JP2582846B2 - Moisture measurement method using purple membrane - Google Patents

Moisture measurement method using purple membrane

Info

Publication number
JP2582846B2
JP2582846B2 JP6440688A JP6440688A JP2582846B2 JP 2582846 B2 JP2582846 B2 JP 2582846B2 JP 6440688 A JP6440688 A JP 6440688A JP 6440688 A JP6440688 A JP 6440688A JP 2582846 B2 JP2582846 B2 JP 2582846B2
Authority
JP
Japan
Prior art keywords
purple
moisture
purple membrane
absorbance
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6440688A
Other languages
Japanese (ja)
Other versions
JPH01237438A (en
Inventor
史生 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6440688A priority Critical patent/JP2582846B2/en
Publication of JPH01237438A publication Critical patent/JPH01237438A/en
Application granted granted Critical
Publication of JP2582846B2 publication Critical patent/JP2582846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は水分測定法に関するものである。特に本発明
は、気体中の極微量の水分を精度よく測定する方法に関
するものである。
The present invention relates to a method for measuring moisture. In particular, the present invention relates to a method for accurately measuring a trace amount of water in a gas.

<従来技術> 気体や液体のような流体中の水分を測定する方法はい
くつか知られており、且つ実際にも用いられている。そ
の一つは水分子が赤外部に吸収を有することを利用する
方法である。しかし、この方法は、水分子と同じ位置に
吸収を有する試料中の水分測定には勿論適用できない。
また、この方法は極微量の水分の測定には適していな
い。もう一つの常用されている方法はカール・フイシヤ
ー試薬を用いて滴定する方法であるこの方法によれば1p
pm程度の極微量水分まで測定することができるが、測定
は回分式とならざるを得ず、かつ1回の測定に少くとも
数分の時間を要する。
<Prior Art> Several methods for measuring moisture in a fluid such as a gas or a liquid are known and used in practice. One of them is a method utilizing the fact that water molecules have absorption in the infrared region. However, this method is of course not applicable to the measurement of moisture in a sample having absorption at the same position as water molecules.
Further, this method is not suitable for measuring a trace amount of water. Another commonly used method is to titrate using a Karl Fischer reagent.
Although it is possible to measure even a trace amount of water of about pm, the measurement must be of a batch type, and one measurement requires a time of at least several minutes.

<発明が解決しようとする課題> 本発明は極微量の水分を光学的に測定する方法を提供
しようとするものである。
<Problems to be Solved by the Invention> The present invention aims to provide a method for optically measuring a trace amount of water.

本発明者は、紫膜の400〜700nmにおける吸光度及びそ
のパターンが、その置かれた環境の水分含有量により大
きく変化することを見出した。この変化は可逆的であ
り、かつ極めて応答が早いので、紫膜の吸光度又はその
パターンを測定することにより、その置かれた環境の水
分含有量を測定することができる。
The present inventor has found that the absorbance at 400-700 nm of the purple membrane and its pattern vary greatly depending on the moisture content of the environment in which it is placed. This change is reversible and very fast, so by measuring the absorbance of the purple membrane or its pattern, the moisture content of the environment in which it is placed can be determined.

本発明について更に詳細に説明すれば、紫膜とは高度
好塩菌(Halobacteria)の形質膜中に存在するもので、
脂質が25%、蛋白質が75%含まれており、その蛋白質は
バクテリオロドプシン1種のみであることが知られてい
る。これを採取するには、バクテリア菌体を蒸留水中に
投入して菌体を破裂させ、遠心分離機にかけて膜分画を
取得し、次いでこれから蔗糖の密度勾配遠心法により紫
膜分画を取出し、透析により蔗糖を除去すると紫膜が得
られる。紫膜のバクテリオロドプシンは分子量約26000
で、紫い膜中では三量体として存在しており、熱や酸、
アルカリに強く、変質し難いという特性を有しているこ
とが知られている。
According to a more detailed description of the present invention, purple membrane is present in the plasma membrane of extreme halophiles (Halobacteria),
It contains 25% lipid and 75% protein, and it is known that the protein is only one kind of bacteriorhodopsin. To collect this, bacterial cells are put into distilled water to rupture the cells, centrifuged to obtain a membrane fraction, and then a purple membrane fraction is taken from this by a sucrose density gradient centrifugation method. Removal of sucrose by dialysis gives a purple membrane. Bacteriorhodopsin in purple membrane has a molecular weight of about 26000
In the purple film, it exists as a trimer, heat, acid,
It is known that it has a property that it is resistant to alkali and hardly deteriorates.

