JPH07296838A - Manufacture of fuel cell - Google Patents

Manufacture of fuel cell

Info

Publication number
JPH07296838A
JPH07296838A JP6092390A JP9239094A JPH07296838A JP H07296838 A JPH07296838 A JP H07296838A JP 6092390 A JP6092390 A JP 6092390A JP 9239094 A JP9239094 A JP 9239094A JP H07296838 A JPH07296838 A JP H07296838A
Authority
JP
Japan
Prior art keywords
layer
air electrode
solid electrolyte
layers
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6092390A
Other languages
Japanese (ja)
Other versions
JP3434883B2 (en
Inventor
Masahiro Tomisako
正浩 冨迫
Masahide Akiyama
雅英 秋山
Hidehiro Nanjiyou
英博 南上
Tetsuya Kimura
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP09239094A priority Critical patent/JP3434883B2/en
Publication of JPH07296838A publication Critical patent/JPH07296838A/en
Application granted granted Critical
Publication of JP3434883B2 publication Critical patent/JP3434883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To reduce the number of manufacturing processes of a fuel cell for enhanced productivity and to enhance the reliability of the fuel cell by interposing an intermediate layer between two layers which have different coefficients of contractions when baked simultaneously. CONSTITUTION:A cylindrical fuel cell comprises a stack consisting of a porous air electrode layer 2, a solid electrolyte layer 3, a porous fuel layer 4, and a collector layer 5 stacked on the surface of a cylindrical base 1 made of porous ceramic. A process for baking at least two adjacent layers in the stack simultaneously is carried out. In this case, it is most desirable that at least either one of the electrolyte layer 3 and the collector 5, both of which are solid, and at least either one of the cylindrical base 1, the air electrode layer 2, and the fuel electrode layer 4, be selected and combined for simultaneous baking. In this case, an intermediate layer is interposed between the two layers. It is important that the intermediate layer be made from a material whose coefficient of contraction has a value halfway between those of the air electrode and the solid electrolyte during baking.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気極層や電解質層や
燃料極層などを有する積層体を具備する燃料電池セルの
製造方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for producing a fuel cell having a laminate having an air electrode layer, an electrolyte layer, a fuel electrode layer and the like.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池セルは、
その作動温度が900〜1050℃と高温であるため、
発電効率が高く、第3世代の発電システムとして期待さ
れている。
2. Description of the Related Art Conventionally, solid oxide fuel cell units have been
Since its operating temperature is as high as 900 to 1050 ° C,
It has high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に、燃料電池には円筒型と平板型の2
種類が知られている。平板型燃料電池セルは、発電の単
位体積当り出力密度が高いという特長を有するが、実用
化に際してはガスシ−ル不完全性やセル内の温度分布の
不均一性などの問題がある。
Generally, there are two types of fuel cells, a cylindrical type and a flat type.
The type is known. The flat plate type fuel cell has a feature that the power density per unit volume of power generation is high, but when it is put into practical use, there are problems such as incomplete gas seal and uneven temperature distribution in the cell.

【0004】それに対して、円筒型燃料電池セルは出力
密度は低いもののセルの機械的強度が高く、またセル内
の温度の均一性が保てるという特長がある。両形状の固
体電解質燃料電池セルとも、それぞれの特長を生かして
積極的に研究開発が進められている。
On the other hand, the cylindrical fuel cell has the characteristics that the mechanical density of the cell is high although the power density is low, and the temperature uniformity in the cell can be maintained. Both types of solid electrolyte fuel cells are being actively researched and developed by taking advantage of their respective characteristics.

【0005】円筒型燃料電池の単セルは、図1に示すよ
うにCaO安定化ZrO2 からなる絶縁性の多孔質セラ
ミックからなる円筒状基体1の外周にLaMnO3 系材
料からなる多孔性の空気極層2が形成され、この表面に
例えばY2 3 含有の安定化ZrO2 固体電解質層3が
形成され、さらに多孔性のNi−ジルコニア(Y2 3
含有)などからなる燃料極層4が略同心円状に形成され
る。また、セル間を接続するためのLaCrO3 系材料
などからなる集電体層(インターコネクタ)5が空気極
層2と接続し、固体電解質層3を貫通し、燃料極4とは
非接触の状態でセルの表面に露出している。燃料電池の
モジュ−ルは、上記構成からなる複数の単セルが集電体
層5を介して接続されている。
As shown in FIG. 1, a unit cell of a cylindrical fuel cell is constructed by laminating a LaMnO 3 -based material on the outer circumference of a cylindrical substrate 1 made of an insulating porous ceramic made of CaO-stabilized ZrO 2. A polar layer 2 is formed, and a stabilized ZrO 2 solid electrolyte layer 3 containing, for example, Y 2 O 3 is formed on the surface of the electrode layer 2, and a porous Ni-zirconia (Y 2 O 3
The fuel electrode layer 4 composed of (containing) etc. is formed in a substantially concentric shape. Further, a current collector layer (interconnector) 5 made of a LaCrO 3 system material or the like for connecting the cells is connected to the air electrode layer 2, penetrates the solid electrolyte layer 3, and is not in contact with the fuel electrode 4. It is exposed on the surface of the cell. In the fuel cell module, a plurality of single cells having the above-mentioned configuration are connected via a current collector layer 5.

【0006】一方、平板型燃料電池セルは、図2に示す
ように固体電解質層6の片方に多孔性の空気極層7を、
他方に多孔性の燃料極層8が設けられている。単セル間
の接続には、緻密質からなるMgOやCaOを固溶した
LaCrO3 系材料からなる集電体層(セパレータ)9
が用いられている。
On the other hand, in the flat plate type fuel battery cell, as shown in FIG. 2, a porous air electrode layer 7 is provided on one side of the solid electrolyte layer 6.
On the other hand, a porous fuel electrode layer 8 is provided. For connection between the single cells, a current collector layer (separator) 9 made of a LaCrO 3 -based material in which MgO or CaO having a high density is dissolved
Is used.

