JPH07301466A - Plural-stage heat pump apparatus - Google Patents
Plural-stage heat pump apparatusInfo
- Publication number
- JPH07301466A JPH07301466A JP9409194A JP9409194A JPH07301466A JP H07301466 A JPH07301466 A JP H07301466A JP 9409194 A JP9409194 A JP 9409194A JP 9409194 A JP9409194 A JP 9409194A JP H07301466 A JPH07301466 A JP H07301466A
- Authority
- JP
- Japan
- Prior art keywords
- pressure side
- refrigerant
- end opening
- intercooler
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/05—Compression system with heat exchange between particular parts of the system
- F25B2400/053—Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、中間冷却器から気相状
態で取り出した冷媒を高圧側圧縮機・凝縮器・高圧側膨
張手段の順に通過させて、湿り蒸気状態で前記中間冷却
器に戻す高圧側循環系と、前記中間冷却器から液相状態
で取り出した冷媒を低圧側膨張手段・蒸発器・低圧側圧
縮機の順に通過させて、過熱気相状態で前記中間冷却器
に戻す低圧側循環系とを備える複段ヒートポンプ装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention allows a refrigerant taken out from an intercooler in a vapor phase state to pass through a high pressure side compressor, a condenser and a high pressure side expansion means in this order, and then to the intercooler in a wet vapor state. The high pressure side circulation system to be returned and the refrigerant taken out in the liquid phase state from the intercooler are passed through the low pressure side expansion means, the evaporator and the low pressure side compressor in this order, and returned to the intercooler in the superheated gas phase state. The present invention relates to a multi-stage heat pump device including a side circulation system.
【0002】[0002]
【従来の技術】この種の複段ヒートポンプ装置は、高圧
側膨張手段からの湿り蒸気状態の冷媒と、低圧側圧縮機
からの過熱気相状態の冷媒とを中間冷却器に戻して熱交
換させて、高圧側圧縮機に供給する冷媒の温度を下げる
ので、単一の冷媒循環系を備えている単段ヒートポンプ
装置に比べて、圧縮機による圧縮効率の低下を防止でき
るとともに、高圧側圧縮機から吐出される冷媒の温度を
下げて、高圧側圧縮機に使用されている潤滑油の劣化を
抑制できるが、2. Description of the Related Art A multi-stage heat pump device of this type returns a refrigerant in a wet vapor state from a high pressure side expansion means and a refrigerant in a superheated gas phase state from a low pressure side compressor to an intermediate cooler for heat exchange. As a result, the temperature of the refrigerant supplied to the high-pressure side compressor is lowered, so compared to a single-stage heat pump device equipped with a single refrigerant circulation system, it is possible to prevent a decrease in compression efficiency due to the compressor and at the same time, It is possible to reduce the temperature of the refrigerant discharged from the compressor, and suppress the deterioration of the lubricating oil used in the high-pressure side compressor.
【0003】従来、図6に示すように、湿り蒸気状態の
冷媒と過熱気相状態の冷媒とを中間冷却器01内で直接
熱交換させるにあたって、湿り蒸気状態の冷媒を高圧側
膨張手段から中間冷却器01の内部気相域GAに戻す高
圧側還路02と、過熱気相状態の冷媒を低圧側圧縮機か
ら中間冷却器01の内部気相域GAに戻す低圧側還路0
3との各々を当該中間冷却器01の器壁04に連通接続
して、それらの開口面05,06を器壁内面に形成し、
湿り蒸気状態の冷媒と過熱気相状態の冷媒との各々をそ
れらの開口面05,06から中間冷却器01内に各別に
流入させて、これらの冷媒どうしが自発的に当該中間冷
却器01内で混ざり合いながら互いに接触することで直
接熱交換させている。図中、07は、熱交換した後の気
相状態の冷媒を、高圧側圧縮機に導出する気相冷媒導出
路、08は、熱交換した後の液相状態の冷媒を低圧側膨
張手段に導出する液相冷媒導出路である。Conventionally, as shown in FIG. 6, when the refrigerant in the wet vapor state and the refrigerant in the superheated gas phase are directly heat-exchanged in the intermediate cooler 01, the refrigerant in the wet vapor state is transferred from the high pressure side expansion means to the intermediate state. The high pressure side return path 02 for returning to the internal gas phase area GA of the cooler 01 and the low pressure side return path 0 for returning the refrigerant in a superheated gas phase state from the low pressure side compressor to the internal gas phase area GA of the intercooler 01.
3 and 3 are connected to the inner wall 04 of the intercooler 01 so that their opening surfaces 05 and 06 are formed on the inner surface of the inner wall.
Each of the refrigerant in the wet vapor state and the refrigerant in the superheated gas phase is caused to individually flow into the intercooler 01 through their opening faces 05 and 06, and these refrigerants spontaneously move in the intercooler 01. Heat is directly exchanged by contacting each other while mixing with each other. In the figure, reference numeral 07 denotes a gas-phase refrigerant discharge path for discharging the refrigerant in the gas-phase state after heat exchange to the high-pressure side compressor, 08 denotes the refrigerant in the liquid-phase state after heat exchange to the low-pressure side expansion means. It is a liquid-phase refrigerant outlet path to be led out.
【0004】[0004]
【発明が解決しようとする課題】この為、湿り蒸気状態
の冷媒と過熱気相状態の冷媒との熱交換が不充分で、過
熱気相状態の冷媒が充分冷却されないまま高圧側圧縮機
に供給され易いので、高圧側圧縮機に供給される冷媒の
温度が充分に下がりにくく、圧縮機による圧縮効率の低
下を効果的に防止できない欠点がある。Therefore, heat exchange between the refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state is insufficient, and the refrigerant in the superheated vapor phase state is supplied to the high pressure side compressor without being sufficiently cooled. Therefore, the temperature of the refrigerant supplied to the high-pressure side compressor is hard to be lowered sufficiently, and there is a drawback that the reduction of compression efficiency due to the compressor cannot be effectively prevented.
