JPH07301463A - Method for operating heat pump - Google Patents

Method for operating heat pump

Info

Publication number
JPH07301463A
JPH07301463A JP6145232A JP14523294A JPH07301463A JP H07301463 A JPH07301463 A JP H07301463A JP 6145232 A JP6145232 A JP 6145232A JP 14523294 A JP14523294 A JP 14523294A JP H07301463 A JPH07301463 A JP H07301463A
Authority
JP
Japan
Prior art keywords
water
condenser
gas
temperature
cooled condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6145232A
Other languages
Japanese (ja)
Other versions
JP3492420B2 (en
Inventor
Yoriyuki Oguri
頼之 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14523294A priority Critical patent/JP3492420B2/en
Publication of JPH07301463A publication Critical patent/JPH07301463A/en
Application granted granted Critical
Publication of JP3492420B2 publication Critical patent/JP3492420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To normally operate a heat pump with new substitute refrigerant gas by allowing a specific allowance of the heat exchanging capacity of a condenser to remain in the condenser after heat radiating calorie of the refrigerant gas is eliminated when the gas is heat exchanged with cooling water in a water-cooled compressor. CONSTITUTION:A compressor 1, a water-cooled condenser 2A, an expansion valve 3 and an evaporator 4 are sequentially connected by a tube, refrigerant gas and oil are heat exchanged with cooling water from a water cooler 5 fed by a water pump 6 to be liquefied by the condenser 2A. In this case, the condenser 2A is so constructed as to be extended until the heat radiating calorie of the gas is all eliminated and that an allowance of 5% or more of the capacity of the entire condenser 2A is retained as 2a' thereafter at the time of a normal operation. The temperature of the gas output in contact with the water is lowered, for example, by 1 deg.C or more to completely combine the gas and the oil, thereby guaranteeing the normal operation of a cooler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[産業上の利用分野]この発明は新代替冷
媒ガス、塩素を含まず、オゾン層にも影響しない、一般
にHFC134aと云われる冷媒ガスを使用して、ヒー
トポンプを正常に作動させるものである。
[Industrial field of application] [0001] The present invention uses a new alternative refrigerant gas, a refrigerant gas that does not contain chlorine and does not affect the ozone layer, and is generally called HFC134a. is there.

【0002】[従来の技術]今迄のヒートポンプに使用
されている冷媒ガス、フロンR22、又はR12を使用
し、大気温33゜C時のコンデンサー水冷のクーラーの
運転状態を説明すると、コンプレッサーより67゜Cで
吐出される冷媒ガスは、水冷コンデンサーで大気温と同
温の33゜Cに、クーリングタワーで冷却された冷却水
と熱交換し、冷却水は38゜Cに上昇してコンデンサー
を出て、冷媒ガスは43゜Cで凝縮してコンデンサーを
出るのである。
[Prior Art] The operation state of a condenser water-cooling cooler at an atmospheric temperature of 33 ° C. using a refrigerant gas, Freon R22 or R12, which has been used in a heat pump up to now, will be described. The refrigerant gas discharged at ° C exchanges heat with the cooling water cooled by the cooling tower to 33 ° C which is the same temperature as the atmospheric temperature in the water-cooled condenser, and the cooling water rises to 38 ° C and exits the condenser. The refrigerant gas condenses at 43 ° C and leaves the condenser.

【0003】67゜Cのガスが33゜Cの冷却水と熱交
換して水温は38°Cに上昇し、熱源であるガス温度が
43゜Cと云うのも当然の数値である。そのためコンデ
ンサー水冷のクーラーの凝縮温度は、大気温プラス10
゜Cの43゜Cとなっていたのである。この43゜C凝
縮時の冷媒ガスの状態を液面計より見ると泡状態であ
り、冷媒ガスの放熱カロリーは残っているのである。ク
ーラーは少し多い目に冷媒ガスを入れて放熱カロリーを
残し、泡状態で運転した方が効率はよく、多少ガスが抜
けても運転に差支えがなかったのである。今迄の冷媒ガ
ス、フロガスR12、R22等はこの運転方法で充分ヒ
ートポンプは作動していたのである。しかしフロンガス
は全廃に向って居り、新たに開発された新代替冷媒ガス
HFC134aは、今迄のクーラーにそのまゝ使用した
のでは、冷媒ガスとオイルは充分に融合せず、クーラー
の運転中に冷媒ガスとオイルは分離して、クーラーの運
転は不可能となるのである。又HFC134aは低圧用
のフロンR12の代替を主に考えられて居り、高圧用の
R22の冷媒ガスの代替などは考えられていないのであ
る。
It is a matter of course that the 67 ° C gas exchanges heat with the 33 ° C cooling water to raise the water temperature to 38 ° C, and the temperature of the heat source gas is 43 ° C. Therefore, the condensing temperature of the condenser water-cooled cooler is the atmospheric temperature plus 10
It was 43 ° C, which was ° C. The state of the refrigerant gas at the time of condensation at 43 ° C. is a bubble state when viewed from the liquid level gauge, and the heat radiation calorie of the refrigerant gas remains. It was more efficient for the cooler to put the refrigerant gas into the slightly larger amount of heat to leave heat radiating calories, and to operate in the bubble state was more efficient, and there was no problem in operation even if the gas escaped to some extent. Up to now, the heat pump has been operating sufficiently with this operating method for the refrigerant gas, the flow gas R12, R22 and the like. However, CFCs are going to be abolished, and if the newly developed new alternative refrigerant gas HFC134a is used as it is for the conventional cooler, the refrigerant gas and the oil will not be sufficiently fused and the The refrigerant gas and the oil are separated, and the operation of the cooler becomes impossible. Further, the HFC134a is mainly considered as a substitute for the low pressure CFC R12, and is not considered as a substitute for the high pressure R22 refrigerant gas.

