JPH07301459A - Heat pump apparatus - Google Patents
Heat pump apparatusInfo
- Publication number
- JPH07301459A JPH07301459A JP9461994A JP9461994A JPH07301459A JP H07301459 A JPH07301459 A JP H07301459A JP 9461994 A JP9461994 A JP 9461994A JP 9461994 A JP9461994 A JP 9461994A JP H07301459 A JPH07301459 A JP H07301459A
- Authority
- JP
- Japan
- Prior art keywords
- phase refrigerant
- liquid
- accumulator
- heating
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、圧縮機に導入される冷
媒から液相冷媒を分離可能なアキュムレーターが設けら
れているヒートポンプ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device provided with an accumulator capable of separating a liquid phase refrigerant from a refrigerant introduced into a compressor.
【0002】[0002]
【従来の技術】従来の冒記ヒートポンプ装置において
は、アキュムレーター内で分離された液相冷媒を積極的
に加熱する加熱手段が設けられていない。2. Description of the Related Art A conventional heat pump device is not provided with a heating means for positively heating the liquid phase refrigerant separated in the accumulator.
【0003】[0003]
【発明が解決しようとする課題】この為、アキュムレー
ター内に多量の液相冷媒が溜まり易く、圧縮機に導入さ
れるべき気相冷媒が不足して、ヒートポンプ装置が所定
の能力を発揮できなくなったり、アキュムレーター内に
溜まった液相冷媒が圧縮機に吸い込まれて、当該圧縮機
が液圧縮状態で運転され易い欠点がある。Therefore, a large amount of liquid-phase refrigerant is likely to accumulate in the accumulator, and the gas-phase refrigerant to be introduced into the compressor is insufficient, so that the heat pump device cannot exert its predetermined ability. Alternatively, there is a drawback that the liquid-phase refrigerant accumulated in the accumulator is sucked into the compressor and the compressor is easily operated in the liquid compression state.
【0004】そして、これらの欠点は、寒冷期における
運転開始時や、凝縮器として機能していた熱交換器を蒸
発器として機能させる状態に切り換えた場合の運転開始
時に特に顕著となる。These drawbacks become particularly noticeable at the start of the operation in the cold season or at the start of the operation when the heat exchanger functioning as the condenser is switched to the function as the evaporator.
【0005】そこで、これらの欠点を解決する手段とし
て、例えば、アキュムレーターで分離された液相冷媒を
積極的に加熱する加熱手段を設けることが考えられる
が、単に加熱手段を設けるだけでは、アキュムレーター
内の気相冷媒がいたずらに加熱されてしまうおそれがあ
る。Therefore, as a means for solving these drawbacks, for example, it is conceivable to provide a heating means for actively heating the liquid-phase refrigerant separated by the accumulator. However, if the heating means is simply provided, the accum There is a risk that the gas-phase refrigerant in the evaporator will be unnecessarily heated.
【0006】本発明は上記実情に鑑みてなされたもので
あって、アキュムレーター内の気相冷媒が過度に加熱さ
れにくい状態で液相冷媒がアキュムレーター内に溜まり
にくいヒートポンプ装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a heat pump device in which a liquid-phase refrigerant is less likely to accumulate in an accumulator in a state in which a gas-phase refrigerant in the accumulator is less likely to be overheated. To aim.
【0007】又、本発明は、液相冷媒がアキュムレータ
ー内に溜まりにくいヒートポンプ装置を、アキュムレー
ター内の気相冷媒が過度に加熱されにくい状態で、能率
よく運転できるようにすることを目的とする。Another object of the present invention is to enable a heat pump device in which a liquid-phase refrigerant is hard to collect in an accumulator to be efficiently operated in a state in which a gas-phase refrigerant in the accumulator is hardly heated excessively. To do.
【0008】又、本発明は、液相冷媒がアキュムレータ
ー内に溜まりにくいヒートポンプ装置を、アキュムレー
ター内の気相冷媒が過度に加熱されにくい状態で、簡易
に運転できるようにすることを目的とする。Another object of the present invention is to make it possible to easily operate a heat pump device in which a liquid-phase refrigerant is less likely to accumulate in an accumulator while the gas-phase refrigerant in the accumulator is less likely to be overheated. To do.
【0009】又、本発明は、液相冷媒がアキュムレータ
ー内に溜まりにくいヒートポンプ装置の構造を簡略化で
きるようにすることを目的とする。Another object of the present invention is to make it possible to simplify the structure of the heat pump device in which the liquid phase refrigerant is less likely to accumulate in the accumulator.
【0010】又、本発明は、ヒートポンプ構造を複雑化
することなく、液相冷媒がアキュムレーター内に溜まり
にくくすることを目的とする。Another object of the present invention is to prevent liquid phase refrigerant from accumulating in the accumulator without complicating the heat pump structure.
【0011】[0011]
【課題を解決するための手段】上記目的を達成する為の
本発明の特徴構成は、圧縮機に導入される冷媒から液相
冷媒を分離可能なアキュムレーターが設けられているヒ
ートポンプ装置であって、前記アキュムレーター内を加
熱する加熱手段が、加熱状態と加熱停止状態とに切り換
え可能に設けられている点にある。A characteristic configuration of the present invention for achieving the above object is a heat pump device provided with an accumulator capable of separating a liquid phase refrigerant from a refrigerant introduced into a compressor. The heating means for heating the inside of the accumulator is provided so as to be switchable between a heating state and a heating stop state.
【0012】前記アキュムレーターで分離された液相冷
媒を検出する液相冷媒検出手段と、前記液相冷媒検出手
段による検出結果に基づいて前記加熱手段を加熱状態と
加熱停止状態とに切り換え可能な制御手段とが設けられ
ている場合は、液相冷媒がアキュムレーター内に溜まり
にくいヒートポンプ装置を、アキュムレーター内の気相
冷媒が加熱されにくい状態で、能率よく運転できる。Liquid phase refrigerant detecting means for detecting the liquid phase refrigerant separated by the accumulator, and the heating means can be switched between a heating state and a heating stop state based on the detection result by the liquid phase refrigerant detecting means. When the control means is provided, the heat pump device in which the liquid-phase refrigerant hardly accumulates in the accumulator can be efficiently operated while the gas-phase refrigerant in the accumulator is hard to be heated.
【0013】前記液相冷媒検出手段による一定量の液相
冷媒の検出結果に基づいて、前記加熱手段が設定時間に
亘って加熱状態に切り換えられる場合は、液相冷媒がア
キュムレーター内に溜まりにくいヒートポンプ装置を、
アキュムレーター内の気相冷媒が加熱されにくい状態
で、簡易に運転できる。When the heating means is switched to the heating state for a set time based on the detection result of the constant amount of the liquid phase refrigerant by the liquid phase refrigerant detecting means, the liquid phase refrigerant is unlikely to be accumulated in the accumulator. Heat pump device,
The gas-phase refrigerant in the accumulator can be easily operated in a state where it is difficult to heat it.