本発明では、この紫膜を透明ガラス到のような支持体
上に薄膜状に担持して水分測定に供する。支持体上の紫
膜の厚さは極く薄いものでよく、逆に厚すぎるとその内
部まで水分が浸透して周囲の水分と平衡となるのに時間
を要し、応答が遅くなるおそれがある。
In the present invention, the purple film is supported on a support such as a transparent glass in a thin film form and is subjected to moisture measurement. The thickness of the purple membrane on the support may be extremely thin, and if it is too thick, it takes time for moisture to penetrate into the inside and equilibrate with the surrounding moisture, and the response may be slow. is there.

紫膜をガラス板上に付着させるには、最も簡単には、
紫膜の水懸濁液をガラス板上に一様に塗布したのち乾燥
すればよい。但し、このようにして形成された薄膜は、
極端に乾燥がすすむと、ときによりガラスから剥離する
ことがある。紫膜はマイナス電荷を有しているので、ガ
ラス面上に予じめポリリジン等のプラス電荷を有するも
のを塗布しておき、その上に紫膜の薄膜を形成するよう
にすれば、剥離を軽減するのに有効である。
The easiest way to deposit a purple membrane on a glass plate is to
The aqueous suspension of the purple membrane may be uniformly applied on a glass plate and then dried. However, the thin film thus formed is
If the drying is extremely advanced, it may occasionally peel off from the glass. Since the purple film has a negative charge, a film having a positive charge such as polylysine is applied on the glass surface in advance, and if a thin film of the purple film is formed thereon, peeling can be performed. It is effective to reduce.

また、紫膜は化学修飾剤により部分的に変性させても
水分に対して応答するので、グルタルアルデヒド等の架
橋剤で紫膜を架橋させ、これをガラス板に塗布して架橋
して紫膜の薄膜をガラス板上に形成させてもよい。
Also, since the purple membrane responds to moisture even when partially modified with a chemical modifier, the purple membrane is crosslinked with a crosslinking agent such as glutaraldehyde, and this is applied to a glass plate and crosslinked to form a purple membrane. May be formed on a glass plate.

更に他の方法としては、上述のようにして形成した紫
膜の薄膜上に、透明な透湿性の隔膜を重ねて測定に供す
ることもできる。隔膜としては微細な物理的細孔を多数
有する多孔性の合成樹脂フイルムや、物理的細孔によら
ずに分子構造的に透湿性の合成樹脂フイルムなどを用い
ることができる。このようなフイルムはポリアミノ酸ウ
レタンをはじめとして多数知られており、市販もされて
いる。
As still another method, a transparent moisture-permeable diaphragm can be superimposed on the violet thin film formed as described above for measurement. As the diaphragm, a porous synthetic resin film having many fine physical pores, a synthetic resin film having a molecular structure irrespective of the physical pores, and the like can be used. Many such films are known, including polyamino acid urethane, and are commercially available.

ガラス板上に形成した薄膜状の紫膜を大気中に放置す
ると、大気中の水分量に応じて、各波長における吸光度
およびその吸光度のパターンが変化する。例えば第1図
は、1ml中に数ミリgの紫膜を含有する水溶液を、透明
ガラス板上に吸光度が0.9となるように塗布し、常温の
室内に放置して乾燥させることにより形成した紫膜の薄
膜について、雰囲気の水分により吸光度および吸収スペ
クトルがどのように変化するかを示す実験例の一つであ
る。実験は密閉し得る容器を、吸光度測定装置の試料室
内に設置し、その光源と受光部とを結ぶ光路上に、これ
に直交するように紫膜を担持したガラス板を介在させ、
常温下で容器内を減圧にしながら、紫膜の吸収スペクト
ルを測定した。第1図より明らかな如く、大気圧下にお
いては最大の吸光度を示す波長(λmax)が約565nmにあ
ったものが、減圧度が増加するにつれて最大吸光度を示
す波長は漸次短波長側に移り、約10-2torrの真空下では
約533nmになっている(なお、本実験において雰囲気を
減圧にしたのは、雰囲気の水分濃度を低下させる為であ
る。吸光度が圧力に依存しないことは、乾燥ガスを容器
内に導入して圧力を大気圧に復帰させても吸光度が変化
しないことにより確認できる)。
When a thin purple film formed on a glass plate is left in the air, the absorbance at each wavelength and the pattern of the absorbance change according to the amount of moisture in the air. For example, FIG. 1 shows a purple solution formed by applying an aqueous solution containing several milligrams of a purple film in 1 ml onto a transparent glass plate so that the absorbance becomes 0.9, and leaving it in a room at room temperature to dry. It is one of the experimental examples showing how the absorbance and the absorption spectrum of a thin film change with the moisture in the atmosphere. In the experiment, a sealable container was installed in the sample chamber of the absorbance measuring device, and a glass plate carrying a purple film was interposed on the optical path connecting the light source and the light receiving unit, so as to be orthogonal to this.
The absorption spectrum of the purple membrane was measured while reducing the pressure in the container at room temperature. As is clear from FIG. 1, the wavelength (λmax) showing the maximum absorbance under the atmospheric pressure was about 565 nm, but the wavelength showing the maximum absorbance gradually shifted to the shorter wavelength side as the degree of decompression increased, It is about 533 nm under a vacuum of about 10 -2 torr. (The atmosphere was depressurized in this experiment to reduce the moisture concentration in the atmosphere. It can be confirmed that the absorbance does not change even when the pressure is returned to the atmospheric pressure by introducing the gas into the container).