【0004】[発明が解決しようとする課題]そこでこ
の発明はコンプレッサーで冷媒ガスが圧縮されて吐出さ
れる際、同時に蒸発して送り出されるオイルを、コンデ
ンサー内で冷媒ガスと完全に融合させると共に、冷媒ガ
スを完全液化して泡をなくして、膨張弁での冷媒ガスの
通過をよくし、新代替冷媒ガスHFC134aでヒート
ポンプを正常に作動させるものである。
[Problems to be Solved by the Invention] Therefore, according to the present invention, when the refrigerant gas is compressed and discharged by the compressor, the oil vaporized and sent at the same time is completely fused with the refrigerant gas in the condenser. The refrigerant gas is completely liquefied to eliminate bubbles, improve the passage of the refrigerant gas through the expansion valve, and normally operate the heat pump with the new alternative refrigerant gas HFC134a.

【0005】[課題を解決するための手段]この発明を
図面について説明すると図1、コンデンサー水冷の時、
コンプレッサー1、水冷コンデンサー2A、膨張弁3を
高圧ガスパイプ7で結び、膨張弁3、蒸発器4、コンプ
レッサー1を低圧ガスパイプ8で結ぶ。水タンク又はク
ーリングタワー、ラヂエーター等水冷却器5を設置し、
水ポンプ6を介した水パイプ9で、水タンク等5と水冷
コンデンサー2Aとを往復に結ぶのである。コンプレッ
サー1より吐出される冷媒ガスは気体であり、同時に送
り出されるオイルも気体である。この気体の冷媒ガスと
オイルは水冷コンデンサー2Aで、水ポンプ6により送
られる冷却水と熱交換して液化するのであるが、水冷コ
ンデンサー2Aを、冷媒ガスの放熱カロリーすべてなく
なる迄延長し、そのあとに通常運転時で、水冷コンデン
サー2A全体の能力の5%以上の余裕を2A′として残
すものである。この2A′は冷媒ガスが異常に多く流れ
た時にそなえると共に、冷媒ガスの液化を更に促進する
ものである。
[Means for Solving the Problems] Referring to the drawings, the present invention will be described with reference to FIG.
The compressor 1, the water-cooled condenser 2A and the expansion valve 3 are connected by a high pressure gas pipe 7, and the expansion valve 3, the evaporator 4 and the compressor 1 are connected by a low pressure gas pipe 8. Install a water cooler 5 such as a water tank or cooling tower, radiator,
A water pipe 9 via a water pump 6 connects the water tank 5 and the water cooling condenser 2A back and forth. The refrigerant gas discharged from the compressor 1 is a gas, and the oil sent out at the same time is also a gas. The refrigerant gas and oil of this gas are liquefied by exchanging heat with the cooling water sent by the water pump 6 in the water-cooled condenser 2A, but the water-cooled condenser 2A is extended until all the heat radiated calories of the refrigerant gas are exhausted, and thereafter. In addition, during normal operation, a margin of 5% or more of the entire capacity of the water cooling condenser 2A is left as 2A '. This 2A 'is provided when an abnormally large amount of refrigerant gas flows, and further promotes liquefaction of the refrigerant gas.

【0006】放熱カロリーがすべてなくなった冷媒ガス
は、完全に液化してガス部分がなくなり、眞空パイプの
中で体積が小さくなり、ガスパイプ内で隙間が出来てガ
スパイプ表面の温度が下がるのである。コンデンサー入
りの水温より、コンデンサー出のガス温度の方が低くな
ると云う、今迄になかった状態になる。コンデンサー入
りの水温より、その水温と接して出るガス温度の方が1
゜C以上低くなると、ガスとオイルの融合は完全であ
り、クーラー運転中容易にガスとオイルは分離しないの
で、クーラーは正常に運転出来るようになる。又冷媒ガ
スが完全に液化して体積が小さくなるので膨張弁の通過
もよく、ガス圧力が低いための冷媒ガスが流れないと云
う問題も生じにくいのである。
Refrigerant gas from which all heat-dissipated calories have disappeared is completely liquefied and the gas portion is lost, the volume is reduced in the empty pipe, a gap is formed in the gas pipe, and the temperature of the gas pipe surface is lowered. The temperature of the gas leaving the condenser will be lower than the temperature of the water inside the condenser, which is a state never before seen. The temperature of the gas coming in contact with the water temperature is 1 rather than the temperature of the water containing the condenser.
When the temperature is lower than ° C, the fusion of gas and oil is complete, and the gas and oil are not easily separated during the operation of the cooler, so that the cooler can operate normally. Further, since the refrigerant gas is completely liquefied and its volume becomes small, it can pass through the expansion valve well, and the problem that the refrigerant gas does not flow due to the low gas pressure hardly occurs.