【0007】これらの燃料電池セルを用いて発電を行う
場合には、空気極層側に空気(酸素)を、燃料極層側に
燃料(水素)を流し900〜1050℃の温度に加熱す
ることにより行われる。
When power generation is carried out using these fuel cells, air (oxygen) is flown to the air electrode layer side and fuel (hydrogen) is flown to the fuel electrode layer side to heat it to a temperature of 900 to 1050 ° C. Done by.

【0008】このような燃料電池セルの一般的な製造方
法としては、例えば円筒型の場合、絶縁性粉末を押出成
形などの方法により円筒状に成形後、これを焼成するこ
とにより多孔質セラミックスからなる円筒状基体を作製
し、その基体の内周面や外周面にスラリーコートを繰り
返して空気極層、固体電解質層あるいは燃料極層を形成
して焼成する方法、または前記円筒状基体の表面に、電
気化学的蒸着法(EVD法)やプラズマ溶射法などによ
り空気極層、固体電解質層および燃料極層を順次形成す
る方法などが知られている。
As a general method for manufacturing such a fuel cell, for example, in the case of a cylindrical type, insulating powder is molded into a cylindrical shape by a method such as extrusion molding, and then the insulating powder is fired to form a porous ceramic. A method of producing a cylindrical base body, and repeating the slurry coating on the inner peripheral surface or the outer peripheral surface of the base body to form an air electrode layer, a solid electrolyte layer or a fuel electrode layer and firing the same, or on the surface of the cylindrical substrate. A method of sequentially forming an air electrode layer, a solid electrolyte layer, and a fuel electrode layer by an electrochemical vapor deposition method (EVD method), a plasma spraying method, or the like is known.

【0009】さらに、平板型の場合においては、一般的
にはドクターブレード法や押出成形により作製した電解
質のグリーンシートを焼結して作製した電解質板の一方
の面に空気極層を印刷法にて形成し、熱処理して焼き付
けた後、他方の面に同様な方法により燃料極層を形成し
焼き付けて単セルを作製するか、または空気極層と燃料
極層を同時に焼き付けて単セルを作製する。また、集電
部材は単セルとは別に焼結して作製され、上述の単セル
間に挿入して焼成して作製されている。
Further, in the case of the flat plate type, generally, an air electrode layer is printed on one surface of an electrolyte plate produced by sintering a green sheet of an electrolyte produced by a doctor blade method or extrusion molding. And then heat-treat and bake, then form the fuel electrode layer on the other surface by the same method and bake to make a single cell, or bake the air electrode layer and the fuel electrode layer at the same time to make a single cell. To do. In addition, the current collecting member is manufactured by sintering separately from the single cell, and is inserted between the above single cells and fired.

【0010】最近では、製造工程を簡略化するために、
燃料電池を構成する層のうち2層以上を同時に焼成する
ことも特開平4−315769号、特開平4−3220
61号、特開平5−67473号などにより提案されて
いる。
Recently, in order to simplify the manufacturing process,
It is also possible to simultaneously fire two or more layers constituting the fuel cell, as disclosed in JP-A-4-315769 and JP-A-4-3220.
No. 61, JP-A-5-67473 and the like.

【0011】[0011]

【発明が解決しようとする問題点】しかしながら、上記
従来の一般的な製造方法によれば、各層の形成数が多
く、且つ工程自体が複雑であるために製造に多大な時間
を要し、また多種多様の製造設備が必要となるなどの問
題があり製造コストも高く、量産化が難しいという問題
があった。
However, according to the above-mentioned conventional general manufacturing method, since the number of layers to be formed is large and the process itself is complicated, it takes a lot of time to manufacture, and There is a problem that various kinds of manufacturing equipment are required, the manufacturing cost is high, and mass production is difficult.

【0012】また、2層以上を同時に焼成する場合、そ
の2つの層は焼成前において接着材などを用いて強固に
接着されるものの、両者の焼成時の熱収縮挙動や熱膨張
係数を合わせるなどの制御が必要であるがこれらの制御
が難しく、また焼成過程で剥離が生じたり、クラックな
どが発生したり、外観からは観察されない場合において
も層間の密着性が不十分であり、発電特性が低下するな
どの問題が生じることがわかった。
When two or more layers are fired at the same time, the two layers are firmly adhered by using an adhesive or the like before firing, but the heat shrinkage behavior and the coefficient of thermal expansion during firing are matched. However, it is difficult to control these, peeling occurs in the firing process, cracks, etc., adhesion between layers is insufficient even when it is not observed from the appearance, and power generation characteristics It turned out that problems such as a decrease occur.

【0013】[0013]

【問題点を解決するための手段】本発明者等は、製造工
程を簡略化することを目的として燃料電池を構成する多
層構造のうち、少なくとも2つの層を同時に焼成した場
合において発生する層の剥離やクラックなどの現象が生
じる原因について種々検討を重ねた結果、焼結挙動が異
なる2つの層間において、特に焼成時の収縮の相違が最
も寄与していることを突き止めた。そこで、本発明者ら
は、同時焼成に附される2つの層間に焼成収縮率が2つ
の層の中間的な値を示すような層を介在させたところ、
上述したような剥離やクラックの発生が解消され、何ら
支障のない良好な積層体が得られることを見いだし本発
明に至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that, in a multilayer structure constituting a fuel cell for the purpose of simplifying the manufacturing process, a layer generated when at least two layers are simultaneously fired. As a result of various studies on the cause of phenomena such as peeling and cracking, it was found that the difference in shrinkage at the time of firing is the most significant contribution between two layers having different sintering behaviors. Then, the present inventors intervened a layer having a firing shrinkage ratio intermediate between the two layers between the two layers subjected to the co-firing,
The inventors have found that the above-mentioned peeling and cracking are eliminated, and that a good laminate having no trouble can be obtained, and the present invention has been accomplished.