【0005】又、湿り蒸気状態の冷媒と過熱気相状態の
冷媒との熱交換が不充分であることに起因して、湿り蒸
気状態の冷媒のうちの液分が充分加熱されずに高圧側圧
縮機に吸い込まれることも生じ易く、高圧側圧縮機の運
転エネルギーがそのような液分を蒸発させる為に無駄に
消費されて、供給された冷媒を所定圧力まで圧縮するに
要する高圧側圧縮機の運転エネルギーが増大する欠点が
あり、更には、高圧側圧縮機が液圧縮状態で運転された
場合には、当該高圧側圧縮機を破損し易い欠点もある。In addition, due to insufficient heat exchange between the refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state, the liquid component of the refrigerant in the wet vapor state is not sufficiently heated and is on the high pressure side. It is easy to be sucked into the compressor, and the operating energy of the high-pressure side compressor is wastefully consumed to evaporate such a liquid component, and the high-pressure side compressor required to compress the supplied refrigerant to a predetermined pressure. In addition, there is a drawback that the operating energy is increased, and when the high-pressure side compressor is operated in a liquid compression state, the high-pressure side compressor is easily damaged.
【0006】本発明は上記実情に鑑みてなされたもので
あって、湿り蒸気状態の冷媒と過熱気相状態の冷媒との
各々を中間冷却器内に流入させる手段を工夫することに
より、湿り蒸気状態の冷媒と過熱気相状態の冷媒との熱
交換を促進して、圧縮機による圧縮効率の低下を効果的
に防止でき、しかも、高圧側圧縮機の運転エネルギーの
増大やその破損を招きにくい複段ヒートポンプ装置を提
供することを目的とする。The present invention has been made in view of the above-mentioned circumstances, and is devised by devising a means for causing each of the refrigerant in a wet vapor state and the refrigerant in a superheated vapor phase state to flow into the intercooler. The heat exchange between the refrigerant in the superheated state and the refrigerant in the superheated gas phase state can be promoted to effectively prevent the compression efficiency from being lowered by the compressor, and further, the operating energy of the high-pressure side compressor is not likely to increase or be damaged. It is an object to provide a multi-stage heat pump device.
【0007】又、本発明は、湿り蒸気状態の冷媒と過熱
気相状態の冷媒との接触確率を大きくして、これらの冷
媒どうしの熱交換を効率良く促進することを目的とす
る。It is another object of the present invention to increase the contact probability between the refrigerant in the wet vapor state and the refrigerant in the superheated gas phase state to efficiently promote heat exchange between these refrigerants.
【0008】又、本発明は、湿り蒸気状態の冷媒と過熱
気相状態の冷媒とが攪拌混合され易くして、これらの冷
媒どうしの熱交換を効率良く促進することを目的とす
る。Another object of the present invention is to facilitate the stirring and mixing of the wet vapor state refrigerant and the superheated vapor phase state refrigerant so as to efficiently promote heat exchange between these refrigerants.
【0009】又、本発明は、湿り蒸気状態の冷媒のうち
から液分を効率よく分離して、高圧側圧縮機の運転エネ
ルギーの増大やその破損を効果的に防止できるようにす
ることを目的とする。Another object of the present invention is to efficiently separate the liquid content from the refrigerant in the wet vapor state so as to effectively prevent an increase in operating energy of the high-pressure side compressor and its damage. And
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
の本発明の特徴構成は、中間冷却器から気相状態で取り
出した冷媒を高圧側圧縮機・凝縮器・高圧側膨張手段の
順に通過させて、湿り蒸気状態で前記中間冷却器に戻す
高圧側循環系と、前記中間冷却器から液相状態で取り出
した冷媒を低圧側膨張手段・蒸発器・低圧側圧縮機の順
に通過させて、過熱気相状態で前記中間冷却器に戻す低
圧側循環系とを備える複段ヒートポンプ装置であって、
冷媒を湿り蒸気状態で前記高圧側膨張手段から前記中間
冷却器に戻す高圧側還路の路端開口面と、冷媒を過熱気
相状態で前記低圧側圧縮機から前記中間冷却器に戻す低
圧側還路の路端開口面とを、前記中間冷却器の内部気相
域において近接状態で対向させてある点にある。To achieve the above object, the present invention is characterized in that a refrigerant taken out in a vapor phase from an intercooler is passed through a high pressure side compressor, a condenser and a high pressure side expansion means in this order. Then, the high-pressure side circulation system returning to the intercooler in the wet vapor state, and the refrigerant taken out in the liquid phase state from the intercooler is passed through the low-pressure side expansion means, the evaporator, and the low-pressure side compressor in this order, A multi-stage heat pump device comprising a low pressure side circulation system returned to the intercooler in a superheated gas phase state,
A road end opening surface of a high pressure side return path that returns the refrigerant from the high pressure side expansion means to the intercooler in a wet vapor state, and a low pressure side that returns the refrigerant from the low pressure side compressor to the intercooler in a superheated gas phase state. The point is that the path end opening surface of the return path is opposed in close proximity in the internal gas phase region of the intercooler.
【0011】前記高圧側還路の路端部と前記低圧側還路
の路端部との各々をその路端開口面側ほど拡径するフー
ド状に形成して、その拡径路端開口面どうしを近接対向
させてある場合は、湿り蒸気状態の冷媒と過熱気相状態
の冷媒との接触確率を大きくして、これらの冷媒どうし
の熱交換を効率良く促進することができる。Each of the road end portion of the high-pressure side return passage and the road end portion of the low-pressure side return passage is formed in a hood shape whose diameter increases toward the road end opening surface side, and the enlarged diameter road end opening surfaces are connected to each other. When the two are closely opposed to each other, it is possible to increase the contact probability between the refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state, and efficiently promote heat exchange between these refrigerants.
【0012】前記高圧側還路の路端開口面と前記低圧側
還路の路端開口面との各々を複数に分割して、前記中間
冷却器の内部気相域で分散配置してある場合は、湿り蒸
気状態の冷媒と過熱気相状態の冷媒とが攪拌混合され易
く、これらの冷媒どうしの熱交換を効率良く促進するこ
とができる。In the case where each of the road end opening surface of the high pressure side return passage and the road end opening surface of the low pressure side return passage is divided into a plurality of parts and dispersed in the internal gas phase region of the intercooler. The refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state are easily agitated and mixed, and heat exchange between these refrigerants can be efficiently promoted.