【0007】図2コンデンサー空冷の時について説明す
ると、コンプレッサー1、空冷コンデンサー2B、膨張
弁3を高圧ガスパイプ7で結び、膨張弁3、蒸発器4、
コンプレッサー1を低圧ガスパイプ8で結ぶ。コンプレ
ッサー1より高圧、高温で吐出された冷媒ガスは空冷コ
ンデンサー2Bに送られ、大気と熱交換して液化するの
であるが、図1、水冷コンデンサー2の時と同様、冷媒
ガスの放熱カロリーがすべてなくなる迄、空冷コンデン
サー2Aの能力を延長し、通常運転で放熱カロリーのな
くなったあとに、空冷コンデンサー2B全体の能力の5
%以上を、2B′として追加するのである。空冷コンデ
ンサーの形状上、熱交換性能上、水冷コンデンサー2A
のように、熱交換が対流でなく、平面であるため、空冷
コンデンサー出の大気温より、空冷コンデンサー出のガ
ス温度の方が1゜C以上低くなると、冷媒ガスとオイル
の融合は充分でクーラーの運転は可能である。
FIG. 2 In the case of condenser air-cooling, the compressor 1, the air-cooling condenser 2B, and the expansion valve 3 are connected by a high-pressure gas pipe 7, and the expansion valve 3, the evaporator 4,
The compressor 1 is connected by a low pressure gas pipe 8. The refrigerant gas discharged from the compressor 1 at high pressure and high temperature is sent to the air-cooled condenser 2B and exchanges heat with the atmosphere to be liquefied. However, as in the case of the water-cooled condenser 2 shown in FIG. The capacity of the air-cooled condenser 2A is extended until it disappears, and after the heat radiation calorie is exhausted in normal operation, the capacity of the entire air-cooled condenser 2B is reduced to 5
% Or more is added as 2B '. Due to the shape of the air-cooled condenser and the heat exchange performance, the water-cooled condenser 2A
Since the heat exchange is not convection and is flat as shown in Fig. 4, when the temperature of the gas from the air-cooled condenser is 1 ° C or more lower than the atmospheric temperature from the air-cooled condenser, the fusion of the refrigerant gas and oil is sufficient. Driving is possible.

【0008】図3に示すように、空冷コンデンサー2B
のあとに、水冷コンデンサー2Aを設置し、図1コンデ
ンサー水冷の時と同様、水タンク、又はクーリングタワ
ー、ラヂエーター等水冷却器5と水冷コンデンサー2A
とを、水ポンプ6を介した水パイプ9で往復に結び、冷
却水が水冷却器5と水冷コンデンサー2Aとを循環する
ようにする。
As shown in FIG. 3, the air-cooled condenser 2B
After that, a water-cooled condenser 2A is installed, and as in the case of the condenser water-cooled in FIG. 1, a water tank, a cooling tower, a radiator, etc., a water cooler 5 and a water-cooled condenser 2A.
Are connected back and forth by a water pipe 9 via a water pump 6 so that cooling water circulates between the water cooler 5 and the water cooling condenser 2A.

【0008】空冷コンデンサー2Bで大気と熱交換して
放熱カロリーの残っている冷媒ガスは、水冷コンデンサ
ー2Aに送られて冷却水と熱交換するのである。この時
も冷媒ガスが放熱カロリーのなくなったあとにコンデン
サー能力全体の5%以上をコンデンサ2A′として追加
する。この放熱カロリーがすべてなくなると云うのは、
今迄のクーラーの基本数値、コンデンサー入り水温33
゜C、コンデンサー出の水温38°C、冷媒ガス凝縮温
度43゜Cでコンデンサーを出る各5゜C差でなく、冷
却水の温度とガス温度が同温度となることである。この
時もコンデンサー2A入りの水温よりも、コンデンサー
2A出のガス温度を1゜C以上低くするとクーラーは正
常に運転出来るのである。
The refrigerant gas that exchanges heat with the atmosphere in the air-cooled condenser 2B and retains heat radiation calories is sent to the water-cooled condenser 2A to exchange heat with the cooling water. Also at this time, 5% or more of the entire capacity of the condenser is added as the condenser 2A 'after the heat radiation of the refrigerant gas is exhausted. The fact that all these heat release calories are gone means
Cooler basic values so far, condenser water temperature 33
The temperature of the cooling water and the temperature of the gas are the same, not the difference of 5 ° C at the condenser, the temperature of the water discharged from the condenser is 38 ° C, and the condensation temperature of the refrigerant gas is 43 ° C. Also at this time, the cooler can operate normally if the gas temperature of the condenser 2A is lowered by 1 ° C or more than the water temperature of the condenser 2A.

【0009】空冷コンデンサー2Bのあとに水冷コンデ
ンサー2Aを設置するのは、クーリングタワー、ラヂエ
ーター等水冷却器5を小さくして水冷クーラーの特性を
出せる丈でなく、今迄ある空冷クーラーを新代替冷媒ガ
ス134aで運転する時に、水冷コンデンサー2Aを追
加するのである。水冷コンデンサー2Aと2A′は一体
に製作しても同様であり、又空冷コンデンサー2Bと2
B′とも一体に製作してもよいのである。
The water-cooled condenser 2A is installed after the air-cooled condenser 2B because the cooling tower, radiator, and other water coolers 5 are made smaller so that the characteristics of the water-cooled cooler can be obtained, and the existing air-cooled cooler is a new alternative refrigerant gas. The water cooling condenser 2A is added when operating at 134a. Even if the water-cooled condensers 2A and 2A 'are manufactured integrally, it is the same, and the air-cooled condensers 2B and 2A are
It may be manufactured integrally with B '.

