JP2008008594A - Heat pump type heat recovering device - Google Patents

Heat pump type heat recovering device Download PDF

Info

Publication number
JP2008008594A
JP2008008594A JP2006182279A JP2006182279A JP2008008594A JP 2008008594 A JP2008008594 A JP 2008008594A JP 2006182279 A JP2006182279 A JP 2006182279A JP 2006182279 A JP2006182279 A JP 2006182279A JP 2008008594 A JP2008008594 A JP 2008008594A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
temperature
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006182279A
Other languages
Japanese (ja)
Other versions
JP5057710B2 (en
Inventor
Masaki Ikeuchi
正毅 池内
Kenji Ikoma
賢二 生駒
Shinichiro Watabe
信一郎 渡部
Tatsu Ninomiya
達 二宮
Isao Hirano
功 平野
Jun Ichioka
順 一岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Toyo Seisakusho KK
Original Assignee
Kansai Electric Power Co Inc
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Toyo Seisakusho KK filed Critical Kansai Electric Power Co Inc
Priority to JP2006182279A priority Critical patent/JP5057710B2/en
Publication of JP2008008594A publication Critical patent/JP2008008594A/en
Application granted granted Critical
Publication of JP5057710B2 publication Critical patent/JP5057710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that the refrigerant is rapidly cooled to be condensed into liquid between a heat exchanger for heat recovery and a suction port of a compressor after starting a heat recovering operation, or the refrigerant is condensed by oil inside of the compressor to be condensed into liquid. <P>SOLUTION: This heat pump type heat recovering device where a refrigerant circuit is constituted by annularly connecting the compressor 1, a condenser 2, a pressure reducing device 4 and an evaporator 5 in this order, the water supplied from the external is heated by condensation latent heat of the refrigerant in the condenser 2 to produce steam/hot water, and the exhaust heat supplied from the external to the evaporator is recovered as evaporation heat of the refrigerant in the evaporator, is provided with heating means 15, 24 of the refrigerant between the evaporator 5 and the compressor 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプを用いて排温水などの排熱源から熱を回収し、水などの媒体を加熱して高温水や低圧蒸気を発生させるヒートポンプ式の熱回収装置に関する。   The present invention relates to a heat pump type heat recovery apparatus that recovers heat from an exhaust heat source such as exhaust hot water using a heat pump and heats a medium such as water to generate high-temperature water or low-pressure steam.

各種工場においては、低圧蒸気や高温水を必要とする一方で、排温水が排出されているケースが多く、特に食品加工工場では蒸気殺菌や加熱および洗浄の工程で、多量の低圧蒸気や90℃以上の高温水を使用しており、これら各工程からは50〜80℃程度の排温水が多量に排出される。   Various factories require low-pressure steam and high-temperature water, while waste hot water is often discharged. Especially in food processing factories, a large amount of low-pressure steam or 90 ° C is used in steam sterilization, heating and washing processes. The above high-temperature water is used, and a large amount of discharged hot water of about 50 to 80 ° C. is discharged from each of these steps.

これら排温水を低圧蒸気や高温水生成のための給水と単に熱交換させて熱回収を行うのみでは得られる温水の温度が低いため、この排温水を熱源として給水を直接に蒸気や高温水にすることのできる熱回収型のヒートポンプ装置が各種提案されている(例えば、特許文献1、2参照)。   Since the temperature of the hot water that can be obtained simply by exchanging heat with low-pressure steam or feed water for generating high-temperature water is low, the temperature of the hot water obtained is low. Various heat recovery type heat pump devices that can be used have been proposed (see, for example, Patent Documents 1 and 2).

図3は、特開昭61−125547号公報(特許文献1)に報告されている低圧蒸気を得るための従来例であり、ヒートポンプ装置の冷媒回路は圧縮機1、凝縮器として作用する蒸気発生用熱交換器2および給水予熱用熱交換器3、減圧装置として作用する膨張弁4、蒸発器として作用する熱回収用熱交換器5が、圧縮機1から蒸気発生用熱交換器2に至る冷媒吐出配管6、熱回収用熱交換器5から圧縮機1に至る冷媒吸入配管7およびその他の冷媒配管で環状に接続され構成されている。   FIG. 3 is a conventional example for obtaining low-pressure steam as reported in Japanese Patent Laid-Open No. 61-125547 (Patent Document 1). The refrigerant circuit of the heat pump device is a compressor 1 and steam generation that acts as a condenser. The heat exchanger 2 for heat supply, the heat exchanger 3 for preheating the feed water, the expansion valve 4 acting as a pressure reducing device, and the heat exchanger 5 for heat recovery acting as an evaporator reach from the compressor 1 to the heat exchanger 2 for generating steam. A refrigerant discharge pipe 6, a refrigerant suction pipe 7 extending from the heat recovery heat exchanger 5 to the compressor 1 and other refrigerant pipes are connected in a ring shape.

また、低圧蒸気を得る熱出力側の蒸気ドラム8には、給水予熱熱交換器3を経由した給水管9と、蒸気発生用熱交換器2を経由した蒸気管10と、低圧蒸気取出管11が接続されており、一方排温水からの熱回収側は排温水管12が熱回収用熱交換器5に接続されている。   Further, a steam drum 8 on the heat output side for obtaining low-pressure steam includes a feed water pipe 9 via a feed water preheating heat exchanger 3, a steam pipe 10 via a steam generating heat exchanger 2, and a low-pressure steam take-out pipe 11. On the other hand, the exhaust hot water pipe 12 is connected to the heat recovery heat exchanger 5 on the heat recovery side from the exhaust hot water.