第1図から明らかなように、雰囲気の水分含有量によ
り最大吸光度を示す波長が異なるので、両者の関係を示
す検量線を作成しておけば、未知試料についてその吸光
度曲線を測定することにより、その水分含有量を決定す
ることができる。また、別法として、ガラス板に紫膜を
担持し、これを用いて特定の波長、例えば565nmにおけ
る吸光度と水分含有量との関係を示す検量線を作成し、
次いで未知試料について当該波長における吸光度を測定
することによりその水分含有量を決定することもでき
る。
As is clear from FIG. 1, the wavelength showing the maximum absorbance differs depending on the moisture content of the atmosphere. If a calibration curve showing the relationship between the two is created, the absorbance curve of the unknown sample is measured. Its moisture content can be determined. Alternatively, as another method, a violet film is supported on a glass plate, and a calibration curve showing the relationship between the absorbance and the water content at a specific wavelength, for example, 565 nm, is prepared using the film,
The water content of the unknown sample can then be determined by measuring the absorbance at that wavelength.

第2図は、第1図の実験と同様に、ガラス板担持紫膜
を、密閉し得る容器内に設置し、これに吸光度測定装置
の光路上に配置して、常温下、真空ポンプで容器内を漸
次減圧にし次いで瞬間的に常圧に復帰させたときに吸光
度がどのように変化するかを測定したものである。光源
としては発光ダイオード(東芝TLY124、λmax=585nm,
△λ=32nm)を用い、受光部としては光電変換素子(浜
松ホトニックス社S1113,λmax=560nm(540〜580nmにお
いて殆んど一定)〕を用いた。第2図から明らかなよう
に、真空ポンプを作動させると透過率が漸次増加して行
くが、ポンプを停止させて弁を開放にし外気を侵入させ
ると、透過率が瞬間的に大きく低下し、短時間で真空ポ
ンプ作動前の状態に復帰する。すなわち紫膜の水分によ
る吸光度変化は可逆性を有しており、且つその応答は極
めてすみやかであることがわかる。
FIG. 2 shows that, as in the experiment of FIG. 1, the glass plate-supported purple membrane was placed in a vessel that can be hermetically sealed, placed on the optical path of an absorbance measuring device, and the vessel was pumped at room temperature by a vacuum pump. It is a measurement of how the absorbance changes when the inside is gradually reduced in pressure and then instantaneously returned to normal pressure. As a light source, a light emitting diode (Toshiba TLY124, λmax = 585nm,
Δλ = 32 nm), and a photoelectric conversion element (S1113, Hamamatsu Photonics, λmax = 560 nm (almost constant at 540 to 580 nm)) was used as a light receiving section. , The transmittance gradually increases.However, when the pump is stopped and the valve is opened to allow outside air to enter, the transmittance instantaneously drops significantly and returns to the state before the vacuum pump was activated in a short time. In other words, it can be seen that the absorbance change due to moisture in the purple membrane is reversible and the response is very prompt.