【0013】前記高圧側還路の路端開口面と低圧側還路
の路端開口面とを、縦長に形成した前記中間冷却器の縦
軸芯方向で対向させてある場合は、湿り蒸気状態の冷媒
のうちから液分を効率よく分離して、高圧側圧縮機の運
転エネルギーの増大やその破損を効果的に防止できる。When the road end opening surface of the high pressure side return passage and the road end opening surface of the low pressure side return passage are opposed to each other in the longitudinal axis direction of the vertically formed intercooler, a wet steam state is obtained. It is possible to effectively separate the liquid content from the refrigerant, and effectively prevent an increase in operating energy of the high-pressure side compressor and its damage.
【0014】[0014]
【作用】高圧側還路の路端開口面と低圧側還路の路端開
口面とを対向させてあるから、湿り蒸気状態の冷媒が路
端開口面から流出する方向と、過熱気相状態の冷媒が路
端開口面から流出する方向とが互いに逆向きになり、し
かも、それらの路端開口面どうしを近接させてあるか
ら、湿り蒸気状態の冷媒と過熱気相状態の冷媒とが互い
に能率良く衝突して熱交換しながら混合され、更に、こ
れらの混合された後の冷媒が路端開口面の間から中間冷
却器の内部気相域に流入する。[Function] Since the road end opening surface of the high pressure side return path and the road end opening surface of the low pressure side return path are opposed to each other, the direction in which the refrigerant in the wet vapor state flows out from the road end opening surface and the superheated gas phase state The refrigerant flows out from the road end opening face in opposite directions, and since the road end opening faces are close to each other, the refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state are mutually opposite. The refrigerant efficiently mixes and is mixed while exchanging heat, and these mixed refrigerants further flow into the internal gas phase region of the intercooler from between the road end opening surfaces.
【0015】従って、湿り蒸気状態の冷媒と過熱気相状
態の冷媒との熱交換が、これらの冷媒が中間冷却器内に
流入する前に、予め積極的に衝突させて混合することに
よって促進され、又、路端開口面の間から中間冷却器内
に流入する冷媒はその中間冷却器内への流入に先立つ衝
突で既に混合されているから、中間冷却器内に流入した
状態においてもその熱交換が更に促進される。Therefore, heat exchange between the refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state is promoted by positively colliding and mixing the refrigerants before they flow into the intercooler. Also, since the refrigerant flowing into the intercooler from between the road end openings is already mixed by the collision prior to the inflow to the intercooler, the heat of the refrigerant even in the intercooler flows. Exchange is further promoted.
【0016】そして、湿り蒸気状態の冷媒と過熱気相状
態の冷媒との熱交換が促進される結果、湿り蒸気状態の
冷媒の液分のうちでも比較的軽くて高圧側圧縮機に吸い
込まれ易い細かな液分が蒸発し易いから、そのような液
分の高圧側圧縮機への供給も抑制できる。As a result of heat exchange between the refrigerant in the wet vapor state and the refrigerant in the superheated gas phase being promoted, even the liquid content of the refrigerant in the wet vapor state is relatively light and easily sucked into the high pressure side compressor. Since fine liquid components easily evaporate, the supply of such liquid components to the high-pressure side compressor can also be suppressed.
【0017】高圧側還路の路端部と低圧側還路の路端部
との各々をその路端開口面側ほど拡径するフード状に形
成して、その拡径路端開口面どうしを近接対向させてあ
る場合は、湿り蒸気状態の冷媒と過熱気相状態の冷媒と
の衝突領域が広くなる。Each of the road end portion of the high pressure side return passage and the road end portion of the low pressure side return passage is formed in a hood shape whose diameter increases toward the road end opening surface side, and the enlarged diameter road end opening surfaces are close to each other. When they are opposed to each other, the collision region between the wet vapor state refrigerant and the superheated gas state refrigerant becomes wider.
【0018】高圧側還路の路端開口面と低圧側還路の路
端開口面との各々を複数に分割して、中間冷却器の内部
気相域で分散配置してある場合は、湿り蒸気状態の冷媒
と過熱気相状態の冷媒との衝突領域を極力広く設定しな
がら、これらの冷媒の路端開口面からの吐出速度の低下
を抑制できるので、湿り蒸気状態の冷媒と過熱気相状態
の冷媒とを路端開口面の対向方向で互いに深く入り込ま
せる状態に攪拌混合させることができる。When each of the road end opening surface of the high pressure side return path and the road end opening surface of the low pressure side return path is divided into a plurality of parts and dispersed in the internal gas phase region of the intercooler, the wetness While setting the collision region between the refrigerant in the vapor state and the refrigerant in the superheated vapor phase state as wide as possible, it is possible to suppress the decrease in the discharge speed of these refrigerants from the road end opening surface, so that the refrigerant in the wet vapor state and the superheated vapor phase The refrigerant in the state can be agitated and mixed with each other in such a state that the refrigerant intrudes deeply in the direction opposite to the road end opening surface.
【0019】高圧側還路の路端開口面と低圧側還路の路
端開口面とを、縦長に形成した中間冷却器の縦軸芯方向
で対向させてある場合は、路端開口面間の横側近くに中
間冷却器の器壁が上下方向に沿って位置しており、しか
も、路端開口面の間から中間冷却器の内部気相域に流入
しようとする冷媒はその器壁に向けて吹き出すから、器
壁に向けて吹き出した冷媒のうちの慣性力が大きい液分
が中間冷却器の器壁内面に衝突して、当該器壁内面に付
着凝集し易い。When the road end opening surface of the high pressure side return passage and the road end opening surface of the low pressure side return passage are opposed to each other in the longitudinal axis direction of the vertically formed intercooler, between the road end opening surfaces. The wall of the intercooler is located near the lateral side of the tank along the vertical direction, and the refrigerant that is about to flow into the internal gas phase region of the intercooler from between the road end openings is on the wall. Since it is blown out toward the vessel wall, a liquid component having a large inertial force in the refrigerant blown toward the vessel wall collides with the vessel wall inner surface of the intercooler, and tends to adhere and aggregate on the vessel wall inner surface.
