので良く、通
常1〜100μmであり、好ましくは5〜50μmであ
る。厚すぎるとその内部にまで水分が浸透して周囲の水
分と平衡となるのに時間を要し応答が遅くなる恐れや、
完全な脱着が行われない恐れがある。このようにして作
成したセンサを、例えば側面に試料気体の入口、出口を
備えた容積約20mlの円筒状容器の上端に固定し、試
料気体に接触させる。試料気体の水分に応じてバクテリ
オロドプシンは水分を吸着し、共振周波数が変化する。
予めこの共振周波数の変化量と水分の関係を求めておけ
ば、試料気体中の水分が共振周波数の変化量より求ま
る。
The thickness of the coated film may be extremely thin and is usually 1 to 100 μm, preferably 5 to 50 μm. If it is too thick, it will take time for the water to penetrate into the inside and to equilibrate with the surrounding water, which may slow down the response.
There is a risk that complete desorption will not occur. The sensor thus prepared is fixed to the upper end of a cylindrical container having a volume of about 20 ml, which is provided with an inlet and an outlet for the sample gas on its side surface, and is brought into contact with the sample gas. Bacteriorhodopsin adsorbs water according to the water content of the sample gas, and the resonance frequency changes.
If the relationship between the amount of change in resonance frequency and water is obtained in advance, the amount of water in the sample gas can be obtained from the amount of change in resonance frequency.

【0010】更に他の方法としては、上述のようにして
形成したバクテリオロドプシンの薄膜上に、透明な透湿
性の隔膜を重ねて測定に供することもできる。隔膜とし
ては微細な物理的細孔を多数有する多孔性の合成樹脂フ
イルムや、物理的細孔によらずに分子構造的に透湿性の
合成樹脂フイルムなどを用いることができる。このよう
なフイルムはポリアミノ酸ウレタンをはじめとして多数
知られており、市販もされている。
As another method, a transparent and moisture-permeable diaphragm may be placed on the thin film of bacteriorhodopsin formed as described above and used for the measurement. As the diaphragm, a porous synthetic resin film having a large number of fine physical pores, a synthetic resin film having a moisture permeable molecular structure without depending on the physical pores, and the like can be used. Many such films, including polyamino acid urethane, are known and are commercially available.

【0011】[0011]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明の要旨を超えない限り、本発明を限
定するものではない。 実施例1 5mgのバクテリオロドプシン(米国SIGMA CH
EMICAL CO.社製)に水1mlを加えて5mg
/mlの水懸濁液を作り、これをシリンジを用いて水晶
振動子の片面に5μl滴下し、室温で放置して乾燥させ
た。バクテリオロドプシンの膜厚は約10μmであっ
た。この水晶振動子を、側面に試料気体の入口、出口を
備えた容積約20mlの円筒状容器の上端に固定し、モ
レキュラシーブを用いて脱水した1l/minの大気を
流した。この時の共振周波数をF1とする。次に大気を
そのまま1l/minで流した。この時の共振周波数を
2とすると、大気中の水分量はF2 −F1 =ΔFによ
り表わされる。図1は、縦軸に周波数の変化量、横軸に
時間をとって示した応答曲線であり、このバクテリオロ
ドプシンの共振周波数が大気中の水分によりどの様に変
化するかを示す。図1より明かな様に応答は迅速且つ可
逆的であり、共振周波数の変化量も湿度と良い相関を示
し、再現性も良好である。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto unless it exceeds the gist of the present invention. Example 1 5 mg of bacteriorhodopsin (US SIGMA CH
EMICAL CO. 5 mg by adding 1 ml of water to
/ Ml of water suspension was prepared, and 5 μl of this was dropped on one side of the crystal unit using a syringe, and left at room temperature to dry. The film thickness of bacteriorhodopsin was about 10 μm. This crystal oscillator was fixed to the upper end of a cylindrical container having a volume of about 20 ml equipped with a sample gas inlet and an outlet on its side surface, and a dehydrated atmosphere of 1 l / min was flowed using a molecular sieve. The resonance frequency at this time is F 1 . Next, the atmosphere was allowed to flow at 1 l / min. When the resonance frequency at this time is F 2, the water content in the atmosphere is represented by F 2 -F 1 = ΔF. FIG. 1 is a response curve in which the vertical axis represents the amount of frequency change and the horizontal axis represents time, and shows how the resonance frequency of this bacteriorhodopsin changes depending on the water content in the atmosphere. As is clear from FIG. 1, the response is quick and reversible, the amount of change in the resonance frequency shows a good correlation with the humidity, and the reproducibility is good.

【0012】また、100〜500ppm(v/v)の
水分を含んだ窒素ガスを100m1/minで流した時
の応答曲線も図1と同様の結果を与えた。更にバクテリ
オロドプシンの耐久性を確認するため、センサを50℃
で12時間加熱したが、加熱後も正常な応答曲線を与
え、バクテリオロドプシンの熱に対する耐久性を確認す
ることが出来た。
The response curve when nitrogen gas containing 100 to 500 ppm (v / v) of water was passed at 100 m1 / min gave the same results as in FIG. Furthermore, in order to confirm the durability of bacteriorhodopsin, use a sensor at 50 ° C.
After heating for 12 hours, a normal response curve was given after heating and the durability of bacteriorhodopsin to heat could be confirmed.