【0014】即ち、本発明の燃料電池セルの製造方法
は、空気極層、電解質層、燃料極層および集電体層から
なる積層体のうち少なくとも隣接する2つの層を同時に
焼成する工程を具備する燃料電池セルの製造方法におい
て、前記選択された2つの層の間に、焼成による収縮率
が前記2つの層の収縮率の中間的挙動を有する中間層を
介在させて同時焼成することを特徴とするものであり、
特に前記中間層は前記2つの層のうちのいずれかの組成
物、または前記2つの層の両方の組成物を含むものであ
ることをが望ましい。
That is, the method for producing a fuel cell according to the present invention comprises a step of simultaneously firing at least two layers adjacent to each other in the laminate consisting of the air electrode layer, the electrolyte layer, the fuel electrode layer and the current collector layer. In the method for producing a fuel cell according to claim 1, the intermediate layer having a shrinkage factor due to firing having an intermediate behavior of the shrinkage factor of the two layers is interposed between the selected two layers, and the simultaneous firing is performed. And
In particular, it is desirable that the intermediate layer contains a composition of either of the two layers or a composition of both of the two layers.

【0015】以下、本発明を詳述するに際し、円筒型燃
料電池セルを作製する場合を例として説明する。
In describing the present invention in detail, the case of producing a cylindrical fuel cell will be described as an example.

【0016】円筒型燃料電池セルは、図1に示されるよ
うに、多孔質セラミックからなる円筒状基体1の表面に
多孔性の空気極層2、固体電解質層3および多孔性の燃
料極層4、さらには集電体層5が積層された積層体から
なる。また、構造上、空気極層2が円筒状基体1を兼ね
る場合もある。さらに、固体電解質層3に対する空気極
層2と燃料極層4の配置が逆転する場合など、種々の構
成が知られている。
In the cylindrical fuel cell, as shown in FIG. 1, a porous air electrode layer 2, a solid electrolyte layer 3 and a porous fuel electrode layer 4 are formed on the surface of a cylindrical substrate 1 made of a porous ceramic. Further, it is composed of a laminated body in which the current collector layer 5 is laminated. In some cases, the air electrode layer 2 also serves as the cylindrical substrate 1 due to its structure. Furthermore, various configurations are known, such as when the arrangement of the air electrode layer 2 and the fuel electrode layer 4 with respect to the solid electrolyte layer 3 is reversed.

【0017】本発明の製造方法によれば、上記積層体の
うち、少なくとも隣接する2つの層を同時に焼成する工
程を含むものである。その場合、選択される2つの層と
しては、緻密質である固体電解質層3や集電体層5の少
なくとも1層と、多孔質である円筒状基体1、空気極層
2、燃料極層4から選ばれる少なくとも1層との組み合
わせを同時焼成する場合に最適であり、その中でも少な
くとも空気極層2と固体電解質層3、または空気極層2
と集電体層5との組み合わせが挙げられ、これら2層に
合わせ、他の層を同時焼成する場合も含まれる。燃料電
池セルの量産性やコストなどの点を考慮すると、図1の
構成において、少なくとも円筒状基体1−空気極層2−
固体電解質層3を、空気極層2が円筒状基体1を兼ねる
場合には空気極層2−固体電解質層3を同時焼成し、さ
らには、円筒状基体1、空気極層2、固体電解質層3、
燃料極層4および集電体層5のすべてを同時に焼成する
ことが最も経済的である。
The manufacturing method of the present invention includes a step of simultaneously firing at least two adjacent layers of the above-mentioned laminated body. In that case, as the two layers to be selected, at least one layer of the solid electrolyte layer 3 and the current collector layer 5 that are dense, and the porous cylindrical substrate 1, the air electrode layer 2, and the fuel electrode layer 4 are used. Is most suitable when a combination with at least one layer selected from the above is co-fired, and among them, at least the air electrode layer 2 and the solid electrolyte layer 3, or the air electrode layer 2
And a current collector layer 5 are combined, and a case of combining these two layers and simultaneously firing other layers is also included. Considering the mass productivity and the cost of the fuel cell, in the configuration of FIG. 1, at least the cylindrical substrate 1-air electrode layer 2-
When the air electrode layer 2 also serves as the cylindrical substrate 1, the solid electrolyte layer 3 is co-fired with the air electrode layer 2 and the solid electrolyte layer 3, and further, the cylindrical substrate 1, the air electrode layer 2, and the solid electrolyte layer. 3,
It is most economical to fire all of the fuel electrode layer 4 and the current collector layer 5 at the same time.

【0018】そこで、空気極層2と固体電解質層3を同
時焼成する場合について具体的に説明すると、まず、空
気極層を形成するシート状成形体(以下、空気極シート
という)および固体電解質層を形成するシート状成形体
(以下、固体電解質シートという)を作製する。これら
のシート状成形体は、押出成形、静水圧成形(ラバープ
レス)、ドクターブレード法などの公知の方法により作
製される。
Therefore, the case where the air electrode layer 2 and the solid electrolyte layer 3 are simultaneously fired will be specifically described. First, a sheet-shaped molded body (hereinafter referred to as an air electrode sheet) forming the air electrode layer and a solid electrolyte layer. A sheet-shaped molded body (hereinafter, referred to as a solid electrolyte sheet) that forms the is prepared. These sheet-shaped molded products are produced by known methods such as extrusion molding, hydrostatic molding (rubber press), and doctor blade method.