【0014】前記加熱手段の熱源が、ヒートポンプ回路
を循環する冷媒である場合は、液相冷媒がアキュムレー
ター内に溜まりにくいヒートポンプ装置の構造を簡略化
できる。When the heat source of the heating means is the refrigerant circulating in the heat pump circuit, the structure of the heat pump device in which the liquid-phase refrigerant is less likely to accumulate in the accumulator can be simplified.
【0015】前記加熱手段の熱源が、ヒートポンプ回路
を循環する冷媒とは別の熱源である場合は、ヒートポン
プ構造を複雑化することなく、液相冷媒がアキュムレー
ター内に溜まりにくくすることができる。When the heat source of the heating means is a heat source different from the refrigerant circulating in the heat pump circuit, it is possible to prevent the liquid-phase refrigerant from accumulating in the accumulator without complicating the heat pump structure.
【0016】[0016]
【作用】アキュムレーター内を加熱することで、アキュ
ムレーターで分離された液相冷媒が蒸発し易くなり、液
相冷媒がアキュムレーター内に溜まりにくいのである
が、アキュムレーター内を常時加熱するのではなく、加
熱手段を加熱状態と加熱停止状態とに切り換えて、アキ
ュムレーターで分離された液相冷媒を必要に応じて蒸発
させることができるから、アキュムレーター内の気相冷
媒がいたずらに加熱されるおそれが少ない。[Function] By heating the inside of the accumulator, the liquid-phase refrigerant separated by the accumulator becomes easy to evaporate, and the liquid-phase refrigerant is less likely to accumulate in the accumulator. However, if the inside of the accumulator is constantly heated, Instead, the heating means can be switched between the heating state and the heating stop state, and the liquid-phase refrigerant separated by the accumulator can be evaporated if necessary, so that the gas-phase refrigerant in the accumulator is unnecessarily heated. There is little fear.
【0017】アキュムレーターで分離された液相冷媒を
検出する液相冷媒検出手段と、液相冷媒検出手段による
検出結果に基づいて加熱手段を加熱状態と加熱停止状態
とに切り換え可能な制御手段とが設けられている場合
は、液相冷媒を手間をかけずに能率良く蒸発させること
ができる。Liquid-phase refrigerant detecting means for detecting the liquid-phase refrigerant separated by the accumulator, and control means capable of switching the heating means between the heating state and the heating stop state based on the detection result of the liquid-phase refrigerant detecting means. Is provided, the liquid-phase refrigerant can be efficiently vaporized without any trouble.
【0018】液相冷媒検出手段による一定量の液相冷媒
の検出結果に基づいて、加熱手段が設定時間に亘って加
熱状態に切り換えられる場合は、加熱手段を加熱停止状
態に切り換えるタイミングを特に検出することなく、所
定量の液相冷媒を手間をかけずに能率良く蒸発させるこ
とができる。When the heating means is switched to the heating state for the set time on the basis of the detection result of the constant amount of the liquid phase refrigerant by the liquid phase refrigerant detecting means, the timing for switching the heating means to the heating stop state is particularly detected. Without doing so, it is possible to efficiently evaporate a predetermined amount of liquid-phase refrigerant without trouble.
【0019】加熱手段の熱源が、ヒートポンプ回路を循
環する冷媒である場合は、加熱用の熱源を別途に設ける
ことなく、アキュムレーター内で分離された液相冷媒を
蒸発させることができる。When the heat source of the heating means is a refrigerant circulating in the heat pump circuit, the liquid-phase refrigerant separated in the accumulator can be evaporated without separately providing a heat source for heating.
【0020】加熱手段の熱源が、ヒートポンプ回路を循
環する冷媒とは別の熱源である場合は、冷媒の循環構造
を格別に変更することなく、アキュムレーター内で分離
された液相冷媒を蒸発させることができる。When the heat source of the heating means is a heat source different from the refrigerant circulating in the heat pump circuit, the liquid-phase refrigerant separated in the accumulator is evaporated without changing the circulation structure of the refrigerant. be able to.
【0021】[0021]
【発明の効果】請求項1記載のヒートポンプ装置は、ア
キュムレーター内の気相冷媒が過度に加熱されにくい状
態で液相冷媒がアキュムレーター内に溜まりにくい。In the heat pump device according to the first aspect of the present invention, the liquid-phase refrigerant is less likely to accumulate in the accumulator in a state where the gas-phase refrigerant in the accumulator is less likely to be overheated.
【0022】請求項2記載のヒートポンプ装置は、液相
冷媒がアキュムレーター内に溜まりにくいヒートポンプ
装置を、アキュムレーター内の気相冷媒が過度に加熱さ
れにくい状態で、能率よく運転できる。The heat pump device according to the second aspect can efficiently operate the heat pump device in which the liquid-phase refrigerant is less likely to accumulate in the accumulator while the gas-phase refrigerant in the accumulator is less likely to be overheated.
【0023】請求項3記載のヒートポンプ装置は、液相
冷媒がアキュムレーター内に溜まりにくいヒートポンプ
装置を、アキュムレーター内の気相冷媒が過度に加熱さ
れにくい状態で、簡易に運転できる。The heat pump device according to the third aspect can easily operate the heat pump device in which the liquid-phase refrigerant is less likely to accumulate in the accumulator in a state in which the gas-phase refrigerant in the accumulator is less likely to be overheated.
【0024】請求項4記載のヒートポンプ装置は、液相
冷媒がアキュムレーター内に溜まりにくいヒートポンプ
装置の構造を簡略化できる。In the heat pump device according to the fourth aspect, the structure of the heat pump device in which the liquid-phase refrigerant is hard to collect in the accumulator can be simplified.
【0025】請求項5記載のヒートポンプ装置は、ヒー
トポンプ構造を複雑化することなく、液相冷媒がアキュ
ムレーター内に溜まりにくくすることができる。In the heat pump device according to the fifth aspect, it is possible to prevent the liquid-phase refrigerant from accumulating in the accumulator without complicating the heat pump structure.
【0026】[0026]
〔第1実施例〕図1,図2は、ヒートポンプ装置の一例
としてのヒートポンプ空調装置のヒートポンプ回路を示
し、圧縮機ユニットUを備えた室外機Aと、第1室内機
Bと第2室内機Cとの二つの室内機と、高圧気相冷媒用
の第1渡り配管R1と、低圧気相冷媒用の第2渡り配管
R2と、液相冷媒用の第3渡り配管R3とを設け、室外
機Aと第1,第2室内機B,Cとを,第1,第2,第3
渡り配管R1,R2,R3を介して接続して、圧縮機C
mp・凝縮器Cd・膨張手段Ex・蒸発器Evの順に冷
媒を循環させる冷媒循環路が空調運転モードに応じて接
続されるように構成してある。[First Embodiment] FIGS. 1 and 2 show a heat pump circuit of a heat pump air conditioner as an example of a heat pump device, which includes an outdoor unit A having a compressor unit U, a first indoor unit B, and a second indoor unit. Two indoor units C and C, a first crossover pipe R1 for the high-pressure vapor-phase refrigerant, a second crossover pipe R2 for the low-pressure vapor-phase refrigerant, and a third crossover pipe R3 for the liquid-phase refrigerant are provided, and the outdoor The machine A and the first and second indoor units B and C are connected to the first, second and third indoor units.