【0020】[0020]
【発明の効果】請求項1記載の複段ヒートポンプ装置
は、湿り蒸気状態の冷媒と過熱気相状態の冷媒との熱交
換を促進することができ、過熱気相状態の冷媒を充分冷
却してから高圧側圧縮機に供給し易いので、高圧側圧縮
機に供給される冷媒の温度が下がり易く、圧縮機による
圧縮効率の低下を効果的に防止できる。The multi-stage heat pump device according to claim 1 can promote heat exchange between the refrigerant in the wet vapor state and the refrigerant in the superheated gas phase state, and sufficiently cool the refrigerant in the superheated gas phase state. Since it is easy to supply the high-pressure side compressor to the high-pressure side compressor, the temperature of the refrigerant supplied to the high-pressure side compressor is easily lowered, and the reduction of the compression efficiency by the compressor can be effectively prevented.
【0021】しかも、湿り蒸気状態の冷媒と過熱気相状
態の冷媒とを中間冷却器内に流入する前に積極的に衝突
させて、それらの熱交換を促進した分、冷媒どうしの熱
交換が不充分であったことに起因する、湿り蒸気状態の
冷媒のうちの液分の高圧側圧縮機への供給を抑制できる
ので、高圧側圧縮機の運転エネルギーの増大やその破損
を招きにくい。In addition, the refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state are positively collided with each other before flowing into the intercooler to promote heat exchange between them, so that heat exchange between the refrigerants is performed. Since it is possible to suppress the supply of the liquid of the refrigerant in the wet vapor state to the high-pressure side compressor due to the insufficient amount, it is unlikely that the operating energy of the high-pressure side compressor increases or the damage thereof.
【0022】請求項2記載の複段ヒートポンプ装置は、
湿り蒸気状態の冷媒と過熱気相状態の冷媒との接触確率
が大きく、これらの冷媒どうしの熱交換を効率良く促進
することができる。The multi-stage heat pump device according to claim 2 is
The probability of contact between the refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state is high, and heat exchange between these refrigerants can be efficiently promoted.
【0023】請求項3記載の複段ヒートポンプ装置は、
湿り蒸気状態の冷媒と過熱気相状態の冷媒とが攪拌混合
され易く、これらの冷媒どうしの熱交換を効率良く促進
することができる。The multi-stage heat pump device according to claim 3 is
The refrigerant in the wet vapor state and the refrigerant in the superheated vapor phase state are easily stirred and mixed, and heat exchange between these refrigerants can be efficiently promoted.
【0024】請求項4記載の複段ヒートポンプ装置は、
湿り蒸気状態の冷媒のうちの液分を効率よく分離して、
高圧側圧縮機の運転エネルギーの増大やその破損を効果
的に防止できる。The multi-stage heat pump device according to claim 4 is
Efficiently separates the liquid component of the refrigerant in the wet vapor state,
It is possible to effectively prevent an increase in operating energy of the high-pressure side compressor and its damage.
【0025】[0025]
〔第1実施例〕図2,図3は複段ヒートポンプ装置の一
例としての空調装置を示し、室外空気A1を吸放熱対象
とする室外熱交換器1と、室外熱交換器1に室外空気A
1を通風する外気ファンF1と,室内空気の冷却・加熱
を行う室内熱交換器2と、室内熱交換器2で調整した空
気A2を空調対象域へ送給する給気ファンF2とが設け
られ、室外熱交換器1と室内熱交換器2とに亘って冷媒
を循環させることで、室外空気A1を吸放熱源として、
室内空気を冷却又は加熱する二段圧縮ヒートポンプ回路
が構成されている。[First Embodiment] FIGS. 2 and 3 show an air conditioner as an example of a multi-stage heat pump device, which includes an outdoor heat exchanger 1 for absorbing and radiating outdoor air A1, and an outdoor air exchanger 1 having outdoor air A1.
1, an outdoor air fan F1 that ventilates 1, an indoor heat exchanger 2 that cools and heats indoor air, and an air supply fan F2 that sends the air A2 adjusted by the indoor heat exchanger 2 to an air conditioning target area. By circulating the refrigerant between the outdoor heat exchanger 1 and the indoor heat exchanger 2, the outdoor air A1 is used as a heat absorption / radiation source,
A two-stage compression heat pump circuit that cools or heats indoor air is configured.
【0026】尚、前記二段圧縮ヒートポンプ回路におい
て、黒塗りの太線はその部分の冷媒状態が高圧気相であ
ることを示し、ハッチングを施した太線はその部分の冷
媒状態が液相であることを示し、点ハッチングを施した
太線はその部分の冷媒状態が気液二相(湿り蒸気)であ
ることを示し、白抜きの太線はその部分の冷媒状態が低
圧気相であることを示している。In the two-stage compression heat pump circuit, the thick black line indicates that the refrigerant state of that portion is the high-pressure vapor phase, and the thick hatched line indicates that the refrigerant state of that portion is the liquid phase. , The thick line with dot hatching indicates that the refrigerant state of that part is gas-liquid two-phase (wet vapor), and the white thick line indicates that the refrigerant state of that part is low-pressure gas phase. There is.
【0027】前記二段圧縮ヒートポンプ回路には、室外
熱交換器1に対する第1膨張弁ex1と、室内熱交換器
2に対する第2膨張弁ex2と、高圧側圧縮機CmHと
低圧側圧縮機CmLとの二つの圧縮機と、これら二つの
圧縮機CmH,CmLと第1膨張弁ex1と第2膨張弁
ex2が接続される中間冷却器3と、高圧側圧縮機Cm
Hから導出される高圧気相状態の冷媒を空調モードに応
じて室外熱交換器1又は室内熱交換器2に択一的に導入
可能な第1、第2電磁弁V1,V2と、空調モードに応
じて室外熱交換器1又は室内熱交換器2から導出される
低圧気相状態の冷媒を低圧側圧縮機CmLに導入可能な
第3、第4電磁弁V3,V4とが設けられている。In the two-stage compression heat pump circuit, a first expansion valve ex1 for the outdoor heat exchanger 1, a second expansion valve ex2 for the indoor heat exchanger 2, a high pressure side compressor CmH and a low pressure side compressor CmL. Two compressors, the two compressors CmH and CmL, the intercooler 3 to which the first expansion valve ex1 and the second expansion valve ex2 are connected, and the high-pressure side compressor Cm.