【0010】図4に自動車、クレーン等に取り付けたク
ーラーで、新代替冷媒ガス134aを使用する状態を示
す。空冷コンデンサー2Bのあとに、水タンク2Cを設
置し、2C内にガスパイプ10を取り付け、コンプレッ
サー1、空冷コンデンサー2B、水タンク内ガスパイプ
10、膨張弁3を高圧ガスパイプ7で結び、膨張弁3、
蒸発器4、コンプレッサー1を低圧ガスパイプ8で結
ぶ。水タンク2Cに水を入れてクーラーを運転すると、
空冷コンデンサーで放熱が不充分で、放熱カロリーの残
っている冷媒ガスは、水タンク2C内のガスパイプ10
に入り、水タンク2C内の水と熱交換して放熱する。こ
の時も放熱カロリーすべてなくなる迄ガスパイプ10を
延ばし、そのあとにもガスパイプに余裕を持たせるので
ある。
FIG. 4 shows a state in which a new alternative refrigerant gas 134a is used in a cooler attached to an automobile, a crane or the like. A water tank 2C is installed after the air-cooled condenser 2B, a gas pipe 10 is installed in the 2C, and a compressor 1, an air-cooled condenser 2B, a water tank gas pipe 10 and an expansion valve 3 are connected by a high-pressure gas pipe 7, and an expansion valve 3,
The low pressure gas pipe 8 connects the evaporator 4 and the compressor 1. If you put water in the water tank 2C and run the cooler,
Refrigerant gas with insufficient heat dissipation by the air-cooled condenser and remaining calorie release is the gas pipe 10 in the water tank 2C.
It enters and exchanges heat with the water in the water tank 2C to radiate heat. Also at this time, the gas pipe 10 is extended until all the heat radiation calories are exhausted, and then the gas pipe has a margin.

【0011】放熱カロリーがすべてなくなると、水タン
ク2Cを出たガス温度は、2C内の水温と同温になり、
更にガスパイプも延長すると、2C内の最后に接した水
温よりガス温度は1゜C以上低くなる。しかしこの時水
タンク2Cを出たあとのガスパイプが縦方向にある時
は、液化したガスが充満してガスパイプ内に隙間が出来
ないので、ガス温度は水温より低くならない時がある。
この水タンク2C内の水温度はガスの放熱により、当然
上昇する。水温が上昇すると2Cの水タンクに大気を送
って冷却するか、図4にあるように、膨張弁を出た蒸発
ガスをガスパイプ11で水タンク2C内に引き、ガスバ
ルブ12で流量を調節して、2C内のガスパイプ11で
蒸発させて水温を下げるものである。この水タンク2C
内の水温は大気温度プラス10゜C以内とするとクーラ
ーの運転状態はよくなるのである。
When all the heat radiation calories are exhausted, the temperature of the gas leaving the water tank 2C becomes the same as the temperature of the water in 2C,
Further, if the gas pipe is extended, the gas temperature becomes 1 ° C or more lower than the temperature of the water in contact with the end of 2C. However, at this time, when the gas pipe exiting the water tank 2C is in the vertical direction, the liquefied gas is filled and a gap cannot be formed in the gas pipe, so the gas temperature may not become lower than the water temperature.
The water temperature in the water tank 2C naturally rises due to the heat radiation of the gas. When the water temperature rises, the atmosphere is sent to the water tank of 2C for cooling, or as shown in FIG. 4, the evaporative gas that has flowed out of the expansion valve is drawn into the water tank 2C by the gas pipe 11 and the flow rate is adjusted by the gas valve 12. The water temperature is lowered by evaporating with the gas pipe 11 in 2C. This water tank 2C
If the temperature of the water inside is less than the atmospheric temperature plus 10 ° C, the operating condition of the cooler is improved.

【0012】図5に膨張弁について説明する。コンデン
サーで冷媒ガスとオイルを完全融合させて、完全液化し
たのち膨張弁で減圧、気化させて蒸発器に送るのである
が、通常の膨張弁丈でもクーラーの運転は可能である
が、通常の膨張弁3の前面にガス温度を感知して弁が開
閉する膨張弁、又は図5に示すように蒸発器4を出てコ
ンプレッサー1に至る低圧ガスパイプ8に感温筒13を
取り付け、感知した温度を伝えるパイプ14、及ガスパ
イプ8内の圧力を直接伝えるガスパイプ15の両方を取
り入れて、ガス流量を調節する膨張弁、更に圧力を電子
的に伝える等膨張弁3′を取り付け、膨張弁を3′、3
と2段階にしてクーラーの運転をすると、運転状態は更
によくなるのである。膨張弁3′と蒸発器4とを結ぶガ
スパイプ8′の長さを70cm以上とし、ガス温度を除
々に下げて蒸発器4に送り、気化によるガス温度の急激
な低下をなくして、ガスとオイルの分離を防ぐものであ
る。図7の構成略図によるデーターに示すごとく、膨張
弁3′を出た直后のガス温度24.3゜C、100cm
あとで21.7゜C、220cmあとで13.0゜Cと
ガス温度が除々に低下しているのである。このガスパイ
プ8′の長さは必要により、100cm以上としてよい
のである。膨張弁を3′、3とし、ガスパイプ8′を長
くするのはクーラーを水冷コンデンサーで動かし、排熱
を高温水で取り出す時に効果的である。
The expansion valve will be described with reference to FIG. The condenser gas completely fuses the refrigerant gas and oil, and after completely liquefying, the expansion valve decompresses and vaporizes and sends it to the evaporator.Although it is possible to operate the cooler even with the normal expansion valve length, normal expansion The temperature sensing tube 13 is attached to the expansion valve, which opens and closes by sensing the gas temperature in front of the valve 3, or the low-pressure gas pipe 8 that exits the evaporator 4 and reaches the compressor 1 as shown in FIG. An expansion valve that adjusts the gas flow rate by incorporating both the transmission pipe 14 and the gas pipe 15 that directly transmits the pressure in the gas pipe 8, and an equal expansion valve 3'which electronically transmits the pressure are attached, and the expansion valve 3 ', Three
If the cooler is operated in two stages, the operating condition will be even better. The length of the gas pipe 8'connecting the expansion valve 3'and the evaporator 4 is set to 70 cm or more, and the gas temperature is gradually lowered and sent to the evaporator 4 to eliminate a sudden drop in the gas temperature due to vaporization and to reduce gas and oil. To prevent the separation of. As shown in the data according to the schematic configuration diagram of FIG. 7, the gas temperature immediately after exiting the expansion valve 3 ′ was 24.3 ° C. and 100 cm.
After that, the gas temperature gradually decreased to 21.7 ° C and 220 cm later to 13.0 ° C. The length of the gas pipe 8'may be 100 cm or more, if necessary. The expansion valves 3'and 3 and the lengthening of the gas pipe 8'are effective when the cooler is operated by a water-cooled condenser and the exhaust heat is taken out by high-temperature water.