Compressor C connected via connecting pipes R1, R2, R3
The refrigerant circulation path for circulating the refrigerant in the order of mp, condenser Cd, expansion means Ex, and evaporator Ev is configured to be connected according to the air conditioning operation mode.
【0027】尚、前記ヒートポンプ回路において、黒塗
りの太線はその部分の冷媒が高圧気相状態であることを
示し、ハッチングを施した太線はその部分の冷媒が液相
状態であることを示し、点ハッチングを施した太線はそ
の部分の冷媒が気液二相状態(湿り蒸気状態)であるこ
とを示し、白抜きの太線はその部分の冷媒が低圧気相状
態であることを示している。又、前記ヒートポンプ回路
において、白抜きの弁記号はその弁が開いている状態を
示し、黒塗りの弁記号はその弁が閉じている状態を示し
ている。In the heat pump circuit, the thick black line indicates that the refrigerant in that portion is in the high-pressure vapor phase state, and the thick hatched line indicates that the refrigerant in that portion is in the liquid phase state. The thick line with dot hatching indicates that the refrigerant in that portion is in the gas-liquid two-phase state (wet vapor state), and the thick white line indicates that the refrigerant in that portion is in the low-pressure vapor phase state. Further, in the heat pump circuit, a white valve symbol indicates a state where the valve is open, and a black valve symbol indicates a state where the valve is closed.
【0028】前記室外機Aには、外気OAを吸放熱対象
とする第1室外熱交換器AN1と第2室外熱交換器AN
2との二個の室外熱交換器が並設され、第1室外熱交換
器AN1に外気OAを通風する第1室外ファンAF1
と、第2室外熱交換器AN2に外気OAを通風する第2
室外ファンAF2と、第1室外熱交換器AN1に接続さ
れている第1室外膨張弁Aex1と、第2室外熱交換器
AN2に接続されている第2室外膨張弁Aex2と、受
液器Rcvと、第1室外熱交換器AN1を介して冷媒を
循環させる状態と循環を停止させる状態とに切り換え可
能な第4電磁弁V4とが設けられているとともに、第
1,第2室外膨張弁Aex1,Aex2は受液器Rcv
を介して第3渡り配管R3に接続されている。In the outdoor unit A, there are a first outdoor heat exchanger AN1 and a second outdoor heat exchanger AN for absorbing and radiating outside air OA.
No. 2 and two outdoor heat exchangers are installed in parallel, and the first outdoor fan AF1 that ventilates the outside air OA to the first outdoor heat exchanger AN1.
And a second outdoor heat exchanger AN2 that ventilates the outside air OA
The outdoor fan AF2, the first outdoor expansion valve Aex1 connected to the first outdoor heat exchanger AN1, the second outdoor expansion valve Aex2 connected to the second outdoor heat exchanger AN2, and the liquid receiver Rcv. , A fourth solenoid valve V4 capable of switching between a state in which the refrigerant is circulated through the first outdoor heat exchanger AN1 and a state in which the circulation is stopped are provided, and the first and second outdoor expansion valves Aex1, Aex2 is the receiver Rcv
Is connected to the third connecting pipe R3 via.
【0029】前記圧縮機ユニットUには、圧縮機Cmp
と、圧縮機Cmpに導入される冷媒から液相冷媒を分離
して貯留可能なアキュムレーターAccと、オイルセパ
レーターOspとが設けられ、第2渡り配管R2とアキ
ュムレーターAccとが第1低圧気相冷媒路RL1を介
して接続され、アキュムレーターAccと圧縮機Cmp
の吸入側とが第2低圧気相冷媒路RL2を介して接続さ
れ、圧縮機Cmpの吐出側とオイルセパレーターOsp
とが高圧気相冷媒路RHを介して接続されているととも
に、オイルセパレーターOspは分離された潤滑油分が
圧縮機Cmpの吸入側に戻されるよう接続されている。The compressor unit U includes a compressor Cmp.
And an accumulator Acc capable of separating and storing the liquid-phase refrigerant from the refrigerant introduced into the compressor Cmp and an oil separator Osp, and the second crossover pipe R2 and the accumulator Acc being the first low-pressure gas phase. It is connected through the refrigerant path RL1, and has an accumulator Acc and a compressor Cmp.
Of the compressor Cmp and the oil separator Osp are connected to each other through the second low-pressure gas-phase refrigerant passage RL2.
And are connected via the high-pressure gas-phase refrigerant passage RH, and the oil separator Osp is connected so that the separated lubricating oil component is returned to the suction side of the compressor Cmp.
【0030】そして、圧縮機Cmpの吐出側をオイルセ
パレーターOspを介して第1,第2室外熱交換器AN
1,AN2側に接続する接続状態と非接続状態とに切り
換え可能な第1電磁弁V1と、圧縮機Cmpの吐出側を
オイルセパレーターOspを介して第1渡り配管R1側
に接続する接続状態と非接続状態とに切り換え可能な第
2電磁弁V2と、圧縮機Cmpの吸入側をアキュムレー
ターAccを介して第1,第2室外熱交換器AN1,A
N2側に接続する接続状態と非接続状態とに切り換え可
能な第3電磁弁V3とが設けられている。The discharge side of the compressor Cmp is connected to the first and second outdoor heat exchangers AN through the oil separator Osp.
1, a first solenoid valve V1 that can be switched between a connected state connected to the AN2 side and a non-connected state, and a connected state that connects the discharge side of the compressor Cmp to the first crossover pipe R1 side via an oil separator Osp. The second solenoid valve V2 that can be switched to the disconnected state, and the suction side of the compressor Cmp through the accumulator Acc to the first and second outdoor heat exchangers AN1 and A2.
A third solenoid valve V3 is provided which is connected to the N2 side and can be switched between a connected state and a non-connected state.
【0031】前記第1,第2室外膨張弁Aex1,Ae
x2の各々は、対応する室外熱交換器AN1,AN2が
凝縮器Cdとして機能するときには流量調整手段Vfr
として作動する状態に切り換えられ、対応する室外熱交
換器AN1,AN2が蒸発器Evとして機能するときに
は膨張手段Exとして作動する状態に切り換えられるよ
うに設けてある。The first and second outdoor expansion valves Aex1, Ae
Each of the x2 has a flow rate adjusting means Vfr when the corresponding outdoor heat exchangers AN1 and AN2 function as the condenser Cd.
Is provided so that when the corresponding outdoor heat exchangers AN1 and AN2 function as evaporators Ev, they can be switched to operate as expansion means Ex.
