JPH0729850B2 - Ceramic member of hydrodynamic bearing having a plurality of adjacent concave grooves on the surface and method of manufacturing the same - Google Patents

Ceramic member of hydrodynamic bearing having a plurality of adjacent concave grooves on the surface and method of manufacturing the same

Info

Publication number
JPH0729850B2
JPH0729850B2 JP3329970A JP32997091A JPH0729850B2 JP H0729850 B2 JPH0729850 B2 JP H0729850B2 JP 3329970 A JP3329970 A JP 3329970A JP 32997091 A JP32997091 A JP 32997091A JP H0729850 B2 JPH0729850 B2 JP H0729850B2
Authority
JP
Japan
Prior art keywords
ceramic
molding
plastic body
grooves
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3329970A
Other languages
Japanese (ja)
Other versions
JPH05139836A (en
Inventor
博之 素本
益三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP3329970A priority Critical patent/JPH0729850B2/en
Publication of JPH05139836A publication Critical patent/JPH05139836A/en
Publication of JPH0729850B2 publication Critical patent/JPH0729850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動圧流体軸受の構成部
材、特に、近接する多数の凹溝を表面に有するセラミッ
ク製ジャーナル等のセラミック部材とこれを製造するた
めの方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component part of a hydrodynamic bearing.
Materials, especially ceramics with a large number of closely spaced grooves on the surface
TECHNICAL FIELD The present invention relates to a ceramic member such as a journal made of quartz and a method for manufacturing the same.

【0002】[0002]

【従来の技術】例えば、動圧流体軸受にあっては、近接
して並列する多数の動圧発生溝を表面に形成したセラミ
ック製のジャーナルが使用されているが、このような凹
溝を有するセラミック部材は、一般に、炭化珪素等の粉
末材料を加圧成形したものを焼成した上、この焼結体の
表面に凹溝を形成することによって、得られる。
2. Description of the Related Art For example, in a hydrodynamic bearing, a ceramic journal having a large number of hydrodynamic grooves closely arranged in parallel is used. Generally, a ceramic member is obtained by press-molding a powder material such as silicon carbide and firing it, and then forming concave grooves on the surface of this sintered body.

【0003】ところで、焼成して得られる焼結体は極め
て硬質且つ脆いものであり、通常の切削加工によっては
凹溝を形成し難いことから、従来にあっては、焼結体の
表面にサンドブラスト法,化学エッチング法,放電加工
法,レーザ加工法等の特殊な表面加工法により凹溝を形
成するようにしている。
By the way, a sintered body obtained by firing is extremely hard and brittle, and it is difficult to form a concave groove by a normal cutting process. Therefore, conventionally, the surface of the sintered body is sandblasted. The concave groove is formed by a special surface processing method such as a method, a chemical etching method, an electric discharge machining method, a laser machining method.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような表
面加工法により焼結体の表面に凹溝を形成して得られる
従来のセラミック部材は、凹溝の表面粗度,形状精度,
強度において問題があり、動圧流体軸受の構成部材とし
の用途が大幅に制限されているのが実情である。
However, the conventional ceramic member obtained by forming the concave groove on the surface of the sintered body by such a surface processing method has the following problems.
There is a problem in strength, so as a component of the hydrodynamic bearing.
The reality is that all uses are significantly limited.

【0005】すなわち、焼結後のセラミックについて
は、その構成要素である結晶粒と結晶間の粒界とで機械
的強度,化学的性質が全く異なるため、焼結体にサンド
ブラスト法又は化学エッチング法による表面加工を施し
た場合、サンドブラストによる破砕加工や化学エッチン
グによる腐食の進行度合が結晶粒と粒界とで異なること
になり、一般に、2μRa以下の面粗度を得ることは極
めて困難である。したがって、例えば、かかる表面加工
を施して得られるセラミック部材を回転ジャーナルとし
て使用した動圧流体軸受にあっては、動圧発生溝の表面
粗度が大きいために、104 r.p.m.を越える高速回転時
では空気の粘性による抵抗が大きくなって、動力損失や
発熱量が大きくなったり、ジャーナルと軸受部とのクリ
アランスが熱膨張により変動したりするといった好まし
くない現象が生じ易い。
That is, since the mechanical strength and chemical properties of the ceramics after sintering are completely different between the constituent crystal grains and the grain boundaries between the crystals, the sintered body is sandblasted or chemically etched. When the surface treatment is performed by the method, the degree of progress of crushing by sandblasting or corrosion by chemical etching differs between the crystal grains and the grain boundaries, and it is generally extremely difficult to obtain a surface roughness of 2 μRa or less. Therefore, for example, in a hydrodynamic bearing that uses a ceramic member obtained by performing such surface processing as a rotary journal, since the surface roughness of the hydrodynamic groove is large, the hydrodynamic bearing has a high rotational speed of more than 10 4 rpm. In this case, the resistance due to the viscosity of air increases, the power loss and the amount of heat generation increase, and the undesirable phenomenon that the clearance between the journal and the bearing portion fluctuates due to thermal expansion easily occurs.

【0006】また、セラミック部材が、焼結体に放電加
工,レーザ加工等による表面加工を施したものである場
合には、凹溝の加工精度(特に、動圧発生溝等の隅部の
加工精度)が低く、設計通りの精密な凹溝形成が要求さ
れる動圧流体軸受の構成部材としては使用し難い。
Further, when the ceramic member is a sintered body subjected to surface processing by electric discharge machining, laser processing, etc., machining accuracy of concave grooves (particularly machining of corners such as dynamic pressure generating grooves). Accuracy) is low, and it is difficult to use it as a component of a hydrodynamic bearing that requires precise groove formation as designed.