図4は、特開平7−139847号公報(特許文献2)に報告されている他の実施例の一部であり、圧縮機1、凝縮器として作用する蒸気発生用熱交換器2、減圧装置として作用する毛細管4a、蒸発器として作用する熱回収用熱交換器5、付属機器であるアキュムレータ13が冷媒吐出配管6、冷媒吸入配管7およびその他の配管で環状に接続され、蒸気発生用熱交換器2には蒸気管10が、熱回収用熱交換器5には排温水管12が接続されている。   FIG. 4 is a part of another embodiment reported in Japanese Patent Laid-Open No. 7-139847 (Patent Document 2), and includes a compressor 1, a heat exchanger 2 for generating steam that acts as a condenser, and a pressure reducing device. Capillary tube 4a that acts as an evaporator, heat recovery heat exchanger 5 that acts as an evaporator, and accumulator 13 that is an accessory device are connected annularly by refrigerant discharge pipe 6, refrigerant suction pipe 7 and other pipes, and heat exchange for generating steam A steam pipe 10 is connected to the vessel 2, and a drained hot water pipe 12 is connected to the heat recovery heat exchanger 5.

これらの従来例では、例えば70℃の排温水を利用して100℃の蒸気を得る熱回収運転時においては、圧縮機1で圧縮されてその凝縮温度が例えば110℃となった高温高圧の蒸気冷媒が、冷媒吐出管6を経て蒸気発生用熱交換器2に入り、110℃で凝縮して蒸気管10からの熱水に熱を与え100℃の水蒸気を生成し、さらに凝縮器での熱交換後の残余の熱で給水予熱用熱交換器3で給水管9を流れる水を加熱した後、膨張弁4や毛細管4aで減圧され、例えば蒸発温度50℃の低圧の液冷媒となり、熱回収用熱交換器5で排温水管12からの70℃の排温水との熱交換によって蒸発し、60℃程度の低圧蒸気冷媒となって冷媒吸入配管7を経て圧縮機1に戻され、この圧縮機1において圧縮されて再び凝縮温度が110℃となった高温高圧の蒸気冷媒となるサイクルを繰返す。   In these conventional examples, at the time of heat recovery operation for obtaining steam of 100 ° C. using, for example, waste water of 70 ° C., high-temperature and high-pressure steam compressed by the compressor 1 and having a condensation temperature of 110 ° C., for example. The refrigerant enters the heat exchanger 2 for generating steam through the refrigerant discharge pipe 6, condenses at 110 ° C., heats the hot water from the steam pipe 10, generates 100 ° C. water vapor, and further heats in the condenser. The remaining heat after the exchange heats the water flowing through the water supply pipe 9 by the heat exchanger 3 for preheating the water supply, and then the pressure is reduced by the expansion valve 4 and the capillary 4a, for example, a low-pressure liquid refrigerant having an evaporation temperature of 50 ° C. The heat exchanger 5 evaporates by heat exchange with the 70 ° C. exhaust hot water from the exhaust hot water pipe 12, becomes a low-pressure vapor refrigerant of about 60 ° C., is returned to the compressor 1 through the refrigerant suction pipe 7, and this compression Compressed in machine 1 and the condensation temperature is 110 ° C again Repeating the cycle of the high-pressure vapor refrigerant.

特開昭61−125547号公報JP-A 61-125547 特開平7−139847号公報JP-A-7-139847

前述した従来のヒートポンプ式熱回収装置では、設置後や長時間の運転停止後は装置各部の温度は例えば20℃程度の室温になっており、この状態でヒートポンプによる熱回収運転を開始すると、ヒートポンプ回路を流れる冷媒は装置起動時には熱回収用熱交換器5で70℃の排温水から熱回収することによって蒸発温度50℃で蒸発して60℃程度の蒸気となるが、圧縮機1に戻る途中で20℃の冷媒吸入管7やアキュムレータ13を通るときに冷却されて凝縮し、再び液となって圧縮機1に戻り、圧縮機1を損傷させる。あるいは圧縮機内油温が30℃であった場合には油により冷媒蒸気が凝縮液化して液戻り状態と同様になり油圧低下するなどの課題があった。   In the above-described conventional heat pump heat recovery apparatus, the temperature of each part of the apparatus is, for example, about 20 ° C. after installation or after a long-time shutdown, and when the heat recovery operation by the heat pump is started in this state, The refrigerant flowing through the circuit evaporates at a vaporization temperature of 50 ° C. by recovering heat from the exhaust water having a temperature of 70 ° C. in the heat recovery heat exchanger 5 when the apparatus is activated. Then, when it passes through the refrigerant suction pipe 7 and the accumulator 13 at 20 ° C., it cools and condenses, returns to the compressor 1 again as a liquid, and damages the compressor 1. Alternatively, when the oil temperature in the compressor is 30 ° C., there is a problem that the refrigerant vapor is condensed and liquefied by the oil, which is similar to the liquid return state, and the hydraulic pressure is reduced.

上述の課題を解決するため、本発明の請求項1に係るヒートポンプ式熱回収装置は、圧縮機、凝縮器、減圧装置、蒸発器がこの順に環状に接続されて冷媒回路を構成し、前記凝縮器における冷媒の凝縮潜熱により外部から供給される水を加熱して蒸気・温水を生成するとともに、前記蒸発器に外部から供給される排熱を同蒸発器における冷媒の蒸発熱として回収する構成のヒートポンプ式熱回収装置において、前記蒸発器と圧縮機との間における冷媒回路の加熱手段を設けた構成のものとしてある。   In order to solve the above-mentioned problem, a heat pump heat recovery apparatus according to claim 1 of the present invention is configured such that a compressor, a condenser, a decompression device, and an evaporator are annularly connected in this order to form a refrigerant circuit, and the condensation The water supplied from the outside is heated by the latent heat of condensation of the refrigerant in the evaporator to generate steam and hot water, and the exhaust heat supplied from the outside to the evaporator is recovered as the heat of evaporation of the refrigerant in the evaporator In the heat pump heat recovery apparatus, a heating means for the refrigerant circuit is provided between the evaporator and the compressor.