【0032】前記第1,第2室内機B,Cの各々には、
空気の冷却・加熱を行う室内熱交換器BN,CNと、室
内熱交換器BN,CNにより調整した空気SA1,SA
2を対応の空調対象域へ送出する室内ファンBF,CF
と、室内熱交換器BN,CNと第3渡り配管R3とに接
続されている室内膨張弁Bex,Cexと、室内熱交換
器BN,CNと第2渡り配管R2とを接続状態と非接続
状態とに切り換え可能な第5電磁弁BV5,CV5と、
室内熱交換器BN,CNと第1渡り配管R1とを接続状
態と非接続状態とに切り換え可能な第6電磁弁BV6,
CV6とを設けてある。In each of the first and second indoor units B and C,
Indoor heat exchangers BN and CN for cooling and heating air, and air SA1 and SA adjusted by the indoor heat exchangers BN and CN
Indoor fans BF, CF that send 2 to the corresponding air-conditioning target area
And indoor expansion valves Bex and Cex connected to the indoor heat exchangers BN and CN and the third transfer pipe R3, and the connected and disconnected states of the indoor heat exchangers BN and CN and the second transfer pipe R2. Fifth solenoid valves BV5 and CV5 that can be switched to and
A sixth solenoid valve BV6 capable of switching the indoor heat exchangers BN and CN and the first connecting pipe R1 between a connected state and a non-connected state.
CV6 is provided.
【0033】前記室内膨張弁Bex,Cexの各々は、
対応する室内熱交換器BN,CNが蒸発器Evとして機
能するときには膨張手段Exとして作動する状態に切り
換えられ、対応する室内熱交換器BN,CNが凝縮器C
dとして機能するときには流量調整手段Vfrとして作
動する状態に切り換えられるように構成してある。Each of the indoor expansion valves Bex and Cex is
When the corresponding indoor heat exchangers BN and CN function as the evaporator Ev, the indoor heat exchangers BN and CN are switched to a state in which they operate as the expansion means Ex, and the corresponding indoor heat exchangers BN and CN are condensed.
When it functions as d, it is configured to be switched to a state in which it operates as the flow rate adjusting means Vfr.
【0034】前記アキュムレーターAccには、当該ア
キュムレーターAcc内を加熱する加熱手段としての電
気ヒーター1と、アキュムレーターAccで分離された
液相冷媒Riを検出する液相冷媒検出手段2としての二
個の発熱型温度センサー2a,2bと、液相冷媒検出手
段2による検出結果に基づいてスイッチ3をON・OF
Fして、電気ヒーター1を加熱状態と加熱停止状態とに
切り換え可能な制御手段である制御器Cntとが設けら
れている。The accumulator Acc includes an electric heater 1 as a heating means for heating the inside of the accumulator Acc and a liquid-phase refrigerant detection means 2 for detecting the liquid-phase refrigerant Ri separated by the accumulator Acc. Based on the detection results of the individual heat generation type temperature sensors 2a and 2b and the liquid phase refrigerant detection means 2, the switch 3 is turned on / of.
After that, a controller Cnt which is a control means capable of switching the electric heater 1 between the heating state and the heating stop state is provided.
【0035】前記二個の発熱型温度センサー2a,2b
は、その感知部をアキュムレーターAccの器壁内面に
臨ませる状態で上下に間隔を隔てて配置され、各々の温
度センサー2a,2bは、液相冷媒Riの貯留レベルが
所定の感知レベルに達した状態ではその感知部が液相冷
媒Riで冷却されて低温検出信号を制御器Cntに出力
し、液相冷媒Riの貯留レベルが所定の感知レベルに達
しない状態ではその感知部が液相冷媒Riで冷却されな
いので高温検出信号を制御器Cntに出力するよう接続
されている。The two exothermic temperature sensors 2a, 2b
Are arranged at a vertical interval with their sensing parts facing the inner wall of the accumulator Acc, and the temperature sensors 2a, 2b of the respective temperature sensors 2a, 2b reach a predetermined sensing level of the liquid-phase refrigerant Ri. In that state, the sensing unit is cooled by the liquid-phase refrigerant Ri and outputs a low-temperature detection signal to the controller Cnt. In a state in which the storage level of the liquid-phase refrigerant Ri does not reach a predetermined sensing level, the sensing unit is in the liquid-phase refrigerant Ri. Since it is not cooled by Ri, it is connected to output a high temperature detection signal to the controller Cnt.
【0036】そして、液相冷媒Riの貯留レベルが上側
に配置した上部温度センサー2aの所定の感知レベルに
達すると、上部温度センサー2aから低温検出信号が制
御器Cntに入力され、制御器Cntは液相冷媒Riの
貯留レベルが許容レベルを越えていると判断してスイッ
チ3をON作動させ、電気ヒーター1が加熱状態に切り
換えられる。When the storage level of the liquid-phase refrigerant Ri reaches the predetermined sensing level of the upper temperature sensor 2a arranged on the upper side, a low temperature detection signal is input from the upper temperature sensor 2a to the controller Cnt, and the controller Cnt When it is judged that the storage level of the liquid-phase refrigerant Ri exceeds the allowable level, the switch 3 is turned on and the electric heater 1 is switched to the heating state.
【0037】又、電気ヒーター1による加熱で液相冷媒
Riが蒸発し、その貯留レベルが下側に配置した下部温
度センサー2bの所定の感知レベルを下回ると、下部温
度センサー2bから高温検出信号が制御器Cntに入力
され、制御器Cntは液相冷媒Riの貯留レベルが適性
レベルに達したと判断してスイッチ3をOFF作動さ
せ、電気ヒーター1が加熱停止状態に切り換えられる。Further, when the liquid-phase refrigerant Ri is evaporated by heating by the electric heater 1 and the storage level thereof falls below a predetermined sensing level of the lower temperature sensor 2b arranged on the lower side, a high temperature detection signal is output from the lower temperature sensor 2b. It is input to the controller Cnt, and the controller Cnt determines that the storage level of the liquid-phase refrigerant Ri has reached the appropriate level, turns off the switch 3, and switches the electric heater 1 to the heating stopped state.
【0038】尚、図1は、空調運転モードを、第1,第
2室内機B,Cを冷房運転する冷房モードに切り換えた
状態を示し、室外機Aは、第1電磁弁V1と第4電磁弁
V4とを開くとともに第2電磁弁V2と第3電磁弁V3
とを閉じて、第1,第2室外熱交換器AN1,AN2が
凝縮器Cdとして、又、第1,第2室外膨張弁Aex
1,Aex2が流量調整手段Vfrとして機能するよう
に接続されており、第1,第2室内機B,Cの各々は、
第5電磁弁BV5,CV5を開くとともに第6電磁弁B
V6,CV6を閉じて、室内膨張弁Bex,Cexが膨
張手段Exとして、又、室内熱交換器BN,CNが蒸発
器Evとして機能するように接続されている。FIG. 1 shows a state in which the air-conditioning operation mode is switched to a cooling mode in which the first and second indoor units B and C are cooled, and the outdoor unit A has the first solenoid valve V1 and the fourth electromagnetic valve V1. The second solenoid valve V2 and the third solenoid valve V3 are opened while the solenoid valve V4 is opened.