【0007】さらに、サンドブラスト法やレーザ加工法
等によって表面加工を施したセラミック部材にあって
は、凹溝形成面に加工変質層が残るため、熱衝撃等に対
する耐力が低下して、クラック等を生じる虞れがある。
Further, in a ceramic member whose surface is processed by a sandblast method, a laser processing method, etc., a work-affected layer remains on the groove forming surface, so that the resistance to thermal shock is lowered and cracks are generated. May occur.

【0008】また、上記の表面加工法は、何れも、複雑
な工程を必要とするものであり、多分に一品制作的な手
法であるため、凹溝を有するセラミック部材の製造を容
易に且つ経済的に行い得ない。しかも、加工できるセラ
ミック材質や形成できる表面形状には限度があるため、
得られるセラミック部材の用途が大幅に制限される。
Further, all of the above-mentioned surface processing methods require complicated steps, and since they are probably one-piece production methods, it is easy and economical to manufacture ceramic members having concave grooves. Can not be done. Moreover, because there is a limit to the ceramic material that can be processed and the surface shape that can be formed,
The applications of the resulting ceramic component are severely limited.

【0009】本発明は、かかる点に鑑みてなされたもの
で、表面粗度が小さく且つ耐熱衝撃性等に優れた製作誤
差の少ないジャーナル等の動圧流体軸受用セラミック部
材を提供すると共に、このような動圧流体軸受の構成部
材たるセラミック部材を好適に製造しうる方法を提供す
ることを目的とするものである。
[0009] The present invention has been made in view of the above, as well as providing a hydrodynamic ceramic member bearing a small Idi journals such fabrication error surface roughness and excellent small and thermal shock resistance, etc. , Such hydrodynamic bearing components
It is an object of the present invention to provide a method capable of suitably manufacturing a ceramic member as a material .

【0010】[0010]

【課題を解決するための手段】この課題を解決した本発
明の近接する複数の凹溝を表面に有する動圧流体軸受の
セラミック部材は、炭化珪素,タングステンカーバイド
等の粉末セラミック材料を加圧成形して得られた炭化物
セラミック塑性体の表面に、一又は複数の成形凸部を有
する成形型をその塑性体表面への押し付け位置を変更し
つつ繰り返し押し付けて、少なくとも隣接する凹溝が同
時に形成されないようにしながら、近接する複数の凹溝
を形成した上、これを焼成処理してなるものである。な
お、セラミック部材には、一般に、狭義のセラミック部
材の他、金属粉末を成形・焼成して得られる焼結金属製
部材も含まれるが、本発明では、セラミック部材が動圧
流体軸受の構成部材として使用されるものであることを
考慮して、セラミック材料として、SiC,WC,Ti
C,B4 C等の炭化物セラミックを使用している。ま
た、焼成処理には、最終的な焼結処理の他、粉末セラミ
ック材料の成形時に添加される結合剤,可塑剤,分散剤
等の成形助剤を除去するために行う熱処理等が含まれ
る。
Means for Solving the Problems] hydrodynamic bearing of <br/> ceramic member having a plurality of grooves on the surface proximate the present invention that solves this problem, silicon carbide, ceramic powder such as tungsten carbide Carbide obtained by pressure-molding a material <br /> On the surface of the ceramic plastic body, a molding die having one or more molding convex portions is repeatedly pressed while changing the pressing position on the plastic body surface, while allowing at least adjacent the groove is not formed at the same time, on which is formed a plurality of grooves adjacent a shall such by firing handle this. The ceramic member generally includes a ceramic member in a narrow sense and a sintered metal member obtained by molding and firing metal powder. However, in the present invention, the ceramic member is a dynamic pressure member.
That it is used as a component of fluid bearings
Taking into account, as a ceramic material, SiC, WC, Ti
C, and using a carbide ceramic B 4 C and the like. In addition to the final sintering treatment, the firing treatment includes heat treatment and the like performed to remove the forming aids such as the binder, the plasticizer, and the dispersant added at the time of forming the powder ceramic material.

【0011】[0011]

【作用】粉末セラミック材料を加圧成形して得られる
化物セラミック塑性体は、或る程度の塑性を有するもの
であるから、その表面に成形型を押付けてその成形凸部
をセラミック塑性体に食い込ませると、塑性変形により
成形凸部通りの凹溝形状が正確に形成されて、成形型の
表面粗さに略一致する表面粗度の凹溝が形成されること
になる。
[Function] Charcoal obtained by press-molding powder ceramic material
Since the ceramic ceramic plastic has a certain degree of plasticity, if a molding die is pressed against the surface and the molding convex part bites into the ceramic plastic body, the concave groove shape as the molding convex part is caused by plastic deformation. Is accurately formed, and a concave groove having a surface roughness substantially matching the surface roughness of the molding die is formed.