First and second solenoid valves V1 and V2 that can selectively introduce the high-pressure gas-phase refrigerant that is derived from H into the outdoor heat exchanger 1 or the indoor heat exchanger 2 according to the air conditioning mode, and the air conditioning mode The third and fourth solenoid valves V3 and V4 that can introduce the low-pressure gas-phase refrigerant that is discharged from the outdoor heat exchanger 1 or the indoor heat exchanger 2 into the low-pressure side compressor CmL are provided. .
【0028】前記第1膨張弁ex1と第2膨張弁ex2
と中間冷却器3との間には、室外熱交換器1又は室内熱
交換器2のいずれか一方を蒸発器Eとして機能させると
きには、その蒸発器Eとして機能させる熱交換器に対応
する第1膨張弁ex1又は第2膨張弁ex2が低圧側膨
張手段として機能するよう流路切換可能な第5、第6電
磁弁V5,V6と、室外熱交換器1又は室内熱交換器2
のいずれか他方を凝縮器Cとして機能させるときには、
その凝縮器Cとして機能させる熱交換器に対応する第1
膨張弁ex1又は第2膨張弁ex2が高圧側膨張手段と
して機能するよう流路切換可能な第7、第8電磁弁V
7,V8とが設けられている。The first expansion valve ex1 and the second expansion valve ex2
When either the outdoor heat exchanger 1 or the indoor heat exchanger 2 functions as the evaporator E, the first heat exchanger corresponding to the heat exchanger that functions as the evaporator E is provided between the intermediate cooler 3 and the intercooler 3. The fifth and sixth electromagnetic valves V5 and V6 capable of switching the flow paths so that the expansion valve ex1 or the second expansion valve ex2 functions as the low-pressure side expansion means, and the outdoor heat exchanger 1 or the indoor heat exchanger 2
When causing the other of the above to function as the condenser C,
The first corresponding to the heat exchanger to function as the condenser C
The seventh and eighth electromagnetic valves V whose flow paths can be switched so that the expansion valve ex1 or the second expansion valve ex2 functions as the high-pressure side expansion means.
7 and V8 are provided.
【0029】前記中間冷却器3は縦長の円筒形タンクを
設けて構成され、高圧側膨張手段として機能する第1膨
張弁ex1又は第2膨張弁ex2を通過した湿り蒸気状
態の冷媒を中間冷却器3に戻す高圧側還路4と、冷媒を
過熱気相状態で低圧側圧縮機CmLから中間冷却器3に
戻す低圧側還路5とが連通接続され、高圧側還路4から
導入した湿り蒸気状態の冷媒と、低圧側還路5から導入
した過熱気相状態の冷媒とを中間冷却器3内で直接熱交
換させて、熱交換した後の気相状態の冷媒を、タンク頂
部に開口する状態で連通接続した第1導出路6から高圧
側圧縮機CmHに導出し、熱交換した後の液相状態の冷
媒を、タンク底部に開口する状態で連通接続した第2導
出路7から低圧側膨張手段として機能する第1膨張弁e
x1又は第2膨張弁ex2に導出するよう構成されてい
る。The intercooler 3 is constructed by providing a vertically long cylindrical tank, and the refrigerant in a wet vapor state that has passed through the first expansion valve ex1 or the second expansion valve ex2 that functions as high-pressure side expansion means is intercooled. Wet steam introduced from the high pressure side return passage 4 is connected to the high pressure side return passage 4 for returning the refrigerant to the low pressure side return passage 5 for returning the refrigerant from the low pressure side compressor CmL to the intercooler 3 in a superheated gas phase state. The refrigerant in the state and the refrigerant in the superheated gas phase introduced from the low pressure side return passage 5 are directly heat-exchanged in the intercooler 3, and the refrigerant in the gas phase after heat exchange is opened to the top of the tank. State, the refrigerant in the liquid phase after being discharged to the high-pressure side compressor CmH from the first discharge path 6 connected in a communicating state and being heat-exchanged is connected to the second discharge path 7 connected in a state of opening at the tank bottom to the low pressure side. First expansion valve e functioning as expansion means
x1 or the second expansion valve ex2.
【0030】尚、図中、白抜きの電磁弁は開いている状
態を示し、黒塗りの電磁弁は閉じている状態を示してい
る。In the figure, the open solenoid valve shows the open state, and the black solenoid valve shows the closed state.
【0031】図2は、空調モードを冷房モードに切り換
えた状態の二段圧縮ヒートポンプ回路を示し、この冷房
モードでは、第2電磁弁V2と第3電磁弁V3と第5電
磁弁V5と第8電磁弁V8を閉じるとともに、第1電磁
弁V1と第4電磁弁V4と第6電磁弁V6と第7電磁弁
V7を開いて、中間冷却器3から気相状態で取り出した
冷媒を高圧側圧縮機CmH・凝縮器Cとして機能させる
室外熱交換器1・高圧側膨張手段としての第1膨張弁e
x1の順に通過させて、湿り蒸気状態で中間冷却器3に
戻す高圧側循環系と、中間冷却器3から液相状態で取り
出した冷媒を低圧側膨張手段としての第2膨張弁ex2
・蒸発器Eとして機能させる室内熱交換器2・低圧側圧
縮機CmLの順に通過させて、過熱気相状態で中間冷却
器3に戻す低圧側循環系とが構成されている。FIG. 2 shows the two-stage compression heat pump circuit in a state where the air conditioning mode is switched to the cooling mode. In this cooling mode, the second solenoid valve V2, the third solenoid valve V3, the fifth solenoid valve V5, and the eighth solenoid valve V5. The solenoid valve V8 is closed, and the first solenoid valve V1, the fourth solenoid valve V4, the sixth solenoid valve V6, and the seventh solenoid valve V7 are opened to compress the refrigerant taken out from the intercooler 3 in the vapor phase on the high pressure side. Machine CmH / outdoor heat exchanger 1 functioning as condenser C / first expansion valve e as high pressure side expansion means
x1 and the second high-pressure side circulation system for returning to the intercooler 3 in the wet vapor state, and the second expansion valve ex2 as the low-pressure side expansion means for the refrigerant taken out from the intercooler 3 in the liquid phase state.