And are closed, the first and second outdoor heat exchangers AN1 and AN2 serve as condensers Cd, and the first and second outdoor expansion valves Aex.
1, Aex2 are connected so as to function as the flow rate adjusting means Vfr, and each of the first and second indoor units B, C is
Open the fifth solenoid valve BV5, CV5 and the sixth solenoid valve B
By closing V6 and CV6, the indoor expansion valves Bex and Cex are connected so as to function as expansion means Ex, and the indoor heat exchangers BN and CN function as evaporator Ev.
【0039】そして、圧縮機ユニットUから導出された
高圧気相冷媒は第1,第2室外熱交換器AN1,AN2
の各々に導入され、第1,第2室外熱交換器AN1,A
N2の各々から導出された液相冷媒は、第3渡り配管R
3を介して第1,第2室内機B,C各々の室内膨張弁B
ex,Cexに導入され、室内膨張弁Bex,Cexか
ら導出された気液二相状態の冷媒は室内熱交換器BN,
CNに導入され、室内熱交換器BN,CNの各々から導
出された低圧気相冷媒は、第2渡り配管R2を介して圧
縮機Cmpの吸入側に戻される。The high-pressure gas-phase refrigerant discharged from the compressor unit U is used as the first and second outdoor heat exchangers AN1, AN2.
Is introduced into each of the first and second outdoor heat exchangers AN1, A
The liquid-phase refrigerant derived from each of the N2 is the third connecting pipe R
The indoor expansion valve B of each of the first and second indoor units B and C
The refrigerant in the gas-liquid two-phase state introduced into ex, Cex and led out from the indoor expansion valves Bex, Cex is the indoor heat exchanger BN,
The low-pressure vapor-phase refrigerant introduced into the CN and derived from each of the indoor heat exchangers BN and CN is returned to the suction side of the compressor Cmp via the second transition pipe R2.
【0040】又、図2は、空調運転モードを、第1,第
2室内機B,Cを暖房運転する暖房モードに切り換えた
状態を示し、室外機Aは、第2電磁弁V2と第3電磁弁
V3と第4電磁弁V4とを開くとともに第1電磁弁V1
を閉じて、室外熱交換器AN1,AN2が蒸発器Evと
して、又、第1,第2室外膨張弁Aex1,Aex2が
膨張手段Exとして機能するように接続されており、第
1,第2室内機B,Cの各々は、第6電磁弁BV6,C
V6を開くとともに第5電磁弁BV5,CV5を閉じ
て、室内膨張弁Bex,Cexが流量調整手段Vfrと
して、又、室内熱交換器BN,CNが凝縮器Cdとして
機能するように接続されている。FIG. 2 shows a state in which the air conditioning operation mode is switched to a heating mode for heating the first and second indoor units B and C, and the outdoor unit A has the second solenoid valve V2 and the third electromagnetic valve V2. The solenoid valve V3 and the fourth solenoid valve V4 are opened and the first solenoid valve V1 is opened.
And the outdoor heat exchangers AN1 and AN2 are connected so as to function as an evaporator Ev, and the first and second outdoor expansion valves Aex1 and Aex2 function as expansion means Ex. Machines B and C each have a sixth solenoid valve BV6, C
V6 is opened and the fifth solenoid valves BV5 and CV5 are closed, and the indoor expansion valves Bex and Cex are connected so as to function as the flow rate adjusting means Vfr and the indoor heat exchangers BN and CN function as the condenser Cd. .
【0041】そして、圧縮機ユニットUから導出された
高圧気相冷媒は第1渡り配管R1を介して第1,第2室
内機B,C各々の室内熱交換器BN,CNに導入され、
室内熱交換器BN,CNから導出された液相冷媒は、第
3渡り配管R3を介して第1,第2室外膨張弁Aex
1,Aex2の各々に導入され、第1,第2室外膨張弁
Aex1,Aex2の各々から導出された気液二相状態
の冷媒は第1,第2室外熱交換器AN1,AN2の各々
に導入され、第1,第2室外熱交換器AN1,AN2の
各々から導出された低圧気相冷媒は圧縮機Cmpの吸入
側に戻される。Then, the high-pressure vapor-phase refrigerant derived from the compressor unit U is introduced into the indoor heat exchangers BN and CN of the first and second indoor units B and C through the first connecting pipe R1.
The liquid-phase refrigerant derived from the indoor heat exchangers BN and CN passes through the third connecting pipe R3 and then the first and second outdoor expansion valves Aex.
The refrigerant in the gas-liquid two-phase state introduced into each of the first and second outdoor expansion valves Aex1 and Aex2 is introduced into each of the first and second outdoor heat exchangers AN1 and AN2. The low-pressure gas-phase refrigerant that has been discharged from each of the first and second outdoor heat exchangers AN1 and AN2 is returned to the suction side of the compressor Cmp.
【0042】〔第2実施例〕図3は、アキュムレーター
Accで分離された液相冷媒Riを検出する液相冷媒検
出手段2と、液相冷媒検出手段2による検出結果に基づ
いて加熱手段としての電気ヒーター1を加熱状態と加熱
停止状態とに切り換え可能な制御手段Cntの別実施例
を示し、アキュムレーターAccには、液相冷媒検出手
段としての一個の発熱型温度センサー2と、この温度セ
ンサー2による検出結果に基づいて電気ヒーター1のス
イッチ3をON・OFFして、当該電気ヒーター1を加
熱状態と加熱停止状態とに切り換え可能な制御手段であ
る制御器Cntとが設けられている。[Second Embodiment] FIG. 3 shows a liquid-phase refrigerant detecting means 2 for detecting the liquid-phase refrigerant Ri separated by the accumulator Acc, and a heating means based on the detection result by the liquid-phase refrigerant detecting means 2. Another embodiment of the control means Cnt capable of switching the electric heater 1 between the heating state and the heating stop state is shown. The accumulator Acc has one exothermic temperature sensor 2 as liquid phase refrigerant detecting means, and this temperature. A controller Cnt, which is a control means that can switch the electric heater 1 between a heating state and a heating stop state by turning on / off the switch 3 of the electric heater 1 based on the detection result of the sensor 2, is provided. .
【0043】前記温度センサー2は、その感知部をアキ
ュムレーターAcc底部近くの器壁内面に臨ませる状態
で配置され、第1実施例と同様に、液相冷媒Riの貯留
レベルが所定の感知レベルに達した状態では低温検出信
号を制御器Cntに出力し、液相冷媒Riの貯留レベル
が所定の感知レベルに達しない状態では高温検出信号を
制御器Cntに出力するよう接続されている。The temperature sensor 2 is arranged such that its sensing portion faces the inner surface of the vessel wall near the bottom of the accumulator Acc, and the storage level of the liquid-phase refrigerant Ri is a predetermined sensing level as in the first embodiment. It is connected so as to output the low temperature detection signal to the controller Cnt in the state where the temperature has reached, and to output the high temperature detection signal to the controller Cnt in the state where the storage level of the liquid-phase refrigerant Ri does not reach the predetermined sensing level.