【0013】[0013]

【発明の効果】本発明によれば気体中の水分を、何の試
薬を用いることも無く、迅速且つ選択的に測定すること
が出来る。また、連続測定が可能であり、広範囲に渡っ
て水分を精度良く測定することも可能である。更に、本
発明は作成が非常に容易であり、また蛋白質でありなが
ら耐久性にも優れているバクテリオロドプシンを用いた
センサを用いて水分測定することを可能とする。
According to the present invention, the water content in a gas can be measured quickly and selectively without using any reagent. Further, continuous measurement is possible, and it is also possible to measure moisture over a wide range with high accuracy. Further, the present invention makes it possible to measure water using a sensor using bacteriorhodopsin, which is very easy to prepare and which is a protein but also has excellent durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水分測定方法による応答曲線である。FIG. 1 is a response curve according to the moisture measurement method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含水量を測定しようとする気体とバクテ
リオロドフシンを被覆した水晶振動子とを接触させ、該
水晶振動子の共振周波数の変化から水分量を測定するこ
とを特徴とする水分測定方法。
1. A water content measuring method characterized in that a gas whose water content is to be measured is brought into contact with a crystal oscillator coated with bacteriorhodofucin, and the water content is measured from a change in resonance frequency of the crystal oscillator. Method.
JP9490394A 1994-05-09 1994-05-09 Moisture measuring method Pending JPH07301591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9490394A JPH07301591A (en) 1994-05-09 1994-05-09 Moisture measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9490394A JPH07301591A (en) 1994-05-09 1994-05-09 Moisture measuring method

Publications (1)

Publication Number Publication Date
JPH07301591A true JPH07301591A (en) 1995-11-14

Family

ID=14122989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9490394A Pending JPH07301591A (en) 1994-05-09 1994-05-09 Moisture measuring method

Country Status (1)

Country Link
JP (1) JPH07301591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176129A1 (en) * 2010-11-04 2015-06-25 Canon Kabushiki Kaisha Film formation apparatus and film formation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176129A1 (en) * 2010-11-04 2015-06-25 Canon Kabushiki Kaisha Film formation apparatus and film formation method
US9382624B2 (en) * 2010-11-04 2016-07-05 Canon Kabushiki Kaisha Film formation method using oscillators for measurement and calibration during calibration step performed during film formation

Similar Documents

Publication Publication Date Title
Whitaker Determination of molecular weights of proteins by gel filtration of sephadex.
Pereira et al. ATR-FTIR spectroscopic studies of the structure and permeability of sulfonated poly (ether sulfone) membranes. Part 2.—Water diffusion processes
Ackers et al. Restricted diffusion of macromolecules through agar-gel membranes
Dickert et al. Synthetic receptors for chemical sensors—subnano-and micrometre patterning by imprinting techniques
JPH0453262B2 (en)
JPS5918663B2 (en) Reactor/Separator Devices Used in Automated Solid Phase Immunoassays
Gregor et al. Improved Methods of Preparation of “Permselective” Collodion Membranes Combining Extreme Ionic Selectivity with High Permeability.
JPH063453U (en) Equipment for centrifugation
JPH03205563A (en) Device and method for separating plasma or serum from whole blood
JPH10507515A (en) Gas concentration measurement method and micromachining detection device for implementing the method
Hitchcock Protein films on collodion membranes
Lebrun et al. Diffusion of sucrose and dextran through agar gel membranes
CA2131007A1 (en) One-way reaction vessel for the solid-phase immunological analysis of, and a method of measuring constituents which can be determined via immune reactions
Bigelow et al. COLLODION MEMBRANES.
Breault-Turcot et al. Microdialysis SPR: diffusion-gated sensing in blood
JPH07301591A (en) Moisture measuring method
AU592771B2 (en) Device composed of polymers with a membrane structure and incorporated solids particles
Kurosawa et al. Close-packed adsorption of F (ab′) 2 fragment of immunoglobulin G on plasma-polymerized allylamine film
Xu et al. Determination of effective diffusion coefficient and interfacial mass transfer coefficient of bovine serum albumin (BSA) adsorption into porous polyethylene membrane by microscope FTIR-mapping study
Sirotkin et al. Heat effects and water sorption by human serum albumin on its suspension in water-dimethyl sulphoxide mixtures
Wunder et al. 18O exchange in suspensions of red blood cells: determination of parameters of mass spectrometer inlet system
Kaku et al. Amperometric enzyme immunoassay for urinary human serum albumin using plasma-treated membrane
Carr et al. Graded collodion membranes for separation of small molecules
JP2582846B2 (en) Moisture measurement method using purple membrane
JP4485742B2 (en) Selective binding material