【0012】そして、このような成形凸部の食い込みに
よる凹溝形成工程は、成形凸部の塑性体表面への押し付
け位置を変更しつつ繰複数回繰り返して行われるが、各
凹溝形成工程においては、少なくとも隣接する凹溝が同
時に形成されないようになされる。すなわち、成形型が
一の成形凸部のみを有するものである場合には、当然
に、各凹溝形成工程において隣接する凹溝が同時に形成
されることはないが、成形型が複数の成形凸部を有する
ものである場合であって、各凹溝形成工程において2以
上の成形凸部により複数の凹溝が同時に形成される場合
には、例えば、これら成形凸部のピッチPを所望する凹
溝のピッチpの整数倍として、pの間隔で隣接する凹溝
が一度に形成されないようにするのである。
The step of forming the groove by biting the molding convex portion is repeated a plurality of times while changing the pressing position of the molding convex portion to the surface of the plastic body. Is designed so that at least adjacent grooves are not formed at the same time. That is, when the molding die has only one molding convex portion, naturally, in each concave groove forming step, adjacent concave grooves are not simultaneously formed, but the molding die has a plurality of molding convex portions. When a plurality of concave grooves are simultaneously formed by two or more molding convex portions in each concave groove forming step, for example, the pitch P of these molding convex portions may be a desired concave portion. The groove pitch is set to an integral multiple of the pitch p so that adjacent concave grooves at intervals of p are not formed at one time.

【0013】ところで、成形凸部をセラミック塑性体の
表面に食い込ませていくと、その食い込み部分では材料
の流れが生じるが、P=pとして一回の凹溝形成工程に
おいて隣接する凹溝が同時に形成されるようにした場合
には、pが極めて小さいことから、一方の凹溝形成によ
る材料の流れと他方の凹溝形成による材料の流れとが相
互に干渉して、円滑な材料の流れが生じ難い。このた
め、セラミック塑性体が焼成前の柔らかいものであるに
も拘わらず、成形凸部のセラミック塑性体への食い込み
抵抗(塑性体の変形抵抗)が大きくなって、食い込みが
充分に行われず、その食い込み量が浅くなって、所望す
る凹溝が得られない虞れがあり、塑性加工精度が低くな
る。なお、充分な食い込みを得るために、成形型のセラ
ミック塑性体への押し付け力を必要以上に大きくする
と、セラミック塑性体が変形,破壊する虞れがあり、加
工精度も低くなる。
By the way, when the forming convex portion is made to bite into the surface of the ceramic plastic body, a material flow occurs at the biting portion, but when P = p, adjacent concave grooves are simultaneously formed in one concave groove forming step. When p is formed, since p is extremely small, the flow of the material due to the formation of the one concave groove and the flow of the material due to the formation of the other concave groove mutually interfere, and a smooth flow of the material is obtained. Hard to happen. For this reason, even though the ceramic plastic body is soft before firing, the bite resistance (deformation resistance of the plastic body) of the molding convex portion to the ceramic plastic body becomes large, and the bite is not sufficiently performed, The bite amount may become shallow, and the desired groove may not be obtained, and the plastic working accuracy may be reduced. If the pressing force of the forming die against the ceramic plastic body is increased more than necessary in order to obtain a sufficient bite, the ceramic plastic body may be deformed or broken, and the processing accuracy may be lowered.

【0014】しかし、上記した如く成形凸部のピッチP
を凹溝のピッチpより大きくして、成形凸部のセラミッ
ク塑性体への食い込みが同時に複数箇所で行われた場合
にも、一の食い込み箇所とこれに隣接する食い込み箇所
との距離が充分大きくなるようにしておくと、上記した
材料流れの干渉が生じず、成形型のセラミック塑性体へ
の押し付け力を然程大きくせずとも、成形凸部による食
い込みが充分に行われて成形凸部の形状に対応した高精
度の凹溝を形成させることができる。
However, as described above, the pitch P of the molding convex portions is
Is set to be larger than the pitch p of the concave groove, and even if the molding convex portion bites into the ceramic plastic body at a plurality of locations at the same time, the distance between the one biting portion and the biting portion adjacent thereto is sufficiently large. By so doing, the above-described material flow interference does not occur, and even if the pressing force of the forming die against the ceramic plastic body is not so large, the formation of the forming convex portion is sufficiently carried out by the forming convex portion. It is possible to form a highly accurate groove corresponding to the shape.

【0015】したがって、このように塑性変形による凹
溝が形成されたセラミック成形体を焼成することによ
り、成形型の加工精度,表面粗さに応じた凹溝が所定ピ
ッチpで近接配置されたセラミック部材を得ることがで
きる。而して、成形型(例えば金型)を高精度で表面粗
さの極めて小さいものに製作しておくことは容易である
から、かかる成形型を使用することによって、設計通り
に正確な形状であり且つ極めて緻密な表面粗度(例え
ば、0.5μRa以下)の凹凸を表面に有するセラミッ
ク部材を得ることができる。しかも、かかるセラミック
部材を得る場合において、セラミック材質や凹溝形状が
冒頭で述べた如く制限されるようなこともない。
Therefore, by firing the ceramic molded body in which the grooves are formed by plastic deformation as described above, the ceramics in which the grooves corresponding to the processing accuracy and the surface roughness of the forming die are closely arranged at the predetermined pitch p. The member can be obtained. Thus, it is easy to manufacture a molding die (for example, a die) with high precision and extremely small surface roughness. Therefore, by using such a molding die, an accurate shape as designed can be obtained. Thus, it is possible to obtain a ceramic member having unevenness with a very dense surface roughness (for example, 0.5 μRa or less) on the surface. Moreover, in the case of obtaining such a ceramic member, the ceramic material and the shape of the concave groove are not limited as described at the beginning.