【0019】この空気極層形成用粉末としては、LaM
nO3 系組成物が挙げられ、具体的には、Laの15〜
40%をCa、Sr、Baなどのアルカリ土類元素やY
および希土類元素などにより置換した公知のLaMnO
3 系組成物などが使用可能できる。この場合、成形前の
粉末は、前記構成金属の酸化物粉末を所定の割合で混合
したものを仮焼後、粉砕して適当な平均粒径を有するL
aMnO3 系固溶体粉末であることが望ましい。また、
固体電解質形成用粉末としては、Y2 3 、Yb2 3
などの安定化材を5〜20モル%の割合で固溶させた安
定化ZrO2 粉末、あるいはZrの一部をCeで置換し
たZrO2 粉末が用いられる。
The powder for forming the air electrode layer is LaM
The nO 3 -based composition may be mentioned, and specifically, La of 15 to 15 may be used.
40% is Ca, Sr, Ba and other alkaline earth elements and Y
And known LaMnO substituted with rare earth elements and the like
3 type composition etc. can be used. In this case, the powder before forming has a suitable average particle diameter L after calcination of a mixture of the oxide powders of the above-mentioned constituent metals in a predetermined ratio and pulverization.
It is preferably an aMnO 3 based solid solution powder. Also,
As the solid electrolyte forming powder, Y 2 O 3 , Yb 2 O 3 may be used.
Stabilized ZrO 2 powder was a solid solution of stabilizing material in an amount of 5 to 20 mol% ZrO 2 powder or the part of Zr was replaced with Ce, are used, such as.

【0020】なお、空気極シートの厚みは50〜300
0μm、固体電解質シートの厚みは10〜300μmが
適当である。また、肉厚の空気極シートを形成する場合
には100〜300μmのシートを複数重ねてもよい。
The thickness of the air electrode sheet is 50 to 300.
The appropriate thickness is 0 μm and the thickness of the solid electrolyte sheet is 10 to 300 μm. Further, when forming a thick air electrode sheet, a plurality of sheets having a thickness of 100 to 300 μm may be stacked.

【0021】次に、上記のようにして得られた空気極シ
ートと固体電解質シートとを積層するに際して、両シー
ト間に中間層を介在させる。この場合、中間層は、空気
極および固体電解質の焼成時の収縮率の中間的な値を有
する材料により構成することが重要である。このような
性質を有する中間層としては、空気極や固体電解質を形
成する材質にもよるが、空気極がLaMnO3 系組成物
の場合、1500℃で5時間焼成した場合の収縮率は8
〜10%であり、固体電解質がY2 3 安定化ZrO2
からなる場合には13〜15%程度と固体電解質の方が
収縮率が大きいことから、中間層は空気極よりも大き
く、固体電解質より小さく、およそ10〜13%の収縮
率であるのが適当である。
Next, when laminating the air electrode sheet and the solid electrolyte sheet obtained as described above, an intermediate layer is interposed between both sheets. In this case, it is important that the intermediate layer is made of a material having an intermediate value of contraction rate during firing of the air electrode and the solid electrolyte. As the intermediate layer having such a property, depending on the material forming the air electrode or the solid electrolyte, when the air electrode is a LaMnO 3 system composition, the shrinkage factor when firing at 1500 ° C. for 5 hours is 8
10%, the solid electrolyte is Y 2 O 3 stabilized ZrO 2
If the solid electrolyte is composed of 13 to 15%, the solid electrolyte has a larger shrinkage ratio. Therefore, the intermediate layer is larger than the air electrode and smaller than the solid electrolyte, and the shrinkage ratio is about 10 to 13%. Is.

【0022】このような特性の中間層としては、空気極
や固体電解質とは全く異なる材質から構成することも可
能であるが、この場合は熱収縮挙動に加え、熱膨張係数
なども考慮することが必要となり材料の選択や制御や難
しいことから、好適には、2つの層のうちのいずれか一
方、または両方の成分からなることが望ましい。いずれ
か一方の成分から構成する場合には用いる粉末の粒径や
中間層の成形体の密度を制御し、例えば前述したような
LaMnO3 系材料により中間層を形成する場合には、
仮焼により得られたLaMnO3 系粉末を粉砕する際
に、空気極形成粉末よりも大きくするか、または成形時
の生密度を空気極よりも小さくすることにより空気極よ
り大きい収縮率を有する中間層が得られる。また、中間
層をY2 3 安定化ZrO2 から構成する場合にはこの
粉末の粒径を固体電解質層よりも小さくするか、あるい
は成形時の密度を固体電解質層より大きくすることによ
り、収縮率を固体電解質より小さくすることができる。
The intermediate layer having such characteristics can be made of a material completely different from the air electrode and the solid electrolyte. In this case, the thermal expansion coefficient and the like should be taken into consideration in addition to the thermal contraction behavior. Since it is necessary to select and control the material, and it is difficult to control the material, it is preferable that one or both components of the two layers be used. When it is composed of either one of the components, the particle diameter of the powder used and the density of the molded body of the intermediate layer are controlled, and when the intermediate layer is formed of the LaMnO 3 type material as described above, for example,
When crushing the LaMnO 3 -based powder obtained by calcination, the shrinkage rate is larger than that of the air electrode by making it larger than that of the air electrode forming powder or by making the green density during molding smaller than that of the air electrode. A layer is obtained. When the intermediate layer is composed of Y 2 O 3 -stabilized ZrO 2 , the particle size of this powder is made smaller than that of the solid electrolyte layer, or the density at the time of molding is made larger than that of the solid electrolyte layer, so that shrinkage occurs. The rate can be smaller than that of the solid electrolyte.