【0044】そして、液相冷媒Riの貯留レベルが温度
センサー2の所定の感知レベルに達すると、温度センサ
ー2から低温検出信号が制御器Cntに入力され、制御
器Cntは液相冷媒Riの貯留レベルが一定許容量の液
相冷媒Riに対応するレベルに達したと判断してスイッ
チ3をON作動させて電気ヒーター1を加熱状態に切り
換えるとともにタイマー4による計時を開始し、一定許
容量に達した液相冷媒の全量を蒸発させるに必要かつ最
小限の加熱時間として予め設定した設定時間がタイムア
ップすると,スイッチ3をOFF作動させて電気ヒータ
ー1を加熱状態に切り換えるとともに、タイマー4をリ
セットするよう構成してある。その他の構成は第1実施
例と同様である。When the storage level of the liquid-phase refrigerant Ri reaches the predetermined sensing level of the temperature sensor 2, a low temperature detection signal is input from the temperature sensor 2 to the controller Cnt, and the controller Cnt stores the liquid-phase refrigerant Ri. When it is determined that the level has reached the level corresponding to the liquid refrigerant Ri having a certain allowable amount, the switch 3 is turned on to switch the electric heater 1 to the heating state and the timer 4 starts the time measurement to reach the certain allowable amount. When the preset time set as the minimum heating time necessary to evaporate the entire amount of the liquid-phase refrigerant has expired, the switch 3 is turned off to switch the electric heater 1 to the heating state and the timer 4 is reset. It is configured as follows. Other configurations are similar to those of the first embodiment.
【0045】〔第3実施例〕第1,第2実施例において
は、発熱型温度センサーを、液相冷媒Riの貯留レベル
が所定の感知レベルに達した状態では低温検出信号を制
御器Cntに出力し、液相冷媒Riの貯留レベルが所定
の感知レベルに達しない状態では高温検出信号を制御器
Cntに出力するよう接続して、電気ヒーター1のスイ
ッチ3をON・OFFするよう制御したが、蒸発器Ev
内の冷媒温度が略一定であることに着目して、図示しな
いが、蒸発器Ev内の冷媒の温度範囲を設定温度範囲と
して予め制御器Cntに入力しておき、発熱型温度セン
サーで検出される温度データーを制御器Cntに入力し
て、その温度データーと設定温度範囲とを比較し、温度
データーが設定温度範囲内である時は、蒸発器Ev内の
冷媒温度と略同じ温度の液相冷媒Riの貯留レベルが所
定の感知レベルに達したと判断し、温度データーが設定
温度範囲を越えている場合は、液相冷媒Riの貯留レベ
ルが所定の感知レベルを下回っていると判断して、電気
ヒーター1のスイッチ3をON・OFFさせるよう制御
しても良い。その他の構成は、第1又は第2実施例と同
様である。[Third Embodiment] In the first and second embodiments, the heat generation type temperature sensor is provided with a low temperature detection signal to the controller Cnt when the storage level of the liquid phase refrigerant Ri reaches a predetermined sensing level. When the storage level of the liquid-phase refrigerant Ri does not reach the predetermined sensing level, the high-temperature detection signal is connected to the controller Cnt so that the switch 3 of the electric heater 1 is turned on and off. , Evaporator Ev
Paying attention to the fact that the temperature of the refrigerant inside is substantially constant, although not shown, the temperature range of the refrigerant inside the evaporator Ev is input to the controller Cnt in advance as a set temperature range and detected by the heat generation type temperature sensor. Input temperature data to the controller Cnt, and compare the temperature data with the set temperature range. When the temperature data is within the set temperature range, the liquid phase having a temperature substantially the same as the refrigerant temperature in the evaporator Ev. It is determined that the storage level of the refrigerant Ri has reached a predetermined sensing level, and if the temperature data exceeds the set temperature range, it is determined that the storage level of the liquid phase refrigerant Ri is below the predetermined sensing level. Alternatively, the switch 3 of the electric heater 1 may be controlled to be turned on / off. Other configurations are similar to those of the first or second embodiment.
【0046】〔第4実施例〕図4はアキュムレーターA
cc内を加熱する加熱手段1の別実施例を示し、外気O
Aや電気配線ボックス等から排出される比較的高温の空
気をアキュムレーターAcc底部の器壁外面に吹き付け
てアキュムレーターAcc内を加熱する加熱手段として
の加熱ファン1を設けて構成してあり、加熱ファン1の
スイッチ3を制御器Cntからの信号でON・OFFし
て、加熱ファン1の回転で加熱する加熱状態と加熱ファ
ン1の回転を停止して加熱を停止する加熱停止状態とに
切り換えられる。[Fourth Embodiment] FIG. 4 shows an accumulator A.
Another embodiment of the heating means 1 for heating the inside of cc is shown, and the outside air O
The heating fan 1 is provided as a heating means for heating the inside of the accumulator Acc by blowing relatively high temperature air discharged from A or the electric wiring box onto the outer surface of the bottom wall of the accumulator Acc. The switch 3 of the fan 1 is turned on / off by a signal from the controller Cnt to switch between a heating state in which the rotation of the heating fan 1 heats up and a heating stop state in which the rotation of the heating fan 1 is stopped to stop heating. .
【0047】尚、本実施例では、液相冷媒Riに対する
伝熱効果を高める為に、アキュムレーターAcc内面に
伝熱材5を固定し、アキュムレーターAccの器壁外面
に伝熱フィン6を設けたが、これらの伝熱材5や伝熱フ
ィン6を省略して実施しても良い。又、伝熱材5として
はヒートパイプを使用しても良い。In this embodiment, in order to enhance the heat transfer effect to the liquid phase refrigerant Ri, the heat transfer material 5 is fixed to the inner surface of the accumulator Acc and the heat transfer fins 6 are provided on the outer surface of the wall of the accumulator Acc. However, the heat transfer material 5 and the heat transfer fins 6 may be omitted. A heat pipe may be used as the heat transfer material 5.
【0048】本実施例ではその他の構成を第1実施例と
同様にしてあるが、第2又は第3実施例と同様の制御手
段を設けて実施しても良い。In this embodiment, the other structure is similar to that of the first embodiment, but the same control means as in the second or third embodiment may be provided for implementation.