【0016】また、上記セラミック部材は、焼結前の段
階で塑性加工により凹溝を形成させたものであるから、
少なくとも隣接する凹溝が同時に形成されないようにし
て材料流れの干渉を回避させたことと相俟って、凹溝を
形成することにより発生する内部応力は焼成工程におい
て緩和され、クラック等の各種外力による破壊も生じ難
いものである。
Further, since the above-mentioned ceramic member has concave grooves formed by plastic working in a stage before sintering,
At the same time that at least adjacent concave grooves are not formed at the same time to avoid interference of material flow, internal stress generated by forming concave grooves is relieved during the firing process, and various external forces such as cracks are generated. Destruction due to is also unlikely to occur.

【0017】[0017]

【実施例】以下、本発明を図1〜図3に示す実施例に基
づいて具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on the embodiments shown in FIGS.

【0018】この実施例は、本発明を図3に示す動圧流
体軸受のジャーナル1を製造する場合に適用したもので
ある。この動圧流体軸受は、ジャーナル1の外周面に近
接して並列する複数の凹溝たる動圧発生溝1a…を形成
し、この動圧発生溝1a…の作用により、ジャーナル1
とラジアル軸受筒2との対向面間に動圧を発生させ、両
者1,2を高速且つ円滑に相対回転させるうるように構
成されている。
In this embodiment, the present invention is applied to the case of manufacturing the journal 1 of the hydrodynamic bearing shown in FIG. This hydrodynamic bearing has a plurality of concave grooves, which are adjacent to the outer peripheral surface of the journal 1 and are arranged in parallel. The hydrodynamic bearing 1a ... Is formed by the action of the hydrodynamic grooves 1a.
The dynamic pressure is generated between the opposing surfaces of the radial bearing tube 2 and the radial bearing tube 2 so that the both 1 and 2 can relatively rotate at high speed and smoothly.

【0019】まず、炭化珪素やタングステンカーバイド
等の粉末材料(適宜の成形助剤を含む)を加圧成形し
て、ジャーナル1の形状に対応する中実軸形状の炭化物
セラミック塑性体1´を得る。
First, a powder material (including an appropriate molding aid) such as silicon carbide or tungsten carbide is pressure-molded to form a solid shaft-shaped carbide ceramic plastic body corresponding to the shape of the journal 1. Get 1 '.

【0020】次に、図1及び図2に示す如く、セラミッ
ク塑性体1´の両端部を適宜の回転治具(図示せず)に
回転自在に保持させた上、この治具を長尺矩形板状の成
形型3に沿って移動させていくことによって、セラミッ
ク塑性体1´を成形型3の上面たる成形面3bに適度に
押付けながら、成形面3b上を転動させていく。成形型
3としては、一般に、加工精度が高く且つ表面粗さを小
さくできる金型が使用される。成形面3bには、セラミ
ック塑性体1´の転動方向にハの字状をなして並列する
複数の成形凸部3a…が突設されている。成形凸部3a
の形状及び数は、形成しようとする動圧発生溝1aに対
応して設定されている。而して、成形凸部3a…のピッ
チPは、複数の成形凸部3a…による食い込みが同時に
行われるようなことがあっても、各食い込み箇所におけ
る材料流れがこれに隣接する食い込み箇所における材料
流れと干渉することがないように、充分大きく設定して
ある。具体的には、ピッチPを動圧発生溝1a…のピッ
チpの整数倍(P=mp(m>1))としてある。とこ
ろで、セラミック塑性体1´は、1番目の成形凸部3a
により最初の動圧発生溝1aが形成された時点(図1
(A))からすべての動圧発生溝1a…が形成されるま
でに1回以上回転することになるが、動圧発生溝1a…
が等ピッチpで環状をなして並列するものであることか
ら、この動圧発生溝1a…の数Mとの上記mと関係如何
によっては、セラミック塑性体1´が1回転したときに
先に形成された動圧発生溝1aに新たな成形凸部3aが
再び食い込むような事態が発生する場合がある。かかる
事態が発生する場合には、セラミック塑性体1´が1回
転する毎に、その直後において新たに形成される動圧発
生溝1aが先に形成された動圧発生溝1aから外れた位
置に形成されるように、この新たな動圧発生溝1aを形
成するための成形凸部3aの位置を所定のピッチだけず
らせておく。すなわち、一部の隣接成形凸部3a,3a
間のピッチP´をmpより大きくしてしておく。例え
ば、Mがmで割り切れないときには、原則として、成形
凸部3a…のピッチPはすべて同一(P=mp)である
が、Mがmで割り切れるときには、「M/m」番目と
「M/m+1」番目、「2(M/m)」番目と「2(M
/m)+1」番目、「3(M/m)」番目と「3(M/
m)+1」番目…………「(m−1)(M/m)」番目
と「(m−1)(M/m)+1」番目の各隣接する成形
凸部3a,3aのピッチP´をP+p=(m+1)pと
しておく。この実施例では、図1及び図2に示す如く、
M=30,P=mp=2pとし、15番目の成形凸部3
aと16番目の成形凸部3aとのピッチP´を3pとし
てある。
Next, as shown in FIGS. 1 and 2, both ends of the ceramic plastic body 1'are rotatably held by appropriate rotating jigs (not shown), and these jigs are formed into a long rectangular shape. By moving along the plate-shaped molding die 3, the ceramic plastic body 1 ′ is appropriately pressed against the molding surface 3 b, which is the upper surface of the molding die 3, while rolling on the molding surface 3 b. As the molding die 3, generally, a die that has high processing accuracy and can reduce surface roughness is used. The molding surface 3b is provided with a plurality of molding projections 3a ... Which are juxtaposed in parallel with each other in the rolling direction of the ceramic plastic body 1 '. Molded convex portion 3a
The shape and the number of are set corresponding to the dynamic pressure generating groove 1a to be formed. Thus, the pitch P of the forming protrusions 3a ... Is such that even if the plurality of forming protrusions 3a are bited at the same time, the material flow at each biting point is the material at the biting point adjacent thereto. It is set large enough so that it does not interfere with the flow. Specifically, the pitch P is an integral multiple (P = mp (m> 1)) of the pitch p of the dynamic pressure generating grooves 1a. By the way, the ceramic plastic body 1 ′ has the first molding convex portion 3 a.
When the first dynamic pressure generating groove 1a is formed by
It is necessary to rotate once or more from (A)) until all the dynamic pressure generating grooves 1a are formed.
Are arranged in parallel with each other at an equal pitch p and are arranged in parallel. Therefore, depending on the relationship between the number M of the dynamic pressure generating grooves 1a ... There may be a case where a new molding convex portion 3a bites into the formed dynamic pressure generating groove 1a again. When such a situation occurs, every time the ceramic plastic body 1 ′ makes one revolution, the newly formed dynamic pressure generating groove 1a is located at a position displaced from the previously formed dynamic pressure generating groove 1a. As it is formed, the position of the molding convex portion 3a for forming the new dynamic pressure generating groove 1a is shifted by a predetermined pitch. That is, some of the adjacent molding protrusions 3a, 3a
The pitch P ′ between them is set larger than mp. For example, when M is not divisible by m, in principle, the pitches P of the molding convex portions 3a ... Are all the same (P = mp), but when M is divisible by m, the "M / m" th and "M / m" th m + 1 "th," 2 (M / m) "th and" 2 (M
/ M) +1 "th," 3 (M / m) "th and" 3 (M / M)
m) +1 "th ............" (m-1) (M / m) "th and" (m-1) (M / m) +1 "th adjacent pitches P of the molding protrusions 3a, 3a. Let ′ be P + p = (m + 1) p. In this embodiment, as shown in FIGS.
M = 30, P = mp = 2p, and the fifteenth molding convex portion 3
The pitch P'between a and the 16th molding convex portion 3a is 3p.