【0013】[作用]クーラーに新代替冷媒ガスHFC
134aを入れ、コンプレッサー、コンデンサー、蒸発
器を作動させてクーラーの運転を行なうのであるが、コ
ンデンサーで冷媒ガスの放熱カロリーをすべてなくなる
迄放熱して運転するのである。放熱カロリーがすべてな
くなった冷媒ガスは、ガスとオイルは完全に融合し、又
完全に液化する。一旦完全液化したガスとオイルは蒸発
時にも分離を起さない。完全液化した冷媒ガスは泡がな
いので、膨張弁の通加状態もよく、必要量蒸発器に送ら
れ、完全蒸発してクーラーは正常に作動する。クーラー
の運転時夏期は低圧で1.5kgcm〜2.5kgc
位にし、冬期はこれより低くする。
[Operation] A new alternative refrigerant gas HFC for the cooler
The cooler is operated by inserting the compressor 134a and operating the compressor, the condenser and the evaporator, and the condenser is operated by radiating heat until all the heat radiated calories of the refrigerant gas are exhausted. Refrigerant gas with all heat release calories is completely fused with gas and oil and completely liquefied. Once completely liquefied, the gas and oil do not separate even when evaporated. Since the completely liquefied refrigerant gas has no bubbles, the expansion valve is in a well-passed state, is sent to the required amount of the evaporator, and is completely evaporated, so that the cooler operates normally. 1.5kgcm 2 to 2.5kgc at low pressure during summer operation of the cooler
m 2 place, lower in winter.

【0014】[実施例] 実施例1.コンデンサー水冷のクーラーの運転状態を示
す。クーラー能力、2HP、冷媒ガスHFC134a、
2kg、電流値 3.8A.(3相200V) 図6に構成略図、測定個所を示す。 コンプレッサ吐出ガス温度、50.5゜C、
2A1、第1水冷コンデンサー出ガス温度 21.1゜
C、 2A2、第2水冷コンデンサー出ガス温度、
18.2゜C、 第1膨張弁3′出ガス温度、4.
9゜C 第2膨張弁3出ガス温度(蒸発器入りガス
温度)、マイナス0.7゜C、 蒸発器出ガス温度
マイナス4.4゜C コンプレッサー入りガス温
度 マイナス2.2゜C、 ▲11▼ 蒸発器入り大気
温度 14.4゜C、 ▲12▼蒸発器出大気温度
5.8゜C、 ▲13▼ 水冷コンデンサー入水温度
19.8゜C、 ▲14▼ 水冷コンデンサー出水温度
20.6゜C ▲18▼ガス高圧 7.3kgc
、 ▲19▼ ガス低圧 1.8kgcm。この
ように大気温のかなり低い時点であるが、新代替冷媒ガ
スHFC134aを使用したクーラーは正常に作動して
いるのである。
[Embodiment] Embodiment 1. The operating condition of the condenser water-cooled cooler is shown. Cooler capacity, 2HP, refrigerant gas HFC134a,
2 kg, current value 3.8 A. (Three-phase 200V) FIG. 6 shows a schematic diagram of the configuration and measurement points. Compressor discharge gas temperature, 50.5 ° C,
2A1, first water-cooled condenser outlet gas temperature 21.1 ° C, 2A2, second water-cooled condenser outlet gas temperature,
18.2 ° C, first expansion valve 3'outlet gas temperature, 4.
9 ° C 2nd expansion valve 3 outlet gas temperature (gas temperature entering the evaporator), minus 0.7 ° C, evaporator outlet gas temperature minus 4.4 ° C compressor entering gas temperature minus 2.2 ° C, ▲ 11 ▼ Atmosphere temperature entering the evaporator 14.4 ° C, ▲ 12 ▼ Atmosphere temperature exiting the evaporator
5.8 ° C, (13) Water-cooled condenser water temperature
19.8 ° C, ▲ 14 ▼ Water-cooled condenser outlet water temperature 20.6 ° C ▲ 18 ▼ Gas high pressure 7.3kgc
m 2 , ▲ 19 ▼ gas low pressure 1.8 kgcm 2 . Thus, the cooler using the new alternative refrigerant gas HFC134a is operating normally at a time when the atmospheric temperature is considerably low.