【0023】最も容易な方法としては、この中間層を2
つの層の両方の成分により構成すればよい。つまり、L
aMnO3 系粉末とY2 3 安定化ZrO2 粉末とを適
当に混合した粉末を用いることにより、中間的な収縮率
を有する中間層を容易に形成することができる。
The easiest way is to use this intermediate layer
It may be composed of both components of one layer. That is, L
By using a powder in which aMnO 3 based powder and Y 2 O 3 stabilized ZrO 2 powder are appropriately mixed, it is possible to easily form an intermediate layer having an intermediate shrinkage ratio.

【0024】中間層が空気極の成分を含む場合には、こ
の中間層の厚みは100〜300μmが適当である。ま
た、結晶粒子径としては、2μmより小さいとガス透過
性が悪くなり、また13μmを越えると焼結性が悪くな
り、電気伝導度が小さくなるなどして発電特性に悪影響
を及ぼす可能性がある。
When the intermediate layer contains an air electrode component, the thickness of the intermediate layer is preferably 100 to 300 μm. If the crystal grain size is less than 2 μm, the gas permeability will be poor, and if it exceeds 13 μm, the sinterability will be poor and the electrical conductivity will be reduced, which may adversely affect the power generation characteristics. .

【0025】この中間層は、空気極シートと固体電解質
シートとの間にスラリーとして塗布するか、または中間
層用シート状成形体(以下、中間層シートという。)と
して介在させてもよい。
The intermediate layer may be applied as a slurry between the air electrode sheet and the solid electrolyte sheet, or may be interposed as a sheet-like molded body for intermediate layer (hereinafter referred to as intermediate layer sheet).

【0026】そして、空気極シートと固体電解質シート
との間に上記中間層を形成した積層物を1300〜16
00℃で3〜15時間程度焼成することにより、燃料電
池セルの一部を構成する積層体を作製することができる
のである。
Then, a laminate in which the above intermediate layer is formed between the air electrode sheet and the solid electrolyte sheet is 1300 to 16
By firing at 00 ° C. for about 3 to 15 hours, it is possible to produce a laminate that constitutes a part of the fuel cell unit.

【0027】また、空気極層と集電体層を同時焼成する
場合も、中間層の構成は、前記空気極層と固体電解質層
とを同時焼成する場合に準じて行えばよい。集電体層
は、公知のLaCrO3 系組成物が用いられる他、特願
平5−271884号、特願平6−27806号にて提
案されるようなペロブスカイト型組成に対して過剰に周
期律表第2a族や第3a族元素を含有するLaCrO3
系組成物からなる。この場合も、前記と同様に、中間層
を空気極層の構成成分または集電体層の構成成分、ある
いはそれらの混合成分により構成し、収縮率が空気極層
と集電体層との中間的値になるように、成分組成、粉末
の粒径、中間層の密度などを適宜調整すればよい。な
お、前記LaCrO3 系組成からなる集電部材の焼成に
よる収縮率は13〜14%であることから、この場合の
中間層の収縮率はおよそ10〜12%に調整すればよい
ことになる。
Also, when the air electrode layer and the current collector layer are co-fired, the intermediate layer may be constructed in the same manner as when the air electrode layer and the solid electrolyte layer are co-fired. For the current collector layer, a known LaCrO 3 type composition is used, and in addition to the perovskite type composition proposed in Japanese Patent Application Nos. 5-2718484 and 6-27806, the periodicity is excessive. Table LaCrO 3 containing Group 2a or Group 3a elements
A system composition. Also in this case, similarly to the above, the intermediate layer is composed of the constituent components of the air electrode layer or the constituent components of the current collector layer, or a mixed component thereof, and the shrinkage ratio is between the air cathode layer and the current collector layer. The component composition, the particle size of the powder, the density of the intermediate layer, and the like may be appropriately adjusted so that the target values are obtained. Since the shrinkage rate of the current collector made of the LaCrO 3 system composition due to firing is 13 to 14%, the shrinkage rate of the intermediate layer in this case should be adjusted to approximately 10 to 12%.

【0028】本発明によれば、同時焼成される2つの層
の収縮率の中間的値を有する中間層は、単層であっても
よいが、2つの層の収縮率が大幅に異なる場合において
は、収縮率が徐々に変化するように複数層により構成す
ることも当然可能である。
According to the invention, the intermediate layer, which has an intermediate value of the shrinkage of the two layers which are co-fired, may be a single layer, but in the case where the shrinkage of the two layers is significantly different. Of course, it is also possible to form a plurality of layers so that the shrinkage rate gradually changes.

【0029】上記のような空気極層と固体電解質層との
同時焼成、あるいは空気極層と集電体層との同時焼成法
に基づき、円筒状燃料電池セルを作製する方法について
説明する。
A method for producing a cylindrical fuel cell will be described based on the co-firing method of the air electrode layer and the solid electrolyte layer or the co-firing method of the air electrode layer and the current collector layer as described above.