【0049】〔第5実施例〕前記第1,第2,第3,第
4実施例で示した加熱手段の熱源は、ヒートポンプ回路
を循環する冷媒とは別の熱源であるが、図5はヒートポ
ンプ回路を循環する冷媒を熱源としてアキュムレーター
Acc内を加熱する加熱手段1の実施例を示し、蒸発器
Evから導出された低圧気相冷媒の一部を第1低圧気相
冷媒路RL1から分流して補助蒸発器7に導入する第1
導入路R1と、第1導入路R1を開閉する電磁弁VD
と、補助蒸発器7から導出された過熱度の大きい過過熱
冷媒をアキュムレーターAcc内に導入する第2導入路
R2とを設けて、過過熱冷媒を熱源としてアキュムレー
ターAcc内を過熱する加熱手段1を構成してある。[Fifth Embodiment] The heat source of the heating means shown in the first, second, third and fourth embodiments is a heat source different from the refrigerant circulating in the heat pump circuit. The Example of the heating means 1 which heats the inside of the accumulator Acc using the refrigerant | coolant which circulates through a heat pump circuit as a heat source is shown, and a part of low-pressure vapor-phase refrigerant | coolant led out from the evaporator Ev is divided | segmented from the 1st low-pressure vapor-phase refrigerant path RL1. The first to flow and introduce into the auxiliary evaporator 7
Introduction path R1 and solenoid valve VD for opening and closing the first introduction path R1
And a second introduction path R2 for introducing the superheated refrigerant having a high degree of superheat derived from the auxiliary evaporator 7 into the accumulator Acc, and heating means for heating the inside of the accumulator Acc using the superheated refrigerant as a heat source. 1 is configured.
【0050】そして、電磁弁VDを制御器Cntからの
信号で開閉して、過過熱冷媒のアキュムレーターAcc
内への吹き込みで当該アキュムレーターAcc内を加熱
する加熱状態と過過熱冷媒のアキュムレーターAcc内
への吹き込みを止めて加熱を停止する加熱停止状態とに
切り換えられる。Then, the solenoid valve VD is opened / closed by a signal from the controller Cnt so that the overheated refrigerant accumulator Acc.
The inside of the accumulator Acc is heated to switch the heating state to the heating state, and the overheated refrigerant is stopped from being blown into the accumulator Acc to stop the heating.
【0051】尚、第2導入路R2の先端部は、アキュム
レーターAcc内の頂部に過過熱冷媒を供給する第1供
給路R2aと、アキュムレーターAcc内の底部に過過
熱冷媒を供給する第2供給路R2bとに分岐されてい
る。The tip of the second introduction passage R2 has a first supply passage R2a for supplying superheated refrigerant to the top of the accumulator Acc and a second supply passage R2a for supplying superheated refrigerant to the bottom of the accumulator Acc. It is branched to the supply path R2b.
【0052】本実施例ではその他の構成を第1実施例と
同様にしてあるが、第2又は第3実施例と同様の制御手
段を設けて実施しても良い。In this embodiment, the other constructions are the same as those in the first embodiment, but the same control means as those in the second or third embodiment may be provided for implementation.
【0053】〔第6実施例〕図6はヒートポンプ回路を
循環する冷媒を熱源としてアキュムレーターAcc内を
加熱する加熱手段1の別実施例を示し、圧縮機Cmpか
ら吐出された高圧気相冷媒の一部を高圧気相冷媒路RH
から分流して減圧弁VRに導入する第1導入路R1と、
第1導入路R1を開閉する電磁弁VDと、減圧弁VRを
通過して減圧された結果過熱度が大きくなった過過熱冷
媒をアキュムレーターAcc内に導入する第2導入路R
2とを設けて、過過熱冷媒を熱源としてアキュムレータ
ーAcc内を過熱する加熱手段1を構成してある。[Sixth Embodiment] FIG. 6 shows another embodiment of the heating means 1 for heating the inside of the accumulator Acc by using the refrigerant circulating in the heat pump circuit as a heat source, and shows the high-pressure gas-phase refrigerant discharged from the compressor Cmp. High pressure gas phase refrigerant passage RH
A first introduction path R1 that is branched from the first introduction path R1 and introduced into the pressure reducing valve VR;
A solenoid valve VD that opens and closes the first introduction path R1 and a second introduction path R that introduces into the accumulator Acc the superheated refrigerant that has passed through the pressure reducing valve VR and has been decompressed and has increased in superheat degree.
2 is provided to configure heating means 1 for overheating the inside of the accumulator Acc using the overheated refrigerant as a heat source.
【0054】本実施例ではその他の構成を第5実施例と
同様にしてあるが、第2又は第3実施例と同様の制御手
段を設けて実施しても良い。In this embodiment, the other structure is the same as that of the fifth embodiment, but the same control means as in the second or third embodiment may be provided for implementation.
【0055】〔その他の実施例〕 1.ヒートポンプ回路を循環する冷媒を熱源とする加熱
手段としては、凝縮器を通過する前後の比較的温度の高
い高圧冷媒の一部とアキュムレーター内の液相冷媒との
熱交換で、当該アキュムレーター内を加熱するものであ
っても良く、この場合、高圧冷媒の導管をアキュムレー
ター内を通過させたり、高圧冷媒の導管をアキュムレー
ター外周面に接触させて構成することができる。 2.加熱手段は、手動操作で加熱状態と加熱停止状態と
に切り換えられるものであっても良い。 3.本発明によるヒートポンプ装置は、冷房や暖房の空
調用途に限定されるものではなく、冷熱や温熱を扱う各
種分野の種々の用途に適用できる。[Other Embodiments] 1. As a heating means using the refrigerant circulating in the heat pump circuit as a heat source, a part of the high-pressure refrigerant having a relatively high temperature before and after passing through the condenser and the liquid-phase refrigerant in the accumulator are heat-exchanged to each other in the accumulator. May be heated. In this case, the high pressure refrigerant conduit may be passed through the accumulator, or the high pressure refrigerant conduit may be brought into contact with the outer peripheral surface of the accumulator. 2. The heating means may be manually switched between a heating state and a heating stop state. 3. The heat pump device according to the present invention is not limited to air conditioning applications such as cooling and heating, but can be applied to various applications in various fields dealing with cold heat and hot heat.
【0056】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.
【図1】冷房運転モードのヒートポンプ回路図FIG. 1 Heat pump circuit diagram in cooling operation mode
【図2】暖房運転モードのヒートポンプ回路図FIG. 2 Heat pump circuit diagram in heating operation mode
【図3】第2実施例を示す要部の構成図FIG. 3 is a configuration diagram of a main part showing a second embodiment.
【図4】第4実施例を示す要部の構成図FIG. 4 is a configuration diagram of a main part showing a fourth embodiment.
【図5】第5実施例を示す要部の構成図FIG. 5 is a configuration diagram of a main part showing a fifth embodiment.
【図6】第6実施例を示す要部の構成図FIG. 6 is a configuration diagram of a main part showing a sixth embodiment.
1 加熱手段 2 液相冷媒検出手段 Acc アキュムレーター Cmp 圧縮機 Cnt 制御手段 1 Heating Means 2 Liquid Phase Refrigerant Detection Means Acc Accumulator Cmp Compressor Cnt Control Means
Claims (5)
液相冷媒を分離可能なアキュムレーター(Acc)が設
けられているヒートポンプ装置であって、 前記アキュムレーター(Acc)内を加熱する加熱手段
(1)が、加熱状態と加熱停止状態とに切り換え可能に
設けられているヒートポンプ装置。1. A heat pump device provided with an accumulator (Acc) capable of separating a liquid phase refrigerant from a refrigerant introduced into a compressor (Cmp), wherein heating is performed to heat the inside of the accumulator (Acc). A heat pump device, wherein the means (1) is provided so as to be switchable between a heating state and a heating stop state.