【0015】実施例2 空冷コンデンサー2Bのあとに、水タンク2Cを設置し
たクーラーの運転状況、 大分県工業試験場 恒温室 クーラー、空冷セパレート型、2HP、電流値、4.8
A (3相200V) 水タンク水量 15l 新代替冷媒ガスHFC134a
2kg使用 図7に略図、測定個所を示す。 コンプレッサー吐出ガス温度、 94.5゜C、
2B、 空冷コンデンサー出ガス温度、33.4゜
C 2C、水タンク出ガス温度、31.3゜C、
膨張弁3′出10cm出ガス温度、24.3゜C、
膨張弁3′出100cmガス温度 21.7゜C
膨張弁3′出220cmガス温度、13.0゜C
蒸発器出ガス温度 16.0゜C コンプレ
ッサー入り入りガス温度 19。0°C ▲10▼ コ
ンプレッサー表面温度 56.0゜C、 ▲11▼ 蒸
発器入り大気温度 28.0゜C、 ▲12▼ 蒸発器
出大気温度 16.5゜C ▲15▼ 空冷コンデンサ
ー2B入り大気温度 28.0゜C ▲16▼ 空冷コ
ンデサー出大気温度 33。C ▲17▼ 2C、水タ
ンク内水温度 33.0゜C ▲18▼ ガス高圧
9.1kgcm ▲19▼ ガス低圧 2.1Kgc
m2 このような状態で連続運転されているが何ら異常はな
い。他のクーラー等、屋外 屋内等で正常に作動して居
り、屋外でのクーラーの運転状態を測定した大分県工業
試験場の試験書も交付されているのである。
Example 2 Operating condition of a cooler having a water tank 2C installed after an air-cooled condenser 2B, Oita Prefectural Industrial Research Institute constant temperature greenhouse cooler, air-cooled separate type, 2HP, current value, 4.8
A (3 phase 200V) Water tank Water volume 15l New alternative refrigerant gas HFC134a
Use of 2 kg Fig. 7 shows a schematic diagram and measurement points. Compressor discharge gas temperature, 94.5 ° C,
2B, air-cooled condenser outlet gas temperature, 33.4 ° C 2C, water tank outlet gas temperature, 31.3 ° C,
Expansion valve 3'outlet 10 cm outlet gas temperature, 24.3 ° C,
Expansion valve 3'outlet 100 cm gas temperature 21.7 ° C
Expansion valve 3'outlet 220 cm gas temperature, 13.0 ° C
Evaporator outlet gas temperature 16.0 ° C Compressor inlet gas temperature 19.0 ° C ▲ 10 ▼ Compressor surface temperature 56.0 ° C, ▲ 11 ▼ Evaporator atmospheric temperature 28.0 ° C, ▲ 12 ▼ Evaporation Atmosphere temperature 16.5 ° C ▲ 15 ▼ Air temperature with air-cooled condenser 2B 28.0 ° C ▲ 16 ▼ Air temperature from air-cooled condenser 33. C ▲ 17 ▼ 2C, water temperature in water tank 33.0 ° C ▲ 18 ▼ Gas high pressure
9.1kgcm 2 ▲ 19 ▼ Gas low pressure 2.1Kgc
m2 Continuous operation is performed in this state, but there is no abnormality. Other coolers, etc. are operating normally indoors and outdoors, and a test document from the Oita Prefectural Industrial Research Institute, which measures the operating conditions of the cooler outdoors, has also been issued.

【0016】[発明の効果]このようにオゾン層に影響
を与えない、新代替冷媒ガスHFC134aでヒートポ
ンプ、特にクーラーの運転が出来るのである。又HCF
134aの冷媒ガスは、圧力が低くて運転出来るので機
器の損傷も少なくなるのである。
[Effect of the Invention] As described above, the heat pump, particularly the cooler, can be operated by the new alternative refrigerant gas HFC134a which does not affect the ozone layer. Also HCF
Since the refrigerant gas of 134a can be operated at a low pressure, damage to the equipment is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明水冷コンデンサー使用クーラーの構成略
FIG. 1 is a schematic configuration diagram of a cooler using a water-cooled condenser of the present invention.

【図2】本発明空冷コンデンサー使用クーラーの構成略
FIG. 2 is a schematic diagram of a cooler using an air-cooled condenser of the present invention.

【図3】本発明空冷コンデンサーのあとに水冷コンデン
サーを設置したクーラーの構成略図
FIG. 3 is a schematic diagram of a cooler in which a water-cooled condenser is installed after the air-cooled condenser of the present invention.

【図4】本発明空冷コンデンサーのあとに、水タンクの
補助コンデンサー使用クーラーの構成略図
FIG. 4 is a schematic diagram of a cooler using an auxiliary condenser of a water tank after the air-cooled condenser of the present invention.

【図5】本発明蒸発器を出たガス温度と圧力に作動する
膨張弁3′と通常膨張弁3と2段にしたクーラーの構成
略図。
FIG. 5 is a schematic configuration diagram of a two-stage cooler including an expansion valve 3 ′ that operates at the gas temperature and pressure discharged from the evaporator of the present invention and a normal expansion valve 3.