【0030】円筒状燃料電池セルに、例えば図1に示し
たような円筒状基体1が存在する場合には、まず、円筒
状基体を形成する粉末を押出成形法や静水圧成形(ラバ
ープレス)法などにより、肉厚1〜3mm程度の円筒状
基体用成形体(以下、円筒状成形体という場合もあ
る。)を作製する。この円筒状基体を形成する絶縁性セ
ラミック粉末としてはZrO2 にCaOを10〜20モ
ル%またはY2 3 を5〜20モル%添加したZrO2
系材料の他、室温から1000℃までの熱膨張係数が9
〜11×10-6/℃の多孔質セラミック材料が最適であ
るが、この円筒状成形体は別途焼成して円筒状基体を作
製することもできるが、空気極材料や固体電解質材料と
ほぼ同様な温度で焼成可能なセラミック材料であれば、
空気極や固体電解質と同時に焼成することができる。
When the cylindrical base 1 as shown in FIG. 1 is present in the cylindrical fuel cell, first, the powder forming the cylindrical base is extruded or hydrostatically pressed (rubber press). By a method or the like, a molded body for a cylindrical substrate having a wall thickness of about 1 to 3 mm (hereinafter sometimes referred to as a cylindrical molded body) is produced. As the insulating ceramic powder forming this cylindrical substrate, ZrO 2 containing 10 to 20 mol% of CaO or 5 to 20 mol% of Y 2 O 3 is added to ZrO 2.
In addition to system materials, the coefficient of thermal expansion from room temperature to 1000 ° C is 9
A porous ceramic material of up to 11 × 10 −6 / ° C. is most suitable, but this cylindrical molded body can be fired separately to prepare a cylindrical substrate, but it is almost the same as the air electrode material and the solid electrolyte material. If it is a ceramic material that can be fired at various temperatures,
It can be fired at the same time as the air electrode and the solid electrolyte.

【0031】即ち、作製した円筒状成形体又は焼結体の
表面に、前述したような空気極シート、中間層用のスラ
リーまたはシートおよび固体電解質シートを順次巻き付
けて積層した積層物を作製した後、大気中で1300〜
1600℃で3〜15時間程度焼成することにより、固
体電解質が相対密度96%以上、円筒状基体および空気
極が60〜75%程度の相対比重を有する円筒状基体、
空気極、固体電解質の一体焼結物を得ることができる。
That is, after the air electrode sheet, the slurry or sheet for the intermediate layer and the solid electrolyte sheet as described above are sequentially wound around the surface of the produced cylindrical molded body or sintered body, a laminated body is produced. , 1300 in the atmosphere
By firing at 1600 ° C. for about 3 to 15 hours, the solid electrolyte has a relative density of 96% or more, and the cylindrical substrate and the air electrode have a relative specific gravity of about 60 to 75%.
An integrated sintered product of the air electrode and the solid electrolyte can be obtained.

【0032】他の形態として、空気極層が円筒状基体を
兼ねる場合には、空気極形成用粉末を用いて押出成形や
ラバープレス法などにより円筒状に成形した後、この円
筒状成形体の表面に中間層用のスラリーを塗布するか、
または中間層シートおよび固体電解質シートをこれに巻
き付けて同様な焼成条件で同時焼成すればよい。
In another embodiment, when the air electrode layer also serves as a cylindrical substrate, the air electrode forming powder is used to form a cylindrical shape by extrusion molding or a rubber pressing method, and then this cylindrical molded body is formed. Apply the slurry for the intermediate layer on the surface,
Alternatively, the intermediate layer sheet and the solid electrolyte sheet may be wrapped around this and simultaneously fired under the same firing conditions.

【0033】その後、円筒状基体、空気極、固体電解質
の一体焼結物の表面に集電体層および燃料極層を形成す
る成分のスラリーをスクリーン印刷法などにより塗布す
るか、またはドクターブレード法などにより作製したシ
ート状成形体を一体焼結物の表面に塗布、または巻き付
けて接着した後、大気などの酸化性雰囲気中で1300
〜1600℃で3〜15時間焼成することにより、燃料
電池セルを作製することができる。
Thereafter, a slurry of components for forming a current collector layer and a fuel electrode layer is applied to the surface of the integrally sintered product of the cylindrical substrate, the air electrode and the solid electrolyte by a screen printing method or a doctor blade method. After applying the sheet-shaped molded body produced by the above method to the surface of the integrally sintered product, or winding and adhering it, 1300 in an oxidizing atmosphere such as air
A fuel cell can be produced by firing at ˜1600 ° C. for 3 to 15 hours.

【0034】望ましくは、集電体層および/または燃料
極層も、その組成などを調整し、上記円筒状基体、空気
極層、固体電解質層とともに同時に焼成するのがよい。
その場合は、前述したような円筒状成形体−空気極シー
ト−固体電解質シートからなる円筒状積層物、または空
気極用円筒状成形体−固体電解質シートからなる円筒状
積層物の表面に、集電体層および/または燃料極層を形
成するためのスラリーを塗布したり、シート状成形体を
巻き付け接着した後、これを1300〜1600℃の酸
化性雰囲気中で焼成することにより、円筒状基体、空気
極、固体電解質、燃料極および/または集電体層を同時
に焼結させることができる。この時も、前述したように
集電体層と固体電解質層との間、燃料極層と固体電解質
層との間、あるいは空気極層と集電体層との間に前述し
たような中間層を介在させることが望ましい。なお、集
電体層は相対比重95%以上、燃料極層は80〜100
%となるように調整することが必要である。
Desirably, the composition and the like of the current collector layer and / or the fuel electrode layer are adjusted, and it is preferable that the current collector layer and / or the fuel electrode layer are simultaneously fired together with the cylindrical substrate, the air electrode layer and the solid electrolyte layer.
In that case, as described above, on the surface of the cylindrical laminate composed of the cylindrical molded body-air electrode sheet-solid electrolyte sheet, or the cylindrical laminated body composed of the air electrode cylindrical molded body-solid electrolyte sheet, A cylindrical substrate is obtained by applying a slurry for forming an electric body layer and / or a fuel electrode layer, or winding and adhering a sheet-like molded body, and then firing this in an oxidizing atmosphere at 1300 to 1600 ° C. , The air electrode, the solid electrolyte, the fuel electrode and / or the current collector layer can be simultaneously sintered. Also at this time, as described above, between the current collector layer and the solid electrolyte layer, between the fuel electrode layer and the solid electrolyte layer, or between the air electrode layer and the current collector layer, the intermediate layer as described above. It is desirable to interpose. The current collector layer has a relative specific gravity of 95% or more, and the fuel electrode layer has a relative density of 80 to 100.
It is necessary to adjust so that it becomes%.