また、請求項2に係るヒートポンプ式熱回収装置は、前記加熱手段を、圧縮機の吐出管と蒸発器の出口管とを接続するバイパス配管と、前記圧縮機からの冷媒を前記バイパス配管側または凝縮器側に切り換えて流す開閉弁装置とで構成したものとしてある。   Further, in the heat pump heat recovery apparatus according to claim 2, the heating means includes a bypass pipe connecting a discharge pipe of a compressor and an outlet pipe of an evaporator, and a refrigerant from the compressor is supplied to the bypass pipe side or The on-off valve device is switched to the condenser side and flows.

請求項3に係るヒートポンプ式熱回収装置は、装置起動時において、蒸発器と圧縮機との間における冷媒の温度を検知する温度検知器が、冷媒の蒸発温度または蒸発器に供給される高温排熱の温度より低いことを検知すると、前記開閉弁装置が圧縮機からの冷媒をバイパス配管側に流し、前記温度検知器が予め設定された所定の温度に到達すると、凝縮器側に流すよう制御されるように構成したものとしてある。   In the heat pump heat recovery apparatus according to claim 3, the temperature detector that detects the temperature of the refrigerant between the evaporator and the compressor at the start-up time of the refrigerant is a refrigerant evaporation temperature or a high-temperature exhaust gas supplied to the evaporator. When it is detected that the temperature is lower than the heat temperature, the on-off valve device causes the refrigerant from the compressor to flow to the bypass piping side, and when the temperature detector reaches a predetermined temperature, it is controlled to flow to the condenser side. It is assumed that it is configured.

請求項4に係るヒートポンプ式熱回収装置は、前記加熱手段を、蒸発器に供給される排熱の供給管から分岐し、蒸発器から圧縮機に至る配管および機器類と熱交換可能に設けた排熱供給回路と、前記排熱の供給管と排熱供給回路との間で排熱の流れ方向を切り換える開閉弁装置とで構成したものとしてある。   In the heat pump heat recovery apparatus according to claim 4, the heating unit is provided so as to be able to exchange heat with piping and equipment extending from the evaporator to the compressor, branched from a supply pipe for exhaust heat supplied to the evaporator. The exhaust heat supply circuit and an on-off valve device that switches the flow direction of the exhaust heat between the exhaust heat supply pipe and the exhaust heat supply circuit are provided.

請求項5に係るヒートポンプ式熱回収装置は、装置起動時において、蒸発器と圧縮機との間における冷媒の温度を検知する温度検知器が、冷媒の蒸発温度または蒸発器に供給される高温排熱の温度より低いことを検知すると、前記開閉弁装置が外部からの排熱を前記排熱供給回路側に流し、前記温度検知器が予め設定された所定の温度に到達すると、蒸発器側に流すよう制御されるように構成したものとしてある。   In the heat pump heat recovery apparatus according to claim 5, the temperature detector that detects the temperature of the refrigerant between the evaporator and the compressor at the time of starting the apparatus is an evaporation temperature of the refrigerant or a high-temperature exhaust gas supplied to the evaporator. When it is detected that the temperature is lower than the temperature of the heat, the on-off valve device causes the exhaust heat from the outside to flow to the exhaust heat supply circuit side, and when the temperature detector reaches a preset predetermined temperature, It is configured to be controlled to flow.

請求項6に係るヒートポンプ式熱回収装置は、請求項1における加熱手段を、電気ヒータまたは温水ヒータで構成したものとしてある。   In the heat pump heat recovery apparatus according to claim 6, the heating means according to claim 1 is constituted by an electric heater or a hot water heater.

本発明によれば、装置起動時においてヒートポンプによる熱回収運転に入る前に、熱回収用熱交換器から圧縮機吸入口までを予め加温する予熱運転を設定しているため、熱回収運転起動後に前記熱回収用熱交換器から圧縮機吸入口の間で冷媒が急速に冷却され凝縮液化する、あるいは圧縮機内部で冷媒が油により凝縮液化し不具合を生じるという危険性が無く熱回収運転を立ち上げることができる。   According to the present invention, since the preheating operation for preheating the heat recovery heat exchanger to the compressor inlet is set before the heat recovery operation by the heat pump at the time of starting the apparatus, the heat recovery operation is started. The refrigerant is rapidly cooled and condensed into a liquid between the heat recovery heat exchanger and the compressor suction port, or the refrigerant is condensed and liquefied with oil inside the compressor without causing a malfunction. Can be launched.

以下、本発明に係る装置の実施例を添付図面に示す具体例に基づいて詳細に説明する。
図1は、本発明の一実施例を示す図であり、同図1において符号1〜13は図3、4に示した従来例のものと基本的に共通の構成を示している。
そして、本実施例のものにおいては圧縮機1の冷媒吐出管6と熱回収用熱交換器5を出た後の冷媒吸入管7との間を、途中に第1開閉弁14を備えるバイパス配管15で接続するとともに、バイパス配管15と分岐した後の冷媒吐出管6に第2開閉弁16を設置し、これら開閉弁14、16よりなる開閉弁装置24を制御するための温度検知器17を、例えばアキュムレータ13に取付けている。
この温度検知器17に対し、蒸発温度検知のために温度検知器18を熱回収用熱交換器冷媒配管5aに、あるいは排温水温度検知のために温度検知器19を排温水管12に取り付けている。なお、冷媒には高温冷媒であるR−245faを採用するのが好適である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the apparatus according to the present invention will be described below in detail based on specific examples shown in the accompanying drawings.
FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, reference numerals 1 to 13 indicate a configuration basically common to that of the conventional example shown in FIGS.
In this embodiment, a bypass pipe having a first on-off valve 14 is provided between the refrigerant discharge pipe 6 of the compressor 1 and the refrigerant suction pipe 7 after exiting the heat recovery heat exchanger 5. 15, a second on-off valve 16 is installed in the refrigerant discharge pipe 6 after branching from the bypass pipe 15, and a temperature detector 17 for controlling the on-off valve device 24 composed of these on-off valves 14, 16 is provided. For example, it is attached to the accumulator 13.
For this temperature detector 17, a temperature detector 18 is attached to the heat recovery heat exchanger refrigerant pipe 5 a for detecting the evaporation temperature, or a temperature detector 19 is attached to the exhaust hot water pipe 12 for detecting the exhaust hot water temperature. Yes. In addition, it is suitable to employ | adopt R-245fa which is a high temperature refrigerant | coolant as a refrigerant | coolant.