The indoor heat exchanger 2 that functions as the evaporator E and the low-pressure side compressor CmL are passed in this order, and the low-pressure side circulation system that returns to the intercooler 3 in the superheated gas phase state is configured.
【0032】又、図3は、空調モードを暖房モードに切
り換えた状態の二段圧縮ヒートポンプ回路を示し、この
暖房モードでは、第2電磁弁V2と第3電磁弁V3と第
5電磁弁V5と第8電磁弁V8を開くとともに、第1電
磁弁V1と第4電磁弁V4と第6電磁弁V6と第7電磁
弁V7を閉じて、中間冷却器3から気相状態で取り出し
た冷媒を高圧側圧縮機CmH・凝縮器Cとして機能させ
る室内熱交換器2・高圧側膨張手段としての第2膨張弁
ex2の順に通過させて、湿り蒸気状態で中間冷却器3
に戻す高圧側循環系と、中間冷却器3から液相状態で取
り出した冷媒を低圧側膨張手段としての第1膨張弁ex
1・蒸発器Eとして機能させる室外熱交換器1・低圧側
圧縮機CmLの順に通過させて、過熱気相状態で中間冷
却器3に戻す低圧側循環系とが構成されている。FIG. 3 shows the two-stage compression heat pump circuit in a state where the air conditioning mode is switched to the heating mode. In this heating mode, the second solenoid valve V2, the third solenoid valve V3, and the fifth solenoid valve V5 are connected. The eighth solenoid valve V8 is opened, and the first solenoid valve V1, the fourth solenoid valve V4, the sixth solenoid valve V6, and the seventh solenoid valve V7 are closed, so that the refrigerant taken out from the intercooler 3 in a gas phase state has a high pressure. The side compressor CmH, the indoor heat exchanger 2 functioning as the condenser C, and the second expansion valve ex2 as the high-pressure side expansion means are passed in this order, and the intercooler 3 is in a wet vapor state.
And the first expansion valve ex as the low pressure side expansion means for the high pressure side circulation system for returning to the low temperature side and the refrigerant taken out from the intercooler 3 in the liquid phase state.
1. A low-pressure side circulation system that passes through the outdoor heat exchanger 1 that functions as the evaporator E and the low-pressure side compressor CmL in this order and returns to the intercooler 3 in the superheated gas phase state.
【0033】図1に示すように、前記高圧側還路4と低
圧側還路5の各々は中間冷却器3の器壁3aに管を貫通
状態で連通接続して構成され、高圧側還路4の路端部4
aと低圧側還路5の路端部5aの各々をその路端開口面
側ほど球面状に拡径するフード状に形成して拡径路端開
口面4b,5bが形成され、これらの路端開口面4b,
5bどうしを、中間冷却器3の内部気相域GAにおい
て、低圧側還路5の路端開口面5bを上側に、高圧側還
路4の路端開口面4bを下側に夫々位置させて、近接状
態で中間冷却器3の縦軸芯Xと同芯状に互いに対向させ
てある。As shown in FIG. 1, each of the high-pressure side return passage 4 and the low-pressure side return passage 5 is constructed by connecting a pipe to the device wall 3a of the intercooler 3 in a penetrating state. Roadside 4
a and the road end portion 5a of the low-pressure side return passage 5 are formed in a hood shape in which the road end opening surface side is expanded in a spherical shape to form enlarged diameter road end opening surfaces 4b and 5b. Opening surface 4b,
5b are positioned in the internal gas phase region GA of the intercooler 3 such that the road end opening surface 5b of the low pressure side return passage 5 is located on the upper side and the road end opening surface 4b of the high pressure side return passage 4 is located on the lower side. In the close state, they are concentrically opposed to the longitudinal axis X of the intercooler 3.
【0034】尚、蒸発器として機能する室外熱交換器1
又は室内熱交換器2を通過して導出された温度の低い低
圧気相状態の冷媒を低圧側圧縮機CmLに導出する冷媒
流路8の途中に、その温度の低い低圧気相状態の冷媒と
中間冷却器3底部に溜まっている液相状態の冷媒とを熱
交換させる熱交換器9を設けて、第2導出路7から導出
される液相状態の冷媒を温度の低い低圧気相状態の冷媒
で冷却するので、液相状態が安定している過冷却状態の
冷媒を低圧側膨張手段として機能する第1膨張弁ex1
又は第2膨張弁ex2に供給でき、低圧側膨張手段によ
る減圧膨張を安定化できる効果がある。The outdoor heat exchanger 1 functioning as an evaporator
Alternatively, a low-temperature low-pressure gas phase refrigerant having a low temperature may be provided in the middle of the refrigerant flow path 8 for discharging the low-temperature low-pressure gas phase refrigerant discharged through the indoor heat exchanger 2 to the low-pressure side compressor CmL. The heat exchanger 9 for exchanging heat with the refrigerant in the liquid phase accumulated at the bottom of the intercooler 3 is provided, and the refrigerant in the liquid phase discharged from the second outlet passage 7 is in the low-pressure gas phase state with a low temperature. Since it is cooled by the refrigerant, the first expansion valve ex1 functions as a low-pressure side expansion means for the refrigerant in a supercooled state in which the liquid state is stable.
Alternatively, it can be supplied to the second expansion valve ex2, and there is an effect that the decompression expansion by the low pressure side expansion means can be stabilized.
【0035】〔第2実施例〕図4は、路端開口面の別実
施例を示し、高圧側還路4の路端開口面4bと低圧側還
路5の路端開口面5bとの各々を複数に分割して、中間
冷却器3の内部気相域GA内に分散配置してある。[Second Embodiment] FIG. 4 shows another embodiment of the road end opening surface, showing the road end opening surface 4b of the high pressure side return path 4 and the road end opening surface 5b of the low pressure side return path 5, respectively. Are divided into a plurality of parts and are dispersedly arranged in the internal gas phase region GA of the intercooler 3.