【0035】なお、燃料極層を構成する成分としては、
2 3 を含有するZrO2 粉末を10〜40重量%含
有するNi粉末あるいはNiO粉末が好適である。
The constituents of the fuel electrode layer are
Ni powder or NiO powder containing 10 to 40% by weight of ZrO 2 powder containing Y 2 O 3 is suitable.

【0036】本発明では、これまで円筒型燃料電池セル
を例として説明したが、本発明はもちろんこれに限定さ
れるものでなく、平板型燃料電池セルにおいても、空気
極シートと固体電解質シートなどを積層して同時焼成す
る場合、円筒型と同様な方法により2つの層間に焼成収
縮挙動が中間的な値を有する中間層を介在させて同時焼
成するものである。
The present invention has been described by taking the cylindrical fuel cell as an example, but the present invention is not limited to this, and the flat sheet fuel cell also has an air electrode sheet and a solid electrolyte sheet. In the case of laminating and co-firing, the co-firing is performed by interposing an intermediate layer having an intermediate value of firing shrinkage behavior between two layers by a method similar to that of the cylindrical type.

【0037】本発明によれば、上記の方法において焼成
工程を極力削減することがよく、特に円筒状基体、空気
極、固体電解質、燃料極および集電体層を同時に焼成す
るのが、製造工程を大幅に削減できることから特に望ま
しい。
According to the present invention, it is preferable to reduce the number of firing steps in the above method as much as possible. In particular, firing the cylindrical substrate, the air electrode, the solid electrolyte, the fuel electrode and the current collector layer at the same time is a manufacturing process. Is particularly desirable because it can be significantly reduced.

【0038】[0038]

【作用】燃料電池セルを構成する空気極および燃料極
は、酸素ガスや燃料ガスの固体電解質層へ供給するため
に多孔質セラミック層により構成されるのに対して、固
体電解質やインターコネクタ層は緻密質セラミック層に
より構成される。
[Function] The air electrode and the fuel electrode forming the fuel cell are composed of a porous ceramic layer for supplying oxygen gas or fuel gas to the solid electrolyte layer, whereas the solid electrolyte or interconnector layer is It is composed of a dense ceramic layer.

【0039】このように多孔質セラミック層と緻密質セ
ラミック層を同時に焼成する場合の焼成時間と焼成前の
寸法に対する収縮率との関係を図3に示した。図3によ
れば、緻密質セラミック層は、図3中の線分Aで示され
るように、焼成開始温度に到達後、徐々に収縮が進行
し、ある程度収縮が進行し理論密度に近づくと収縮速度
が小さくなる傾向にある。これに対して、多孔質セラミ
ック層は、図3中の線分Bで示されるように、焼結開始
温度以降、徐々に収縮が進行するが、緻密質セラミック
層の焼結完了時点tで焼結途中であることが必要となる
ため、その収縮速度が緻密質セラミック層よりも遅いこ
とが必要である。このような焼結挙動を示す2つのセラ
ミック層が隣接した状態で同時焼成すると、その挙動の
相違から剥離やクラックなどが生じやすくなる。
FIG. 3 shows the relationship between the firing time and the shrinkage ratio with respect to the dimension before firing when firing the porous ceramic layer and the dense ceramic layer at the same time. According to FIG. 3, the dense ceramic layer, as indicated by the line segment A in FIG. 3, gradually shrinks after reaching the firing start temperature, shrinks to some extent, and shrinks when approaching the theoretical density. The speed tends to decrease. On the other hand, the porous ceramic layer gradually shrinks after the sintering start temperature as shown by the line B in FIG. 3, but is burned at the time t when the dense ceramic layer is completely sintered. Since it is necessary to be in the middle of bonding, it is necessary that the shrinking speed is slower than that of the dense ceramic layer. When two ceramic layers exhibiting such a sintering behavior are co-fired in a state of being adjacent to each other, peeling or cracking is likely to occur due to the difference in the behavior.

【0040】そこで、本発明によれば、この2つのセラ
ミック層の焼結挙動の中間的な性質を有するセラミック
層を中間層として介在させる。この中間層としてのセラ
ミック層は、図3において線分Cで示されるように、2
つの焼結曲線A,Bの中間的な挙動を示すものである。
Therefore, according to the present invention, a ceramic layer having an intermediate property of the sintering behavior of these two ceramic layers is interposed as an intermediate layer. The ceramic layer as the intermediate layer has a thickness of 2 as shown by a line segment C in FIG.
This shows an intermediate behavior between the two sintering curves A and B.

【0041】このような中間層を介在させることによ
り、2つの層間の焼結時の極端な挙動の相違が緩和され
るために、同時焼成においても片方の層の剥離やクラッ
クなどの発生を抑制することができる。
By interposing such an intermediate layer, the extreme difference in the behavior between the two layers during sintering is relaxed, so that the peeling or cracking of one layer is suppressed even in the co-firing. can do.