上述のように構成した本発明によるヒートポンプ式熱回収装置では、装置の運転信号とともに排温水が排温水管12を流れるが、このとき温度検知器17で検知される温度が温度検知器18で検知される蒸発温度より低い、あるいは温度検知器19で検知される排温水温度より設定値ΔT以上低い場合は、第1開閉弁14が開、第2開閉弁16が閉となって圧縮機からの冷媒がバイパス配管15側に流される状態となる熱回収運転前の予熱運転が設定され、圧縮機1が起動する。   In the heat pump heat recovery apparatus according to the present invention configured as described above, the exhaust water flows through the exhaust water pipe 12 together with the operation signal of the apparatus. At this time, the temperature detected by the temperature detector 17 is detected by the temperature detector 18. When the temperature is lower than the evaporating temperature, or when the set temperature ΔT is lower than the exhaust water temperature detected by the temperature detector 19, the first on-off valve 14 is opened and the second on-off valve 16 is closed to The preheating operation before the heat recovery operation in which the refrigerant flows to the bypass pipe 15 side is set, and the compressor 1 is started.

運転の起動ともに、圧縮機1で圧縮され高温高圧のガスとなって吐出された冷媒は、第1開閉弁14が開、第2開閉弁16が閉となっているため、冷媒吐出管6からバイパス配管15を通って熱回収用熱交換器5の出口側に導入され、その後冷媒吸入管7およびこの冷媒吸入管7に取付けられたアキュムレータ13などの機器類を通って圧縮機1に戻るが、この運転によって熱回収用熱交換器5から圧縮機1までの冷媒吸入管7やアキュムレータ13などの機器類が圧縮機からの高温の蒸気冷媒によって加温される。   At the start of operation, the refrigerant compressed by the compressor 1 and discharged as high-temperature and high-pressure gas is opened from the refrigerant discharge pipe 6 because the first on-off valve 14 and the second on-off valve 16 are closed. It is introduced to the outlet side of the heat recovery heat exchanger 5 through the bypass pipe 15 and then returns to the compressor 1 through the refrigerant suction pipe 7 and the devices such as the accumulator 13 attached to the refrigerant suction pipe 7. By this operation, the devices such as the refrigerant suction pipe 7 and the accumulator 13 from the heat recovery heat exchanger 5 to the compressor 1 are heated by the high-temperature vapor refrigerant from the compressor.

前記の予熱運転中に、温度検知器17の温度が設定温度以上になると第2開閉弁16が開、第1開閉弁14が閉となり、圧縮機1で圧縮され高温高圧となった冷媒は、冷媒吐出管6から蒸気発生用熱交換器2、給水予熱熱交換器3に行って蒸気の生成および給水の予熱を行ったあと、膨張弁4で減圧され低圧となって熱回収用熱交換器5に行き、ここで排温水管12からの排温水と熱交換して蒸気となり圧縮機1に戻り再び圧縮されるサイクルを繰り返すが、このとき冷媒吸入管7やアキュムレータ13などの機器類は冷媒の蒸発温度以上となっているため、冷媒はここで冷却されず、したがって液化することなく蒸気の状態で圧縮機1に吸入される。   During the preheating operation, when the temperature of the temperature detector 17 becomes equal to or higher than the set temperature, the second on-off valve 16 is opened, the first on-off valve 14 is closed, and the refrigerant compressed by the compressor 1 to high temperature and pressure is After performing steam generation and feed water preheating from the refrigerant discharge pipe 6 to the steam generating heat exchanger 2 and feed water preheating heat exchanger 3, the expansion valve 4 reduces the pressure to a low pressure and heat recovery heat exchanger 5, where the heat is exchanged with the hot water from the hot water pipe 12 to be converted into steam and returned to the compressor 1 to be compressed again. At this time, the equipment such as the refrigerant suction pipe 7 and the accumulator 13 is a refrigerant. Therefore, the refrigerant is not cooled here, and is therefore sucked into the compressor 1 in a vapor state without being liquefied.