【0021】セラミック塑性体1´を転動させていく
と、まず、1番目の成形凸部3aが塑性体表面に食い込
んで、ハの字状をなす動圧発生溝1aが形成される(図
1(A)参照)。爾後、セラミック塑性体1´の転動に
伴って、その表面には、順次、転動方向に動圧発生溝1
a…が2pのピッチで順次形成されていく(図1(B)
参照)。そして、セラミック塑性体1´が1回転した後
は、既に形成された各隣接動圧発生溝1a,,1a間に
新たな動圧発生溝1aが順次形成されていき(図1
(C)及び図2参照)、2回転するまでに全ての動圧発
生溝1a…が所望するピッチpで形成されることにな
る。
When the ceramic plastic body 1'rolls, the first forming convex portion 3a bites into the surface of the plastic body to form the V-shaped dynamic pressure generating groove 1a (Fig. 1 (A)). After that, as the ceramic plastic body 1 ′ rolls, the dynamic pressure generating groove 1 is sequentially formed on the surface thereof in the rolling direction.
a ... are sequentially formed at a pitch of 2p (FIG. 1 (B))
reference). Then, after the ceramic plastic body 1'has rotated once, a new dynamic pressure generating groove 1a is sequentially formed between the adjacent dynamic pressure generating grooves 1a, 1a already formed (see FIG. 1).
(C) and FIG. 2) All the dynamic pressure generating grooves 1a ... Are formed at a desired pitch p by two rotations.

【0022】このとき、例えば図1(B)に示す如く、
複数の成形凸部3aによる食い込みが同時に行われるよ
うなことがあっても、食い込み箇所相互の間隔P(=2
p),P´(=3p)が動圧発生溝1a…のピッチpに
比して大きいことから、各食い込み箇所における材料流
れがこれに隣接する食い込み箇所における材料流れと干
渉することがない。したがって、セラミック塑性体1´
の成形面3bへの押し付け力を必要以上に大きくせずと
も、セラミック塑性体1´が焼成前のもので或る程度の
塑性を有するものであることとも相俟って、各成形凸部
3aの塑性体1´への食い込みが円滑且つ充分に行われ
て、セラミック塑性体1´の変形を回避しつつ高精度の
動圧発生溝1aが形成されることになる。
At this time, for example, as shown in FIG.
Even if biting by a plurality of molding convex portions 3a is performed at the same time, the interval P (= 2 between the biting points).
Since p) and P '(= 3p) are larger than the pitch p of the dynamic pressure generating grooves 1a, the material flow at each bite point does not interfere with the material flow at the bite point adjacent thereto. Therefore, the ceramic plastic body 1 '
In consideration of the fact that the ceramic plastic body 1'has a certain degree of plasticity before firing even if the pressing force on the molding surface 3b is not increased more than necessary, each molding convex portion 3a The biting into the plastic body 1'is performed smoothly and sufficiently, and the dynamic pressure generating groove 1a with high accuracy is formed while avoiding the deformation of the ceramic plastic body 1 '.

【0023】そして、このようにしてセラミック塑性体
1´にすべての動圧発生溝1a…が形成された後におい
て、これを焼成(成形助剤の除去処理等のための低温焼
成及び焼結温度での本焼成)することによって、図3に
示す如き外周面に近接して並列する動圧発生溝1a…を
有するセラミック部材たるジャーナル1が得られるので
ある。
After all the dynamic pressure generating grooves 1a ... Are formed in the ceramic plastic body 1'in this manner, they are fired (low temperature firing and sintering temperature for removing the forming aid, etc.). Main firing), a journal 1 which is a ceramic member having dynamic pressure generating grooves 1a ... Which are arranged in parallel near the outer peripheral surface as shown in FIG. 3 is obtained.