された液相冷媒を検出する液相冷媒検出手段(2)と、
前記液相冷媒検出手段(2)による検出結果に基づいて
前記加熱手段(1)を加熱状態と加熱停止状態とに切り
換え可能な制御手段(Cnt)とが設けられている請求
項1記載のヒートポンプ装置。2. A liquid-phase refrigerant detecting means (2) for detecting the liquid-phase refrigerant separated by the accumulator (Acc),
The heat pump according to claim 1, further comprising control means (Cnt) capable of switching the heating means (1) between a heating state and a heating stop state based on a detection result of the liquid phase refrigerant detecting means (2). apparatus.
量の液相冷媒の検出結果に基づいて、前記加熱手段
(1)が設定時間に亘って加熱状態に切り換えられる請
求項2記載のヒートポンプ装置。3. The heating means (1) is switched to a heating state for a set time based on the detection result of a constant amount of the liquid phase refrigerant by the liquid phase refrigerant detecting means (2). Heat pump device.
ンプ回路を循環する冷媒である請求項1,2又は3記載
のヒートポンプ装置。4. The heat pump device according to claim 1, wherein the heat source of the heating means (1) is a refrigerant circulating in a heat pump circuit.
ンプ回路を循環する冷媒とは別の熱源である請求項1,
2又は3記載のヒートポンプ装置。5. The heat source of the heating means (1) is a heat source different from the refrigerant circulating in the heat pump circuit.
The heat pump device according to 2 or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9461994A JPH07301459A (en) | 1994-05-09 | 1994-05-09 | Heat pump apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9461994A JPH07301459A (en) | 1994-05-09 | 1994-05-09 | Heat pump apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07301459A true JPH07301459A (en) | 1995-11-14 |
Family
ID=14115283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9461994A Pending JPH07301459A (en) | 1994-05-09 | 1994-05-09 | Heat pump apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07301459A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000249434A (en) * | 1999-02-24 | 2000-09-14 | Daikin Ind Ltd | Freezing apparatus |
JP2008008594A (en) * | 2006-06-30 | 2008-01-17 | Kansai Electric Power Co Inc:The | Heat pump type heat recovering device |
WO2010106814A1 (en) * | 2009-03-19 | 2010-09-23 | ダイキン工業株式会社 | Air conditioning device |
US9074782B2 (en) | 2009-03-19 | 2015-07-07 | Daikin Industries, Ltd. | Air conditioner with electromagnetic induction heating unit |
US9328944B2 (en) | 2009-03-19 | 2016-05-03 | Daikin Industries, Ltd. | Air conditioning apparatus |
US9335071B2 (en) | 2009-03-19 | 2016-05-10 | Daikin Industries, Ltd. | Air conditioning apparatus |
JPWO2021140625A1 (en) * | 2020-01-09 | 2021-07-15 | ||
CN115143555A (en) * | 2022-06-30 | 2022-10-04 | 青岛海信日立空调系统有限公司 | Air conditioner System |
-
1994
- 1994-05-09 JP JP9461994A patent/JPH07301459A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000249434A (en) * | 1999-02-24 | 2000-09-14 | Daikin Ind Ltd | Freezing apparatus |
JP2008008594A (en) * | 2006-06-30 | 2008-01-17 | Kansai Electric Power Co Inc:The | Heat pump type heat recovering device |
WO2010106814A1 (en) * | 2009-03-19 | 2010-09-23 | ダイキン工業株式会社 | Air conditioning device |
CN102348940A (en) * | 2009-03-19 | 2012-02-08 | 大金工业株式会社 | Air conditioning device |
AU2010225953B2 (en) * | 2009-03-19 | 2012-11-29 | Daikin Industries, Ltd. | Air conditioner |
JP5177281B2 (en) * | 2009-03-19 | 2013-04-03 | ダイキン工業株式会社 | Air conditioner |
RU2488047C2 (en) * | 2009-03-19 | 2013-07-20 | Дайкин Индастриз, Лтд. | Conditioner |
US9046275B2 (en) | 2009-03-19 | 2015-06-02 | Daikin Industries, Ltd. | Air conditioner with electromagnetic induction heating unit |
US9074782B2 (en) | 2009-03-19 | 2015-07-07 | Daikin Industries, Ltd. | Air conditioner with electromagnetic induction heating unit |
US9328944B2 (en) | 2009-03-19 | 2016-05-03 | Daikin Industries, Ltd. | Air conditioning apparatus |
US9335071B2 (en) | 2009-03-19 | 2016-05-10 | Daikin Industries, Ltd. | Air conditioning apparatus |
JPWO2021140625A1 (en) * | 2020-01-09 | 2021-07-15 | ||
WO2021140625A1 (en) * | 2020-01-09 | 2021-07-15 | 三菱電機株式会社 | Refrigeration cycle device |
CN115143555A (en) * | 2022-06-30 | 2022-10-04 | 青岛海信日立空调系统有限公司 | Air conditioner System |
CN115143555B (en) * | 2022-06-30 | 2023-08-08 | 青岛海信日立空调系统有限公司 | Air conditioning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6679321B2 (en) | Heat pump system | |
JP3864980B2 (en) | Air conditioner | |
KR101201635B1 (en) | An air conditioner | |
KR20190005445A (en) | Method for controlling multi-type air conditioner | |
JP2022057100A (en) | Air conditioner and management device | |
JPH07301459A (en) | Heat pump apparatus | |
JP2004170023A (en) | Control method for multicellular air-conditioner | |
US20200139786A1 (en) | Air-conditioning device | |
KR20120031841A (en) | A refrigerant system | |
JP2005156030A (en) | Heat pump apparatus | |
JP2005227833A (en) | Automatic vending machine | |
WO2022038869A1 (en) | Battery temperature regulation system | |
JP2004239609A (en) | Air conditioner | |
JP4252184B2 (en) | Refrigerant flow control device for air conditioner | |
KR102478147B1 (en) | Apparatus for air-conditioning control with ultra-compact heat pump and method for air-conditioning control using the same | |
JP7224503B2 (en) | refrigeration cycle equipment | |
JP3992076B2 (en) | vending machine | |
KR20120031842A (en) | A refrigerant system | |
JP6771508B2 (en) | Air conditioner | |
JP4872367B2 (en) | vending machine | |
JP4155333B2 (en) | vending machine | |
JP2007183996A (en) | Vending machine | |
JP2001255024A (en) | Air conditioner and its control method | |
JPWO2019008660A1 (en) | Air conditioning system | |
JPH04236062A (en) | Air conditioner |