上述した実施例の装置においては、予熱運転として圧縮機1で圧縮された高温高圧の冷媒蒸気を冷媒吸入管7側にバイパスして加温する構成としたが、図2に示す他の実施例では、排熱の供給管たる排温水管12を、熱回収用熱交換器5に入る前に第1開閉弁20と第2開閉弁21よりなる開閉弁装置25を介して第1排温水管22と第2排温水管23とに分岐し、第1排温水管22は熱回収用熱交換器5に接続されて低圧の液冷媒と熱交換する構成とし、第2排温水管23は熱回収用熱交換器5を出た冷媒吸入配管7およびこの冷媒吸入配管7に取り付けられているアキュムレータ13などの機器類を介して第2排温水管内の排温水の熱を吸入冷媒と熱交換させる構成となっている。   In the apparatus of the above-described embodiment, the high-temperature and high-pressure refrigerant vapor compressed by the compressor 1 is preheated and bypassed to the refrigerant suction pipe 7 side for heating, but another embodiment shown in FIG. Then, the exhaust hot water pipe 12 serving as the exhaust heat supply pipe is connected to the first exhaust hot water pipe via the on-off valve device 25 including the first on-off valve 20 and the second on-off valve 21 before entering the heat exchanger 5 for heat recovery. 22 and the second exhaust hot water pipe 23, the first exhaust hot water pipe 22 is connected to the heat recovery heat exchanger 5 to exchange heat with the low-pressure liquid refrigerant, and the second exhaust hot water pipe 23 is heated. The heat of the discharged hot water in the second discharged hot water pipe is exchanged with the sucked refrigerant through the refrigerant suction pipe 7 exiting the recovery heat exchanger 5 and devices such as the accumulator 13 attached to the refrigerant suction pipe 7. It has a configuration.

上記のように構成された実施例では、装置の運転信号とともに排温水が排温水管12を流れるが、このとき温度検知器17で検知される温度が温度検知器18で検知される蒸発温度より低いか、あるいは温度検知器19で検知される排温水温度より設定値ΔT以上低い場合は、第1開閉弁20が閉、第2開閉弁21が開となり、圧縮機1は起動せず排温水は排温水管23を流れる予熱運転が設定される。   In the embodiment configured as described above, the discharged warm water flows through the discharged warm water pipe 12 together with the operation signal of the apparatus. At this time, the temperature detected by the temperature detector 17 is higher than the evaporation temperature detected by the temperature detector 18. When the temperature is lower or lower than the set value ΔT by the temperature of the discharged hot water detected by the temperature detector 19, the first on-off valve 20 is closed and the second on-off valve 21 is opened. The preheating operation that flows through the exhaust hot water pipe 23 is set.

この予熱運転によって、蒸発器たる熱回収用熱交換器5と圧縮機1との間の冷媒回路である冷媒吸入配管7およびこの冷媒吸入配管7に取り付けられているアキュムレータ13などの機器類は、第2排温水管23を流れる排温水によって加温される。   By this preheating operation, equipment such as a refrigerant suction pipe 7 which is a refrigerant circuit between the heat recovery heat exchanger 5 as an evaporator and the compressor 1 and an accumulator 13 attached to the refrigerant suction pipe 7 are Heated by the waste water flowing through the second waste water pipe 23.

予熱運転において、温度検知器17で検知される温度が温度検知器18で検知される蒸発温度以上、あるいは温度検知器19で検知される排温水温度が設定値温度に達すると、第1開閉弁20が開、第2開閉弁21が閉となり排温水は第1排温水管22を流れ、その後、圧縮機1が起動され、圧縮機1で圧縮され高温高圧となった冷媒は、冷媒吐出管6から蒸気発生用熱交換器2、給水予熱熱交換器3に行って蒸気の生成および給水の予熱を行ったあと、膨張弁4で減圧され低圧となって熱回収用熱交換器5に送られ、ここで第1排温水管22からの排温水と熱交換して蒸気となり、その後、冷媒吸入管7やアキュムレータ13などの機器類で冷却されず、したがって凝縮することなく、蒸気状態で圧縮機1に戻り再び圧縮されるサイクルを繰り返す。   In the preheating operation, when the temperature detected by the temperature detector 17 is equal to or higher than the evaporating temperature detected by the temperature detector 18 or when the temperature of the discharged hot water detected by the temperature detector 19 reaches the set temperature, the first on-off valve 20 is opened, the second on-off valve 21 is closed, and the discharged hot water flows through the first discharged hot water pipe 22. After that, the compressor 1 is started and the refrigerant compressed to the high temperature and high pressure by the compressor 1 is discharged into the refrigerant discharge pipe. 6, the steam generation heat exchanger 2 and the feed water preheating heat exchanger 3 are used to generate steam and preheat the feed water, and then the pressure is reduced by the expansion valve 4 to a low pressure and sent to the heat recovery heat exchanger 5. Here, heat is exchanged with the exhaust hot water from the first exhaust hot water pipe 22 to form steam, and then it is not cooled by equipment such as the refrigerant suction pipe 7 and the accumulator 13, and is therefore compressed in the steam state without being condensed. Return to machine 1 and cycle again Return Ri.

なお、前記第1実施例において熱出力側の低圧蒸気を得る回路は、蒸気ドラム8に接続されている給水予熱の給水管9と低圧蒸気を得る蒸気管10から構成されているが、第2実施例のもののように、給水管9は蒸気ドラム8に接続することなく、温水の取出し管として独立させても良い。すなわち、低圧蒸気を得る回路は、第1実施例のものと第2実施例のものを相互に交換した構成とする場合もある。   In the first embodiment, the circuit for obtaining the low pressure steam on the heat output side is constituted by the feed water preheating feed pipe 9 connected to the steam drum 8 and the steam pipe 10 for obtaining the low pressure steam. As in the embodiment, the water supply pipe 9 may be independent from the steam drum 8 without being connected to the steam drum 8. That is, the circuit for obtaining the low-pressure steam may have a configuration in which the first embodiment and the second embodiment are interchanged.

さらに、第2実施例のものにおける給水予熱熱交換器3からの温水出口と蒸気発生用熱交換器2の給水口とを直接または制御弁を介して接続し、給水予熱熱交換器3からの温水をそのまま蒸気発生用熱交換器2に供給したり、上記制御弁の操作によって給水予熱熱交換器3からの温水の一部を外部に導出するとともに、残余を蒸気発生用熱交換器2に直接または外部からの給水と混合して送ったりするように構成する場合もある。   Furthermore, the hot water outlet from the feed water preheating heat exchanger 3 and the feed water inlet of the steam generating heat exchanger 2 in the second embodiment are connected directly or via a control valve, and the feed water preheating heat exchanger 3 The hot water is supplied to the steam generating heat exchanger 2 as it is, or a part of the hot water from the feed water preheating heat exchanger 3 is led to the outside by operating the control valve, and the remainder is supplied to the steam generating heat exchanger 2. It may be configured to send directly or mixed with external water supply.