【0024】なお、本発明は上記実施例に限定されるも
のではなく、本発明の基本原理を逸脱しない範囲におい
て適宜に改良・変更することができる。
The present invention is not limited to the above-mentioned embodiments, but can be appropriately improved and changed without departing from the basic principle of the present invention.

【0025】例えば、図4に示す如く、上記した動圧発
生溝1a…を一の成形凸部3aを有する成形型3によっ
て形成するようにすることもできる。なお、成形型3
は、図4及び図5に示す如く、セラミック塑性体1´の
外周面に添接しうる円弧状の成形面3bにハの字状をな
す一の成形凸部3aを突設したものに構成されており、
セラミック塑性体1´へと間欠的に離接動作するように
なっている。また、セラミック塑性体1´は中空軸状の
ものであり、芯軸4に嵌合保持されていて、動圧発生溝
1a…のピッチpに対応する角度宛間欠的に回転される
ようになっている。
For example, as shown in FIG. 4, the dynamic pressure generating grooves 1a ... Can be formed by a molding die 3 having one molding convex portion 3a. Mold 3
As shown in FIG. 4 and FIG. 5, the arc-shaped molding surface 3b that can be abutted on the outer peripheral surface of the ceramic plastic body 1'is provided with a single protruding convex portion 3a having a V-shape. And
The ceramic plastic body 1'is intermittently moved in and out of contact with the ceramic plastic body 1 '. The ceramic plastic body 1'has a hollow shaft shape, is fitted and held by the core shaft 4, and is intermittently rotated at an angle corresponding to the pitch p of the dynamic pressure generating grooves 1a. ing.

【0026】すなわち、この実施例では、成形型3をセ
ラミック塑性体1´に押し付けて、成形凸部3aにより
動圧発生溝1aを形成した後(図4(A)参照)、一
旦、成形型3をセラミック塑性体1´から離間させると
共にセラミック塑性体1´をピッチpに対応する角度だ
け回転させた上(同図(B)参照)、再び成形型3aを
セラミック塑性体1´に押し付けて、先に形成した動圧
発生溝1aに隣接する動圧発生溝1aを形成させ(同図
(C))、かかる工程を繰り返すことによって、セラミ
ック塑性体1´の外周面に近接して並列する動圧発生溝
1a…を形成させるのである。
That is, in this embodiment, after the forming die 3 is pressed against the ceramic plastic body 1'and the dynamic pressure generating groove 1a is formed by the forming convex portion 3a (see FIG. 4A), the forming die is once provided. 3 is separated from the ceramic plastic body 1 ′, the ceramic plastic body 1 ′ is rotated by an angle corresponding to the pitch p (see FIG. 2B), and the molding die 3 a is pressed against the ceramic plastic body 1 ′ again. By forming the dynamic pressure generating groove 1a adjacent to the previously formed dynamic pressure generating groove 1a ((C) of the same figure) and repeating this process, the ceramic plastic body 1'is arranged close to and in parallel with the outer peripheral surface thereof. The dynamic pressure generating grooves 1a are formed.

【0027】このように動圧発生溝1a…を1つ宛形成
するようにすれば、複数の成形凸部が同時に食い込むこ
とによる材料流れの干渉といった問題は当然に生じず、
動圧発生溝1a…の形成を円滑且つ高精度に行いうる。
勿論、前記実施例の如く複数の成形凸部3a…を備えた
成形型3を使用する場合においても、セラミック塑性体
1´の直径寸法を考慮してmの値を適当に設定しておく
ことにより、常に、一の成形凸部3aのみがセラミック
塑性体1´に食い込みうるようにすることができる。
By thus forming one dynamic pressure generating groove 1a ..., the problem of material flow interference due to simultaneous intrusion of a plurality of molding convex portions does not occur, and
The dynamic pressure generating grooves 1a ... Can be formed smoothly and with high accuracy.
Of course, even when using the molding die 3 having a plurality of molding projections 3a ... As in the above embodiment, the value of m should be set appropriately in consideration of the diameter dimension of the ceramic plastic body 1 '. As a result, it is possible to always allow only one molding convex portion 3a to bite into the ceramic plastic body 1 '.

【0028】また、動圧流体軸受にあっては、ジャーナ
ルの下端面に対向するスラスト軸受板に螺旋状の動圧発
生溝を形成して、ジャーナルのスラスト荷重を受けるよ
うにすることがあるが、かかるスラスト軸受板や動圧形
メカニカルシールにおけるシールリング等のように、非
回転面上に複数の凹溝を近接して形成するセラミック部
材についても、図4に示したと同様の手法により、凹溝
の形成を行うことができる。例えば、図7に示す如きス
ラスト軸受板1を製造するに当たっては、図6に示す如
く、これに対応する円盤形状に成形したセラミック塑性
体1´を、動圧発生溝1a…のピッチpに対応する角度
宛間欠的に回転させ、その回転の都度、動圧発生溝1a
に対応する形状とした一の成形凸部3aを備えた成形型
3を押し付けるようにするのである。
In a hydrodynamic bearing, a thrust bearing plate facing a lower end surface of a journal may be formed with a spiral hydrodynamic groove to receive a thrust load of the journal. A ceramic member, such as a thrust bearing plate or a seal ring in a dynamic pressure type mechanical seal, in which a plurality of concave grooves are formed close to each other on a non-rotating surface is also formed by the same method as shown in FIG. Grooves can be formed. For example, in manufacturing the thrust bearing plate 1 as shown in FIG. 7, as shown in FIG. 6, a ceramic plastic body 1 ′ formed in a disk shape corresponding to the thrust bearing plate 1 is made to correspond to the pitch p of the dynamic pressure generating grooves 1 a. The angle of rotation is intermittently rotated, and the dynamic pressure generating groove 1a is generated each time the rotation is performed.
The molding die 3 having the one molding convex portion 3a having a shape corresponding to is pressed.