【図6】本発明水冷コンデンサー使用実動クーラーの構
成略図。
FIG. 6 is a schematic configuration diagram of a production cooler using the water-cooled condenser of the present invention.

【図7】本発明空冷コンデンサーのあとに水タンクの補
助コンデンサー使用実動クーラーの構成略図。
FIG. 7 is a schematic configuration diagram of a production cooler using an auxiliary condenser of a water tank after the air-cooled condenser of the present invention.

【符号の説明】[Explanation of symbols]

1‥‥コンプレッサー、 2A‥‥水冷コンデンサー、 2A′‥‥水冷コンデンサー追加部分、 2B‥‥空冷コンデンサー 2B′‥‥空冷コンデンサー追加部分、 2C‥‥水タンク型補助コンデンサー 3‥‥通常膨張弁 3′‥‥低圧ガスの温度と圧力によりガス流量を調節す
る膨張弁 4‥‥蒸発器 5‥‥水タンク、又はクーリングター、ラヂエーター等
水冷却器 6‥‥水ポンプ 7‥‥高圧ガスパイプ 8‥‥低圧ガスパイプ 8′‥‥膨張弁3′より蒸発器に至るガスパイプ 9‥‥水パイプ 10‥‥水タンク2C内を通る高圧ガスパイプ 11‥‥水タンク2C内を通る低圧ガスパイプ 12‥‥水タンク2C内を通る蒸発ガスを調節するバル
ブ 13‥‥感温筒 14‥‥感温筒の温度を膨張弁3′に伝えるパイプ 15‥‥低圧ガスパイプ内の圧力を膨張弁3′に伝える
ガスパイプ
1 ... Compressor, 2A ... Water-cooled condenser, 2A '... Water-cooled condenser additional part, 2B ... Air-cooled condenser 2B' ... Air-cooled condenser additional part, 2C ... Water tank type auxiliary condenser 3 ... Normal expansion valve 3 ' ...... Expansion valve that adjusts gas flow rate by temperature and pressure of low-pressure gas 4 Evaporator 5 Water cooler such as water tank or cooler, radiator 6 Water pump 7 High pressure gas pipe 8 Low pressure Gas pipe 8 '... Gas pipe from expansion valve 3'to evaporator 9 ... Water pipe 10 ... High-pressure gas pipe passing through the water tank 2C 11 ... Low-pressure gas pipe passing through water tank 2C 12 ... Inside the water tank 2C A valve for adjusting the evaporative gas passing therethrough ..... Temperature-sensing cylinder 14 ........ A pipe for transmitting the temperature of the thermosensing cylinder to the expansion valve 3'15..Low-pressure gas pipe Gas pipe to convey the pressure of the expansion valve 3 '