また、温度検知器17をアキュムレータ13に設置している例を図示しているが、設置場所はここに限定されることなく、冷媒吸入回路の温度を代表できる位置でよく、また複数個設置してもよい。   In addition, although an example in which the temperature detector 17 is installed in the accumulator 13 is illustrated, the installation location is not limited to this, and may be a position that can represent the temperature of the refrigerant suction circuit. May be.

予熱運転の是非を判断する温度については、冷媒の蒸発温度あるいは排温水温度である。排温水温度で判断する場合は、冷媒との温度差ΔTを設定する必要がある。この温度差ΔTは、熱回収用熱交換器5で排温水と熱交換させる冷媒の蒸発温度の設計値に依存する値であり、一例として排温水温度が70℃のとき冷媒蒸発温度が50℃であれば、温度検知器17の温度は50℃以上になっていれば良く、したがって設定温度差ΔTは約20℃以内に設定される。   The temperature at which the preheating operation is judged is the refrigerant evaporation temperature or the exhaust hot water temperature. When judging based on the waste water temperature, it is necessary to set a temperature difference ΔT with respect to the refrigerant. This temperature difference ΔT is a value that depends on the design value of the evaporation temperature of the refrigerant that exchanges heat with the exhaust hot water in the heat recovery heat exchanger 5. For example, when the exhaust hot water temperature is 70 ° C., the refrigerant evaporation temperature is 50 ° C. If it is, the temperature of the temperature detector 17 should just be 50 degreeC or more, Therefore, preset temperature difference (DELTA) T is set within about 20 degreeC.

さらに、冷媒の蒸発温度や排温水温度および冷媒吸入配管7の温度等が予め想定されるときは、予熱運転の設定をタイマーによる時間設定としてもよい。   Furthermore, when the evaporation temperature of the refrigerant, the temperature of the exhaust hot water, the temperature of the refrigerant suction pipe 7, and the like are assumed in advance, the setting of the preheating operation may be set to a time setting by a timer.

図1におけるヒートポンプ回路は基本構成機器を示すものであり、これ以外に圧縮機を2台備えた2段圧縮式の回路でもよく、また各種の制御弁や回路および油分離器、ドライヤ、受液器などの機器が付属されていても良いことはいうまでもない。   The heat pump circuit in FIG. 1 shows basic components, and may be a two-stage compression type circuit having two compressors, various control valves, circuits, oil separators, dryers, liquid receivers. Needless to say, a device such as a vessel may be attached.

また、図2における排温水管23による冷媒吸入管7およびアキュムレータ13などの機器の加熱については、その熱交換の方法は特に限定するものではなく、排温水管21を冷媒吸入管7やアキュムレータ13などの機器に沿わせてもよく、また排温水管21によって加温された空気中に冷媒吸入管7やアキュムレータ13などの機器を配置する構成としても良い。   Further, the heating method of the equipment such as the refrigerant suction pipe 7 and the accumulator 13 by the exhaust hot water pipe 23 in FIG. 2 is not particularly limited, and the exhaust hot water pipe 21 is connected to the refrigerant suction pipe 7 and the accumulator 13. It is also possible to arrange the devices such as the refrigerant suction pipe 7 and the accumulator 13 in the air heated by the exhaust hot water pipe 21.

さらに、上述した実施例では圧縮機の吐出高温冷媒や排温水を、吸入側配管における加熱手段の熱源としているが、この熱源を電気ヒータや温水ヒータとする場合もある。   Furthermore, in the above-described embodiment, the high-temperature refrigerant discharged from the compressor and the exhaust hot water are used as the heat source of the heating means in the suction side pipe, but this heat source may be an electric heater or a hot water heater.

本発明によるヒートポンプ式熱回収装置の実施形態の一例を示す構成図。The block diagram which shows an example of embodiment of the heat pump type heat recovery apparatus by this invention. 本発明によるヒートポンプ式熱回収装置の実施形態の他の例を示す構成図。The block diagram which shows the other example of embodiment of the heat-pump-type heat recovery apparatus by this invention. 従来例を示す構成図。The block diagram which shows a prior art example. 他の従来例を示す構成図。The block diagram which shows another prior art example.

符号の説明Explanation of symbols

1 圧縮機
2 蒸気発生用熱交換器
2a 蒸気発生用熱交換器冷媒配管
2b 蒸気発生用熱交換器水配管
3 給水予熱用熱交換器
3a 給水予熱用熱交換器冷媒配管
3b 給水予熱用熱交換器水配管
4 膨張弁
4a 毛細管
5 熱回収用熱交換器
5a 熱回収用熱交換器冷媒配管
5b 熱回収用熱交換器水配管
6 冷媒吐出管
7 冷媒吸入管
8 蒸気ドラム
9 給水管
10 蒸気管
11 低圧蒸気取出管
12 排温水管
13 アキュムレータ
14 第1開閉弁
15 バイパス配管
16 第2開閉弁
17 温度検知器
18 温度検知器
19 温度検知器
20 第1開閉弁
21 第2開閉弁
22 第1排温水管
23 第2排温水管
24 開閉弁装置
25 開閉弁装置
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger 2a for steam generation Heat exchanger refrigerant pipe 2b for steam generation Heat exchanger water pipe 3 for steam generation Heat exchanger 3a for feed water preheating Heat exchanger refrigerant pipe 3b for feed water preheating Heat exchange for feed water preheating Water pipe 4 Expansion valve 4a Capillary tube 5 Heat recovery heat exchanger 5a Heat recovery heat exchanger refrigerant pipe 5b Heat recovery heat exchanger water pipe 6 Refrigerant discharge pipe 7 Refrigerant suction pipe 8 Steam drum 9 Water supply pipe 10 Steam pipe 11 Low pressure steam extraction pipe 12 Waste hot water pipe 13 Accumulator 14 First on-off valve 15 Bypass pipe 16 Second on-off valve 17 Temperature detector 18 Temperature detector 19 Temperature detector 20 First on-off valve 21 Second on-off valve 22 First exhaust Hot water pipe 23 Second exhaust hot water pipe 24 Open / close valve device 25 Open / close valve device