【0029】上記各実施例においては、深さの比較的浅
い凹溝1aを有するセラミック部材を製造する場合につ
いて説明したが、本発明では、セラミック部材表面の凹
溝を焼成前の段階で塑性加工するようにしているから、
成形型の成形面形状やセラミック塑性体への押付け形態
を変更することによって、用途に応じた表面形状,表面
粗度のセラミック部材つまり動圧流体軸受部品として要
求される機能を充分に発揮しうるセラミック部材を容易
に得ることができる。勿論、凹溝を形成するに当たっ
て、セラミック材質や溝ピッチ,溝深さ,溝幅等の表面
形状は動圧流体軸受の構成部材の種類,機能等に応じて
適宜に設定されるが、溝ピッチpが極めて小さい場合で
あって、凹溝の溝深さを1〜200μm(より好ましく
は50μm以下)としておく必要のある場合には、本発
明の効果が最大限発揮されることになるであろう。
In each of the above embodiments, the case where the ceramic member having the recessed groove 1a having a relatively shallow depth is manufactured has been described, but in the present invention, the recessed groove on the surface of the ceramic member is plastically worked before firing. Because I try to
By changing the molding surface shape of the molding die and the pressing form on the ceramic plastic body, it is necessary to use a ceramic member with a surface shape and surface roughness according to the application, that is, a hydrodynamic bearing component.
It is possible to easily obtain a ceramic member that can sufficiently exhibit the required function . Of course, when forming the concave groove, the surface shape of the ceramic material, groove pitch, groove depth, groove width, etc. depends on the type and function of the constituent members of the hydrodynamic bearing.
Although set appropriately, even if the groove pitch p is very small, when it is necessary to keep the groove depth of the groove and 1 to 200 [mu] m (more preferably 50μm or less), the effect of the present invention up to It will be limited.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、耐熱衝撃性等に優れ、設計通りに正確で且つ
表面粗さの極めて緻密な凹溝を表面に有して、動圧流体
軸受の構成部材として極めて優れたセラミック部材を提
供できる。しかも、塑性を有する焼成前の段階で凹溝を
形成し、且つ少なくとも隣接する凹溝が同時に形成され
ないようにしたから、凹溝のピッチが小さい場合にも、
素材の材質に拘わらず、セラミック部材を高精度且つ容
易に製造することができ、大量生産により製造コストを
大幅に低減することができる。また、成形型の形状,加
工精度,表面粗さによって部材表面の凹凸形状(溝ピッ
チ,溝深さ,溝幅等),加工精度,表面粗度を自由に変
更することができ、セラミック部材の動圧流体軸受にお
ける用途を大幅に拡大することができる。
As apparent from the foregoing description, according to the present invention, excellent thermal shock resistance and the like, a very dense grooves of accurate and surface roughness as designed by chromatic on the surface, the dynamic Pressure fluid
An extremely excellent ceramic member can be provided as a constituent member of the bearing . Moreover, since the concave grooves are formed in the stage before firing having plasticity, and at least the adjacent concave grooves are not formed at the same time, even when the pitch of the concave grooves is small,
Regardless of the material used, the ceramic member can be manufactured with high accuracy and easily, and the manufacturing cost can be significantly reduced by mass production. In addition, the uneven shape (groove pitch, groove depth, groove width, etc.), processing accuracy, and surface roughness of the member surface can be freely changed depending on the shape of the molding die, processing accuracy, and surface roughness. For hydrodynamic bearings
The application can be expanded significantly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法の一実施例における凹溝の形
成工程を示す側面図である。
FIG. 1 is a side view showing a step of forming a groove in an embodiment of a method according to the present invention.

【図2】同平面図である。FIG. 2 is a plan view of the same.

【図3】同方法により得られた本発明に係るセラミック
部材を使用した動圧流体軸受の断面図である。
FIG. 3 is a cross-sectional view of a hydrodynamic bearing using the ceramic member according to the present invention obtained by the same method.

【図4】他の実施例における凹溝の形成工程を示す側面
図である。
FIG. 4 is a side view showing a step of forming a groove according to another embodiment.

【図5】この形成工程に使用する成形型の正面図であ
る。
FIG. 5 is a front view of a molding die used in this forming step.

【図6】更に他の実施例における凹溝の形成工程を示す
断面図である。
FIG. 6 is a cross-sectional view showing a step of forming a groove according to still another embodiment.

【図7】これにより得られた本発明に係るセラミック部
材の横断平面図である。
FIG. 7 is a transverse plan view of the ceramic member thus obtained according to the present invention .