【0036】前記路端開口面4b,5bの各々は、高圧
側還路4及び低圧側還路5の路端部4a,5aを複数本
の分岐管4c,5cで構成して、それらの分岐管端部の
開口からなる複数の分岐路端開口面4d,5dに分割さ
れ、高圧側還路4の分岐路端開口面4dと低圧側還路5
の分岐路端開口面5dとを近接状態で分岐管軸芯と同芯
状に互いに対向させて配置してある。その他の構成は第
1実施例と同様である。In each of the road end opening surfaces 4b and 5b, the road end portions 4a and 5a of the high pressure side return path 4 and the low pressure side return path 5 are constituted by a plurality of branch pipes 4c and 5c, respectively. It is divided into a plurality of branch passage end opening surfaces 4d and 5d each having an opening at the pipe end, and the branch passage end opening surface 4d of the high pressure side return passage 4 and the low pressure side return passage 5 are divided.
The branch passage end opening surface 5d is arranged in a state of being close to and concentric with the branch pipe axis. Other configurations are similar to those of the first embodiment.
【0037】〔第3実施例〕図5は、高圧側還路4の路
端開口面4bを上側に、低圧側還路5の路端開口面5b
を下側に夫々位置させてある実施例を示し、本実施例の
場合、高圧側還路4から戻される湿り蒸気状態の冷媒が
上方側から下方側に向けて中間冷却器3内に吹き込まれ
易いから、湿り蒸気状態の冷媒のうちの慣性力の大きい
液分が中間冷却器3の底部に向けて落下し易く、湿り蒸
気状態の冷媒のうちから液分を中間冷却器底部に分離し
易い効果がある。その他の構成は第1実施例と同様であ
る。[Third Embodiment] FIG. 5 shows the road end opening surface 4b of the high pressure side return passage 4 on the upper side, and the road end opening surface 5b of the low pressure side return passage 5 in the upper side.
In the present embodiment, the refrigerant in the wet vapor state returned from the high pressure side return passage 4 is blown into the intercooler 3 from the upper side to the lower side. Since it is easy, the liquid component having a large inertial force in the wet vapor state refrigerant easily drops toward the bottom of the intercooler 3, and the liquid component from the wet vapor state refrigerant is easily separated to the intercooler bottom part. effective. Other configurations are similar to those of the first embodiment.
【0038】〔その他の実施例〕 1.本発明による複段ヒートポンプ装置は、冷房や暖房
の空調用途に限定されるものでなく、冷熱や温熱を扱う
各種分野の種々の用途に適用でき、三段以上の複段ヒー
トポンプ装置であっても良い。 2.高圧側還路の路端部と低圧側還路の路端部の各々を
径が略一定の筒状に形成して、その路端開口面どうしを
近接状態で互いに対向させて実施しても良い。 3.高圧側還路の路端開口面と低圧側還路の路端開口面
とを近接状態で水平方向から互いに対向させて実施して
も良い。 4.高圧側還路の路端開口面の開口面積と、低圧側還路
の路端開口面の開口面積とが異なっていても良い。Other Embodiments 1. The multi-stage heat pump device according to the present invention is not limited to air-conditioning applications such as cooling and heating, and can be applied to various applications in various fields dealing with cold heat and hot heat, even if it is a multi-stage heat pump device with three or more stages. good. 2. Even if each of the road end of the high-pressure side return passage and the road end of the low-pressure side return passage is formed in a cylindrical shape with a substantially constant diameter, and the road end opening surfaces are opposed to each other in a close state. good. 3. The road end opening surface of the high-pressure side return passage and the road end opening surface of the low-pressure side return passage may be opposed to each other in the horizontal direction in a close state. 4. The opening area of the road end opening surface of the high pressure side return passage may be different from the opening area of the road end opening surface of the low pressure side return passage.
【0039】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.
【図1】要部の一部破断拡大側面図FIG. 1 is a partially cutaway enlarged side view of a main part.
【図2】冷房モードの冷媒循環系を示す冷媒回路図FIG. 2 is a refrigerant circuit diagram showing a refrigerant circulation system in a cooling mode.
【図3】暖房モードの冷媒循環系を示す冷媒回路図FIG. 3 is a refrigerant circuit diagram showing a refrigerant circulation system in a heating mode.
【図4】第2実施例を示す要部の拡大断面図FIG. 4 is an enlarged cross-sectional view of a main part showing a second embodiment.
【図5】第3実施例を示す要部の拡大断面図FIG. 5 is an enlarged cross-sectional view of a main part showing a third embodiment.
【図6】従来例を示す要部の拡大断面図FIG. 6 is an enlarged sectional view of a main part showing a conventional example.
3 中間冷却器 4 高圧側還路 4a 路端部 4b 路端開口面 5 低圧側還路 5a 路端部 5b 路端開口面 ex1 高圧側膨張手段(低圧側膨張手段) ex2 高圧側膨張手段(低圧側膨張手段) C 凝縮器 CmH 高圧側圧縮機 CmL 低圧側圧縮機 E 蒸発器 GA 内部気相域 3 Intercooler 4 High pressure side return path 4a Road end 4b Road end opening surface 5 Low pressure side return path 5a Road end 5b Road end opening surface ex1 High pressure side expansion means (low pressure side expansion means) ex2 High pressure side expansion means (low pressure) Side expansion means) C condenser CmH high pressure side compressor CmL low pressure side compressor E evaporator GA internal gas phase region
Claims (4)
した冷媒を高圧側圧縮機(CmH)・凝縮器(C)・高
圧側膨張手段(ex1又はex2)の順に通過させて、
湿り蒸気状態で前記中間冷却器(3)に戻す高圧側循環
系と、前記中間冷却器(3)から液相状態で取り出した
冷媒を低圧側膨張手段(ex2又はex1)・蒸発器
(E)・低圧側圧縮機(CmL)の順に通過させて、過
熱気相状態で前記中間冷却器(3)に戻す低圧側循環系
とを備える複段ヒートポンプ装置であって、 冷媒を湿り蒸気状態で前記高圧側膨張手段(ex1又は
ex2)から前記中間冷却器(3)に戻す高圧側還路
(4)の路端開口面(4b)と、冷媒を過熱気相状態で
前記低圧側圧縮機(CmL)から前記中間冷却器(3)
に戻す低圧側還路(5)の路端開口面(5b)とを、前
記中間冷却器(3)の内部気相域(GA)において近接
状態で対向させてある複段ヒートポンプ装置。1. A refrigerant taken out in a vapor phase from an intercooler (3) is passed through a high pressure side compressor (CmH), a condenser (C), and a high pressure side expansion means (ex1 or ex2) in this order,
A high pressure side circulation system which returns to the intermediate cooler (3) in a wet vapor state, and a low pressure side expansion means (ex2 or ex1) / evaporator (E) for the refrigerant taken out in a liquid phase state from the intermediate cooler (3). A multi-stage heat pump device including a low-pressure side circulation system that passes through a low-pressure side compressor (CmL) in order and returns to the intercooler (3) in a superheated gas phase state, wherein the refrigerant is in a wet vapor state and The road end opening surface (4b) of the high pressure side return path (4) returning from the high pressure side expansion means (ex1 or ex2) to the intercooler (3) and the low pressure side compressor (CmL) in a superheated vapor phase state of the refrigerant. ) To the intercooler (3)
A multi-stage heat pump device in which the low-pressure side return path (5) to be returned to the front end is opposed to the road end opening surface (5b) in close proximity in the internal gas phase region (GA) of the intercooler (3).