Claims (6)

圧縮機、凝縮器、減圧装置、蒸発器がこの順に環状に接続されて冷媒回路を構成し、前記凝縮器における冷媒の凝縮潜熱により外部から供給される水を加熱して蒸気・温水を生成するとともに、前記蒸発器に外部から供給される排熱を同蒸発器における冷媒の蒸発熱として回収する構成のヒートポンプ式熱回収装置において、前記蒸発器と圧縮機との間における冷媒回路の加熱手段を設けてなるヒートポンプ式熱回収装置。   A compressor, a condenser, a decompression device, and an evaporator are connected in an annular shape in this order to form a refrigerant circuit, and water supplied from outside is heated by the latent heat of condensation of the refrigerant in the condenser to generate steam / hot water. In addition, in the heat pump heat recovery apparatus configured to recover the exhaust heat supplied from the outside to the evaporator as the evaporation heat of the refrigerant in the evaporator, heating means for the refrigerant circuit between the evaporator and the compressor A heat pump heat recovery device provided. 前記加熱手段を、圧縮機の吐出管と蒸発器の出口管とを接続するバイパス配管と、前記圧縮機からの冷媒を前記バイパス管側または凝縮器側に切り換えて流す開閉弁装置とで構成してなる請求項1に記載のヒートポンプ式熱回収装置。   The heating means includes a bypass pipe connecting a discharge pipe of a compressor and an outlet pipe of an evaporator, and an on-off valve device that switches the refrigerant from the compressor to the bypass pipe side or the condenser side. The heat pump type heat recovery apparatus according to claim 1. 装置起動時において、蒸発器と圧縮機との間における冷媒の温度を検知する温度検知器が、冷媒の蒸発温度または蒸発器に供給される高温排熱の温度より低いことを検知すると、前記開閉弁装置が圧縮機からの冷媒をバイパス配管側に流し、前記温度検知器が予め設定された所定の温度に到達すると、凝縮器側に流すよう制御されるように構成してなる請求項2に記載のヒートポンプ式熱回収装置。   When the apparatus is activated, when the temperature detector for detecting the temperature of the refrigerant between the evaporator and the compressor detects that the temperature is lower than the evaporation temperature of the refrigerant or the temperature of the high-temperature exhaust heat supplied to the evaporator, The valve device is configured to flow the refrigerant from the compressor to the bypass pipe side, and to control the refrigerant to flow to the condenser side when the temperature detector reaches a predetermined temperature. The heat pump heat recovery device described. 前記加熱手段を、蒸発器に供給される排熱の供給管から分岐し、蒸発器から圧縮機に至る配管および機器類と熱交換可能に設けた排熱供給回路と、前記排熱の供給管と排熱供給回路との間で排熱の流れ方向を切り換える開閉弁装置とで構成してなる請求項1に記載のヒートポンプ式熱回収装置。   An exhaust heat supply circuit branched from the supply pipe for exhaust heat supplied to the evaporator and connected to the piping and equipment from the evaporator to the compressor, and the exhaust heat supply pipe The heat pump type heat recovery device according to claim 1, comprising an on-off valve device that switches a flow direction of exhaust heat between the exhaust heat supply circuit and the exhaust heat supply circuit. 装置起動時において、蒸発器と圧縮機との間における冷媒の温度を検知する温度検知器が、冷媒の蒸発温度または蒸発器に供給される高温排熱の温度より低いことを検知すると、前記開閉弁装置が外部からの排熱を前記排熱供給回路側に流し、前記温度検知器が予め設定された所定の温度に到達すると、蒸発器側に流すよう制御されるように構成してなる請求項4に記載のヒートポンプ式熱回収装置。   When the apparatus is activated, when the temperature detector for detecting the temperature of the refrigerant between the evaporator and the compressor detects that the temperature is lower than the evaporation temperature of the refrigerant or the temperature of the high-temperature exhaust heat supplied to the evaporator, The valve device is configured to flow the exhaust heat from the outside to the exhaust heat supply circuit side, and to control to flow to the evaporator side when the temperature detector reaches a predetermined temperature. Item 5. A heat pump heat recovery apparatus according to Item 4. 請求項1における加熱手段を、電気ヒータまたは温水ヒータで構成してなる請求項1に記載のヒートポンプ式熱回収装置。   The heat pump heat recovery apparatus according to claim 1, wherein the heating means in claim 1 is constituted by an electric heater or a hot water heater.
JP2006182279A 2006-06-30 2006-06-30 Heat pump heat recovery device Active JP5057710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006182279A JP5057710B2 (en) 2006-06-30 2006-06-30 Heat pump heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182279A JP5057710B2 (en) 2006-06-30 2006-06-30 Heat pump heat recovery device

Publications (2)

Publication Number Publication Date
JP2008008594A true JP2008008594A (en) 2008-01-17
JP5057710B2 JP5057710B2 (en) 2012-10-24