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサー1、水冷コンデンサー2
A、蒸発器4よりなるヒートポンプで、水冷コンデンサ
ー2Aで冷媒ガスと冷却水を熱交換した時、通常運転で
冷媒ガスの放熱カロリーのなくなったあとに、コンデン
サー2Aの熱交換能力の5%以上の余裕をコンデンサー
2Aに残し、コンデンサー入りの水温より、コンデンサ
ー出のガス温度を、1゜C以上低くして運転するヒート
ポンプの運転方法。
1. A compressor 1, a water-cooled condenser 2
When heat exchange between the refrigerant gas and the cooling water is performed by the water-cooled condenser 2A with the heat pump composed of A and the evaporator 4, the heat exchange capacity of the condenser 2A is 5% or more after the heat radiation calorie of the refrigerant gas disappears in the normal operation. A method of operating a heat pump that leaves a margin in the condenser 2A and lowers the temperature of the gas discharged from the condenser by 1 ° C or more than the temperature of water in the condenser.
【請求項2】 コンプレッサー1、空冷コンデンサー2
B、蒸発器4よりなるヒートポンプで、空冷コンデンサ
ー2Bで冷媒ガスと冷却水を熱交換した時、通常運転で
冷媒ガスの放熱カロリーのなくなったあとに、コンデン
サー2Bの熱交換能力の5%以上の余裕をコンデンサー
2Bに残し、コンデンサー2B出の大気温度より、コン
デンサー2B出のガス温度を、1゜C以上低くして運転
するヒートポンプの運転方法。
2. A compressor 1 and an air-cooled condenser 2
B, with the heat pump consisting of the evaporator 4, when the heat exchange between the refrigerant gas and the cooling water is carried out in the air-cooled condenser 2B, the heat exchange capacity of the condenser 2B is 5% or more after the heat radiation calorie of the refrigerant gas disappears in the normal operation. A heat pump operating method in which a margin is left in the condenser 2B and the gas temperature of the condenser 2B is lowered by 1 ° C or more from the atmospheric temperature of the condenser 2B.
【請求項3】 コンプレッサー1、空冷コンサー2B、
蒸発器4よりなるヒートポンプで、空冷コンデンサー2
Bのあとに、水冷コンデンサー2Aを設置し、空冷コン
デンサー2Bで大気と熱交換したあとの冷媒ガスを、水
冷コンデンサー2Aに通し、水冷コンデンサー2Aに入
る水温より、水冷コンデンサー2Aより出のガス温度
を、1゜C以上低くして運転するヒートポンプの運転方
法。
3. A compressor 1, an air cooling controller 2B,
A heat pump consisting of an evaporator 4 and an air-cooled condenser 2
After B, the water-cooled condenser 2A is installed, and the refrigerant gas after heat exchange with the atmosphere in the air-cooled condenser 2B is passed through the water-cooled condenser 2A, and the temperature of the gas discharged from the water-cooled condenser 2A is higher than the water temperature entering the water-cooled condenser 2A. A method of operating a heat pump that operates by lowering it by 1 ° C or more.
【請求項4】 コンプレッサー1、空冷コンデンサー2
B、蒸発器4よりなるヒートポンプで、空冷コンデンサ
ー2Bのあとに、水タンク2Cを設置して、空冷コンデ
ンサー2Bを出た冷媒ガスを、ガスパイプで2C内に通
して、冷媒ガスと水タンク2C内の水とを熱交換し、水
タンク内の水温が上昇すると、水タンク2Cに大気を送
るか、膨張弁を出たあとの蒸発ガスを、ガスパイプで水
タンク2C内に通して水温を冷却し、水タンク内の水温
を大気温+10゜C以内にして、運転するヒートポンプ
の運転方法。
4. A compressor 1, an air-cooled condenser 2
B, a heat pump composed of an evaporator 4, a water tank 2C is installed after the air-cooled condenser 2B, and the refrigerant gas discharged from the air-cooled condenser 2B is passed through the inside of 2C by a gas pipe to cool the refrigerant gas and water tank 2C. When the temperature of the water in the water tank rises by exchanging heat with the water in the water tank, the atmosphere is sent to the water tank 2C, or the evaporative gas after exiting the expansion valve is passed through the water tank 2C by a gas pipe to cool the water temperature. , How to operate the heat pump by operating the water temperature in the water tank within the atmospheric temperature + 10 ° C.
【請求項5】 コンプレッサー1、コンデンサー2、膨
張弁3、蒸発器4よりなるヒートポンプで、通常の膨張
弁3の前面に蒸発ガスの温度、圧力の何れか又は温度、
圧力の双方を感知して作動する膨張弁3′を設置し、膨
張弁を3′、3と複数にして運転するヒートポンプの運
転方法。
5. A heat pump comprising a compressor 1, a condenser 2, an expansion valve 3 and an evaporator 4, wherein the temperature of the evaporative gas, the pressure of the evaporative gas, or the temperature of the evaporative gas is provided in front of the normal expansion valve 3.
A method of operating a heat pump, in which an expansion valve 3'which detects and senses both pressures is installed, and the expansion valves 3'and 3 are provided for operation.
【請求項6】 コンプレッサー1、コンデンサー2、追
加膨張弁3′、通常膨張弁3、蒸発器4よりなるヒート
ポンプで、追加膨張弁3′より、蒸発器4迄のガスパイ
プ8′の長さを70cm以上にしたヒートポンプの運転
方法。
6. A heat pump comprising a compressor 1, a condenser 2, an additional expansion valve 3 ', a normal expansion valve 3 and an evaporator 4, the length of a gas pipe 8'from the additional expansion valve 3'to the evaporator 4 being 70 cm. The heat pump operation method described above.
JP14523294A 1994-05-02 1994-05-02 Operation method of heat pump Expired - Lifetime JP3492420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14523294A JP3492420B2 (en) 1994-05-02 1994-05-02 Operation method of heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14523294A JP3492420B2 (en) 1994-05-02 1994-05-02 Operation method of heat pump

Publications (2)

Publication Number Publication Date
JPH07301463A true JPH07301463A (en) 1995-11-14
JP3492420B2 JP3492420B2 (en) 2004-02-03

Family

ID=15380399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14523294A Expired - Lifetime JP3492420B2 (en) 1994-05-02 1994-05-02 Operation method of heat pump

Country Status (1)

Country Link
JP (1) JP3492420B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937669A (en) * 1998-06-16 1999-08-17 Kodensha Co., Ltd. Heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937669A (en) * 1998-06-16 1999-08-17 Kodensha Co., Ltd. Heat pump type air conditioner

Also Published As

Publication number Publication date
JP3492420B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
CN102203209B (en) Vehicle heating and/or air conditioning method
USRE39924E1 (en) Refrigeration system with modulated condensing loops
US9156333B2 (en) System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows
CN103712278A (en) Air-conditioning system for vehicle
WO2013108636A1 (en) Refrigeration cycle apparatus
JPH0718602B2 (en) Operation method and apparatus for supercritical vapor compression cycle
CN110044093A (en) Two-stage Compression second vapor injection CO2Three-level backheat chiller-heat pump/refrigeration system
JP2008281326A (en) Refrigerating unit and heat exchanger used for the refrigerating unit
JP2010260541A (en) Evaporator assembly for air conditioning system for vehicle, air conditioning system for vehicle, and hvac system for vehicle
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
JPS6329158A (en) Cooling method and cooling device
CN103471302B (en) A kind of wide temperature feed flow liquid low-temperature receiver
JP2011080736A (en) Heat exchange device
CN213873262U (en) Split air conditioner
EP3141857B1 (en) Radiator and supercritical pressure refrigeration cycle using the same
JP3492420B2 (en) Operation method of heat pump
CN214172556U (en) Carbon dioxide heat pump water supply unit
JP3466726B2 (en) Cooler operation method and cooler retrofit method
JP2000292016A (en) Refrigerating cycle
JP3492422B2 (en) Cooler operation method
CN217274955U (en) System and device for energy recovery
CN112268387A (en) Heat pump system
CN106440431B (en) The refrigeration system of cooling unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 11

EXPY Cancellation because of completion of term