と前記低圧側還路(5)の路端部(5a)との各々をそ
の路端開口面側ほど拡径するフード状に形成して、その
拡径路端開口面(4b,5b)どうしを近接対向させて
ある請求項1記載の複段ヒートポンプ装置。2. A road end portion (4a) of the high pressure side return path (4).
And the road end portion (5a) of the low pressure side return passage (5) are formed in a hood shape in which the diameter is increased toward the road end opening surface side, and the expanded road end opening surfaces (4b, 5b) are connected to each other. The multi-stage heat pump device according to claim 1, which are closely opposed to each other.
b)と前記低圧側還路(5)の路端開口面(5b)との
各々を複数に分割して、前記中間冷却器(3)の内部気
相域(GA)で分散配置してある請求項1又は2記載の
複段ヒートポンプ装置。3. A road end opening surface (4) of the high pressure side return path (4).
b) and the road end opening surface (5b) of the low-pressure side return path (5) are each divided into a plurality of parts, which are dispersed in the internal gas phase region (GA) of the intercooler (3). The multi-stage heat pump device according to claim 1.
b)と前記低圧側還路(5)の路端開口面(5b)と
を、縦長に形成した前記中間冷却器(3)の縦軸芯方向
で対向させてある請求項1、2又は3記載の複段ヒート
ポンプ装置。4. A road end opening surface (4) of the high pressure side return path (4).
b) and the road end opening surface (5b) of the low pressure side return path (5) are opposed to each other in the longitudinal axis direction of the vertically elongated intercooler (3). The described multi-stage heat pump device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9409194A JPH07301466A (en) | 1994-05-06 | 1994-05-06 | Plural-stage heat pump apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9409194A JPH07301466A (en) | 1994-05-06 | 1994-05-06 | Plural-stage heat pump apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07301466A true JPH07301466A (en) | 1995-11-14 |
Family
ID=14100790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9409194A Pending JPH07301466A (en) | 1994-05-06 | 1994-05-06 | Plural-stage heat pump apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07301466A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008124868A1 (en) * | 2007-04-13 | 2008-10-23 | Renewable Energy Systems Limited | Power generation and energy recovery systems and methods |
US7802441B2 (en) | 2004-05-12 | 2010-09-28 | Electro Industries, Inc. | Heat pump with accumulator at boost compressor output |
US7849700B2 (en) | 2004-05-12 | 2010-12-14 | Electro Industries, Inc. | Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system |
CN102419025A (en) * | 2011-11-30 | 2012-04-18 | 合肥凌达压缩机有限公司 | Double-stage enthalpy-increasing air conditioning system |
-
1994
- 1994-05-06 JP JP9409194A patent/JPH07301466A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7802441B2 (en) | 2004-05-12 | 2010-09-28 | Electro Industries, Inc. | Heat pump with accumulator at boost compressor output |
US7849700B2 (en) | 2004-05-12 | 2010-12-14 | Electro Industries, Inc. | Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system |
WO2008124868A1 (en) * | 2007-04-13 | 2008-10-23 | Renewable Energy Systems Limited | Power generation and energy recovery systems and methods |
CN102419025A (en) * | 2011-11-30 | 2012-04-18 | 合肥凌达压缩机有限公司 | Double-stage enthalpy-increasing air conditioning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4639541B2 (en) | Cycle using ejector | |
CN100422664C (en) | Ejector cycle device | |
US20190210430A1 (en) | Heat pump system for vehicle | |
JP4604909B2 (en) | Ejector type cycle | |
US10076946B2 (en) | Heat pump system for vehicle | |
JP4923838B2 (en) | Ejector refrigeration cycle | |
CN100414221C (en) | Ejector cycle device | |
US10744854B2 (en) | Air conditioning system for vehicle and method for controlling same | |
US11085707B2 (en) | Internal heat exchanger double-tube structure of air conditioning system having alternative refrigerant applied thereto | |
KR102170459B1 (en) | Air conditioner system for vehicle | |
KR20180112681A (en) | Device for distributing the coolant in an air-conditioning system of a motor vehicle | |
KR102250000B1 (en) | Heat pump system for vehicle | |
CN102472534A (en) | Air conditioner | |
JP2007024412A (en) | Ejector type refrigeration cycle | |
KR20100091657A (en) | Freezing cycle of air conditioner for vehicles | |
JP4930214B2 (en) | Refrigeration cycle equipment | |
JP2004216934A (en) | Heater for air conditioner | |
JP2007040611A (en) | Vapor compression type refrigeration cycle device | |
JPH07301466A (en) | Plural-stage heat pump apparatus | |
JP2009138952A (en) | Brine type cooling device | |
KR101619182B1 (en) | Liquid refrigerant supercooling device for air conditioner system of vehicle | |
JP6537928B2 (en) | Heat exchanger and heat pump system | |
JP6606254B2 (en) | Gas-liquid separator | |
KR20120090538A (en) | Dual pipe type internal heat exchanger | |
KR101544878B1 (en) | Cooling system of air conditioner for vehicle |