Family

ID=39066964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182279A Active JP5057710B2 (en) 2006-06-30 2006-06-30 Heat pump heat recovery device

Country Status (1)

Country Link
JP (1) JP5057710B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266191A (en) * 2009-04-16 2010-11-25 Chubu Electric Power Co Inc Medium temperature regulating system
JP2011510257A (en) * 2008-01-17 2011-03-31 キャリア コーポレイション Capacity adjustment of refrigerant vapor compression system
JP2012117760A (en) * 2010-12-01 2012-06-21 Tokyo Electric Power Co Inc:The Heat pump and heat supply system
JP2013217219A (en) * 2012-04-05 2013-10-24 Mitsubishi Heavy Ind Ltd Steam valve
JP2015025578A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
JP2015025579A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
CN105115185A (en) * 2015-07-24 2015-12-02 广东美的暖通设备有限公司 Multifunctional air conditioner
JP2017156055A (en) * 2016-03-04 2017-09-07 富士電機株式会社 Heat pump type steam generation device
CN112797607A (en) * 2021-01-04 2021-05-14 珠海格力电器股份有限公司 Heat recovery system, control method and air conditioning unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301459A (en) * 1994-05-09 1995-11-14 Kubota Corp Heat pump apparatus
JPH0814670A (en) * 1994-06-29 1996-01-19 Hitachi Ltd Method of preventing liquid flowing-back in air conditioner and air conditioner
JPH0828987A (en) * 1994-07-20 1996-02-02 Daikin Ind Ltd Liquid refrigerant discharging device for compressor
JPH08136067A (en) * 1994-11-07 1996-05-31 Matsushita Seiko Co Ltd Air conditioner
JPH1062026A (en) * 1996-08-23 1998-03-06 Sanyo Electric Co Ltd Air conditioner
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JPH11257791A (en) * 1998-03-09 1999-09-24 Aqua Reinetsu Kk Heat pump type exhaust heat recovery water heater
JP2006017426A (en) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The Heat pump type steam/hot water generator
JP2006046755A (en) * 2004-08-03 2006-02-16 Sanyo Electric Co Ltd Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301459A (en) * 1994-05-09 1995-11-14 Kubota Corp Heat pump apparatus
JPH0814670A (en) * 1994-06-29 1996-01-19 Hitachi Ltd Method of preventing liquid flowing-back in air conditioner and air conditioner
JPH0828987A (en) * 1994-07-20 1996-02-02 Daikin Ind Ltd Liquid refrigerant discharging device for compressor
JPH08136067A (en) * 1994-11-07 1996-05-31 Matsushita Seiko Co Ltd Air conditioner
JPH1062026A (en) * 1996-08-23 1998-03-06 Sanyo Electric Co Ltd Air conditioner
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JPH11257791A (en) * 1998-03-09 1999-09-24 Aqua Reinetsu Kk Heat pump type exhaust heat recovery water heater
JP2006017426A (en) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The Heat pump type steam/hot water generator
JP2006046755A (en) * 2004-08-03 2006-02-16 Sanyo Electric Co Ltd Air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510257A (en) * 2008-01-17 2011-03-31 キャリア コーポレイション Capacity adjustment of refrigerant vapor compression system
JP2010266191A (en) * 2009-04-16 2010-11-25 Chubu Electric Power Co Inc Medium temperature regulating system
JP2012117760A (en) * 2010-12-01 2012-06-21 Tokyo Electric Power Co Inc:The Heat pump and heat supply system
JP2013217219A (en) * 2012-04-05 2013-10-24 Mitsubishi Heavy Ind Ltd Steam valve
JP2015025578A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
JP2015025579A (en) * 2013-07-24 2015-02-05 三浦工業株式会社 Heat pump
CN105115185A (en) * 2015-07-24 2015-12-02 广东美的暖通设备有限公司 Multifunctional air conditioner
CN105115185B (en) * 2015-07-24 2017-11-10 广东美的暖通设备有限公司 Multi-function air conditioner
JP2017156055A (en) * 2016-03-04 2017-09-07 富士電機株式会社 Heat pump type steam generation device
CN112797607A (en) * 2021-01-04 2021-05-14 珠海格力电器股份有限公司 Heat recovery system, control method and air conditioning unit

Also Published As

Publication number Publication date
JP5057710B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5057710B2 (en) Heat pump heat recovery device
JP5068966B2 (en) Heat pump heat recovery device
JP5338731B2 (en) Waste heat regeneration system
JP5338730B2 (en) Waste heat regeneration system
JP4972421B2 (en) Heat pump steam / hot water generator
JP2011085071A (en) Waste heat regeneration system
JP2015210033A (en) Steam generation heat pump
JP2012167852A (en) Heat pump type vapor generator
JP2010038391A (en) Heat pump type steam generating device
KR20140136972A (en) Waste heat recovery ranking cycle system
JP2012247156A (en) Steam generating method using heat pump
JP6680300B2 (en) Exhaust heat recovery heat pump device
JP2006017426A (en) Heat pump type steam/hot water generator
NO318864B1 (en) Improved heat pump system
JP6465218B2 (en) Waste heat recovery heat pump device
JP2006329568A (en) Heat pump device
JP6844256B2 (en) Steam generation system
JP2013213593A (en) Steam production system, and start control method of the same
JP2011099571A (en) Refrigerating cycle device and hot-water heating device using the same
JP2020098040A (en) Steam generating heat pump device
JP2013249967A (en) Hot water generator
KR20200132700A (en) Thermal recovery device and collecting method of working medium of thermal recovery device
JP6477415B2 (en) Heat pump type steam generator and method for starting heat pump type steam generator
JP7099230B2 (en) Steam system
JP7077680B2 (en) Rankine cycle system and control method of Rankine cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250