<効 果> 本発明によれは雰囲気中の微量水分を、何らの試薬を
用いることなく、迅速かつ正確に測定することができ
る。また、本発明によれば、雰囲気中の微量水分を連続
的に測定することもできる。
<Effect> According to the present invention, a trace amount of water in the atmosphere can be measured quickly and accurately without using any reagent. Further, according to the present invention, a trace amount of water in the atmosphere can be continuously measured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、雰囲気の水分含有量により、紫膜の可視部の
吸収スペクトルがどのように変化するかを示す実験の1
例である。図において、雰囲気の水分含有量は、Native
PMからDried PMに向けて減少している。 第2図は、雰囲気の水分含有量が急激に変化したとき
に、紫膜の透過率がどのように変化するかを示す実験の
1例である。
FIG. 1 is an experiment 1 showing how the absorption spectrum of the visible part of the purple film changes depending on the moisture content of the atmosphere.
It is an example. In the figure, the moisture content of the atmosphere is Native
It decreases from PM to Dried PM. FIG. 2 is an example of an experiment showing how the transmittance of the purple film changes when the moisture content of the atmosphere changes rapidly.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】含水量を測定せんとする流体と紫膜とを直
接又は透湿性隔壁を介して接触させ、水分に依存して変
化する紫膜の吸光度を測定することを特徴とする水分測
定法
1. A method for measuring water content, comprising bringing a fluid whose water content is to be measured into contact with a purple membrane directly or via a moisture-permeable partition, and measuring the absorbance of the purple membrane which changes depending on moisture. Law
【請求項2】紫膜として化学修飾剤により部分的に変成
したものを用いることを特徴とする請求項(1)記載の
水分測定法
2. The method according to claim 1, wherein the purple membrane is partially modified with a chemical modifier.
JP6440688A 1988-03-17 1988-03-17 Moisture measurement method using purple membrane Expired - Lifetime JP2582846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6440688A JP2582846B2 (en) 1988-03-17 1988-03-17 Moisture measurement method using purple membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6440688A JP2582846B2 (en) 1988-03-17 1988-03-17 Moisture measurement method using purple membrane

Publications (2)

Publication Number Publication Date
JPH01237438A JPH01237438A (en) 1989-09-21
JP2582846B2 true JP2582846B2 (en) 1997-02-19

Family

ID=13257397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6440688A Expired - Lifetime JP2582846B2 (en) 1988-03-17 1988-03-17 Moisture measurement method using purple membrane

Country Status (1)

Country Link
JP (1) JP2582846B2 (en)

Also Published As

Publication number Publication date
JPH01237438A (en) 1989-09-21

Similar Documents

Publication Publication Date Title
EP0172623B1 (en) Optical measuring device using a spectral modulation sensor having an optically resonant structure
US4415666A (en) Enzyme electrode membrane
Hedborg et al. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices
US4945230A (en) Optical measuring device using a spectral modulation sensor having an optically resonant structure
US4059405A (en) Method and apparatus for analysis of constituent carried in fibrous medium
EP0119623B1 (en) Multilayer analytical element for non-isotopic assay
JPH11246593A6 (en) Protection of proteins and the like
IE52848B1 (en) Homogeneous specific binding assay device, method for preparing it and analytical method using the device
US20130063717A1 (en) Laminated structure for measuring reflected light intensity, device containing laminated structure for measuring reflected light intensity, and method for measuring film thickness and/or mass and/or viscosity of thin film
JP2582846B2 (en) Moisture measurement method using purple membrane
RoseNBERG et al. Dye-binding methods
JPS59166844A (en) Analyzer for component held in fibrous medium
EP0114403A1 (en) Multilayer analytical element
Baszkin et al. Adsorption of bovine submaxillary mucin on silicons contact lenses grafted with poly (vinyl pyrrolidone)
Nack et al. Molecular mobility and oxygen permeability in amorphous bovine serum albumin films
Sirotkin et al. Heat effects and water sorption by human serum albumin on its suspension in water-dimethyl sulphoxide mixtures
JPS5987343A (en) Measuring device for deciding co2 component in sample
US6124103A (en) Arrangement and method of examining hydrophilic macromolecules in an aqueous solution
Brynda et al. Adorption of human fibrinogen and human serum albumin onto polyethylene
Hulme et al. Internally-referenced resonant mirror for chemical and biochemical sensing
JPH01267457A (en) Multilayer analytical element and preparation thereof
JPH0719927B2 (en) Photoelectric conversion device using avidin-biotin system and manufacturing method thereof
CN111672544B (en) Paper-based biochemical reagent storage method based on water two-phase system
JPH07301591A (en) Moisture measuring method
SU1695183A1 (en) Method of determination of optical parameters of thin porous films