【符号の説明】1…動圧流体軸受のセラミック部材、1
a…動圧発生溝(凹溝)、1´…炭化物セラミック塑性
体。
[Explanation of reference numerals] 1 ... Ceramic member of hydrodynamic bearing , 1
a ... Dynamic pressure generating groove (concave groove), 1 '... Carbide ceramic plastic body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16C 17/02 A 8613−3J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F16C 17/02 A 8613-3J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素,タングステンカーバイド等の粉
末セラミック材料を加圧成形して得られた炭化物セラミ
ック塑性体の表面に、一又は複数の成形凸部を有する成
形型をその塑性体表面への押し付け位置を変更しつつ繰
り返し押し付けて、少なくとも隣接する凹溝が同時に形
成されないようにしながら、近接する複数の凹溝を形成
した上、これを焼成処理してなることを特徴とする、近
接する複数の凹溝を表面に有する動圧流体軸受のセラミ
ック部材。
1. A molding die having one or a plurality of molding projections on the surface of a carbide ceramic plastic body obtained by pressure molding a powdered ceramic material such as silicon carbide or tungsten carbide. pressed repeatedly while changing the pressing position to the plastic surface, at least while allowing adjacent grooves are not formed at the same time, after having formed a plurality of grooves adjacent, characterized in that by firing handle this to, ceramic <br/> click member of the hydrodynamic bearing having a plurality of grooves on the surface proximate.
【請求項2】炭化珪素,タングステンカーバイド等の粉2. Powders of silicon carbide, tungsten carbide, etc.
末セラミック材料を加圧成形して得られた炭化物セラミCarbide ceramics obtained by pressure molding of powdered ceramic
ック塑性体の表面に、一又は複数の成形凸部を有する成On the surface of the plastic body with one or more
形型をその塑性体表面への押し付け位置を変更しつつ繰The shape is repeated while changing the pressing position on the plastic body surface.
り返し押し付けて、少なくとも隣接する凹溝が同時に形Press back and press so that at least adjacent grooves are
成されないようにしながら、近接する複数の凹溝を形成Form multiple adjacent grooves while preventing them from being formed
した上、これを焼成処理するようにしたことを特徴とすIn addition, it is characterized in that it is baked.
る、近接する複数の凹溝を表面に有する動圧流体軸受のOf a hydrodynamic bearing having a plurality of adjacent grooves on the surface.
セラミック部材の製造方法。Manufacturing method of ceramic member.
JP3329970A 1991-11-18 1991-11-18 Ceramic member of hydrodynamic bearing having a plurality of adjacent concave grooves on the surface and method of manufacturing the same Expired - Lifetime JPH0729850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3329970A JPH0729850B2 (en) 1991-11-18 1991-11-18 Ceramic member of hydrodynamic bearing having a plurality of adjacent concave grooves on the surface and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3329970A JPH0729850B2 (en) 1991-11-18 1991-11-18 Ceramic member of hydrodynamic bearing having a plurality of adjacent concave grooves on the surface and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05139836A JPH05139836A (en) 1993-06-08
JPH0729850B2 true JPH0729850B2 (en) 1995-04-05

Family

ID=18227308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3329970A Expired - Lifetime JPH0729850B2 (en) 1991-11-18 1991-11-18 Ceramic member of hydrodynamic bearing having a plurality of adjacent concave grooves on the surface and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0729850B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2543653E (en) * 2011-07-04 2014-07-25 Comadur Sa Method for manufacturing a matt ceramic

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939286B2 (en) * 1981-12-04 1984-09-21 日立化成工業株式会社 Manufacturing method of raw ceramic sheet
JPS597004A (en) * 1982-06-30 1984-01-14 コミサリヤ・ア・レネルジ・アトミク Method and device for forming indentation to ceramic pipe
JPS61125809A (en) * 1984-11-24 1986-06-13 出口 孝信 Method and device for forming irregular pattern to outer surface of pottery

Also Published As

Publication number Publication date
JPH05139836A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
CN100504090C (en) Sliding bearing
US7726881B2 (en) Hydrodynamic bearing device
JP2003322154A (en) Rolling element for rolling bearing
US3110579A (en) Method of making a diamond abrasive saw blade
JPH0729850B2 (en) Ceramic member of hydrodynamic bearing having a plurality of adjacent concave grooves on the surface and method of manufacturing the same
EP1486691A2 (en) A bearing and method for manufacturing the same
JP4642956B2 (en) Bearing ball, bearing, and method of manufacturing bearing ball
JP2500138B2 (en) Method of manufacturing ceramics with pores
JPH07115947B2 (en) Ceramic hydrodynamic bearing member and method of manufacturing the same
WO2002008619A1 (en) Dynamic pressure type thrust bearing device and method of manufacturing the thrust bearing device
JPH068721B2 (en) Ceramic gauge
JP2019059634A (en) Method for producing ceramic member
JP7339154B2 (en) SLIDING MEMBER AND METHOD FOR MANUFACTURING SLIDING MEMBER
US5823033A (en) Method for producing a damper plate having substantially polygon patterns
JPH0686815B2 (en) Method for manufacturing ceramic turbocharger rotor
JP2001038630A (en) Superfine abrasive grain tool, and its manufacture
JP6515387B2 (en) Carbide tool and method of manufacturing the same
JP2510764B2 (en) Manufacturing method of cemented carbide die
JP3887449B2 (en) A processing method for a dynamic pressure generating grooved bearing structure of a rotating machine.
JP4340855B2 (en) Manufacturing method of dynamic pressure generating groove
JPH05319938A (en) Production of sintered material
JPS6233284A (en) Jig for baking tubular silicon-nitride sintered body and baking method using said jig
JPH06265025A (en) Manufacture of slide ring of shaft sealing device
JPH0635806B2 (en) Method for manufacturing ceramic star bin wheel
JPH02129056A (en) Production of spherical ceramics