【0042】これにより、燃料電池の同時焼成による製
造を可能とするとともに、同時焼成時の歩留りを向上さ
せ、安価が燃料電池セルを提供することができる。
As a result, it is possible to manufacture the fuel cell by co-firing, improve the yield at the time of co-firing, and provide a low cost fuel cell.

【0043】[0043]

【実施例】次に、燃料電池セルを構成する層のうちの少
なくとも2つの層を同時焼成するに当たり特定の中間層
を介在させることによる効果について、以下の実験を行
った。
EXAMPLE Next, the following experiment was conducted on the effect of interposing a specific intermediate layer upon simultaneous firing of at least two layers of the fuel cell.

【0044】実施例1 まず、実験では、燃料電池セルを構成する層のうち、空
気極シート、固体電解質シートおよび集電体シートを以
下のようにして作製した。
Example 1 First, in an experiment, an air electrode sheet, a solid electrolyte sheet and a current collector sheet were prepared as follows among the layers constituting a fuel cell.

【0045】(空気極シート)空気極を形成する粉末と
してはLa2 3 、MnO2 、CaCO3 の粉末をLa
0.85Ca0.15MnO3 となるように秤量混合した後に1
500℃で3時間仮焼し粉砕して平均粒径が約8μmと
約10μmの固溶体粉末を得た。次に、上記La0.8
0.2 MnO3 粉末にバインダ−を添加し、押出成形法
により厚み2mmの空気極シートをそれぞれ作製した。
(Air electrode sheet) As powders forming the air electrode, powders of La 2 O 3 , MnO 2 and CaCO 3 are La.
After weighing and mixing so that 0.85 Ca 0.15 MnO 3 was obtained, 1
It was calcined at 500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle size of about 8 μm and about 10 μm. Next, the above La 0.8 C
A binder was added to a 0.2 MnO 3 powder, and an air electrode sheet having a thickness of 2 mm was prepared by an extrusion molding method.

【0046】(固体電解質シート)また、固体電解質を
形成する粉末としてY2 3 を10モル%の割合で含有
する市販の共沈法により作製した平均粒径が約1μmと
約2μmのY2 3 安定化ZrO2 粉末を準備した。こ
れらのY2 3 安定化ZrO2 粉末を水を溶媒としてス
ラリーを作製し、ドクタ−ブレ−ド法によりそれぞれ厚
み100μmの固体電解質シートを作製した。
[0046] (solid electrolyte sheet) Moreover, the average particle size of the Y 2 O 3 as a powder to form a solid electrolyte was produced by a commercial coprecipitation a proportion of 10 mol% of about 1μm and about 2 [mu] m Y 2 An O 3 stabilized ZrO 2 powder was prepared. A slurry was prepared from these Y 2 O 3 -stabilized ZrO 2 powders using water as a solvent, and solid electrolyte sheets each having a thickness of 100 μm were prepared by the doctor blade method.

【0047】(集電体シート)集電体を形成する粉末と
して平均粒径が約1μmと約3μmのLa0.80Ca0. 21
CrO3 からなる化合物粉末を準備した。これらの粉末
を用いて水を溶媒としてスラリーを作製し、ドクタ−ブ
レ−ド法により厚み100μmの集電体シートをそれぞ
れ作製した。
The average particle diameter as a powder for forming the (current collector sheet) current collector is about 1μm and about 3μm La 0.80 Ca 0. 21
A compound powder made of CrO 3 was prepared. Using these powders, a slurry was prepared using water as a solvent, and collector sheets each having a thickness of 100 μm were prepared by the doctor blade method.

【0048】実験1 次に、前記空気極シートと前記固体電解質シートを同時
焼成するに際して、シート間に介在させるための種々の
中間層形成用の粉末を調製した。表1に示すように、そ
の1つは、La2 3 、MnO2 、CaCO3 の粉末を
La0.85Ca0. 15MnO3 となるように秤量混合した後
に1500℃で3時間仮焼した後、粉砕し平均粒径が2
〜12μmの固溶体粉末を得た。また、もう1つは、Y
2 3 を10モル%の割合で含有する市販の共沈法によ
り作製した平均粒径が1〜4μmのY2 3 安定化Zr
2 (YSZ)粉末を準備した。この粉末に水とバイン
ダーを添加しドクターブレード法により100μmの厚
みの中間層シートを作製した。また、La0.85Ca0.15
MnO3 とYSZ粉末とを混合した中間層シートも同様
な方法により作製した。
Experiment 1 Next, when the air electrode sheet and the solid electrolyte sheet were co-fired, various intermediate layer-forming powders to be interposed between the sheets were prepared. As shown in Table 1, one of which, La 2 O 3, MnO 2, a powder of CaCO 3 La 0.85 Ca 0. 15 after 3 hours and calcined at 1500 ° C. After weighing mixed so that MnO 3 , Crushed and average particle size is 2
A solid solution powder of ˜12 μm was obtained. The other is Y
Y 2 O 3 -stabilized Zr having an average particle size of 1 to 4 μm prepared by a commercial coprecipitation method containing 2 O 3 in a proportion of 10 mol%.
O 2 (YSZ) powder was prepared. Water and a binder were added to this powder, and an intermediate layer sheet having a thickness of 100 μm was produced by the doctor blade method. Also, La 0.85 Ca 0.15
An intermediate layer sheet in which MnO 3 and YSZ powder were mixed was also prepared by the same method.

【0049】また、上記の円筒状成形体、シート状成形
体および中間層用の粉末については、同時焼成条件での
収縮率を別途測定した。収縮率は{(焼成前の体積−焼
成後の体積)/焼成前の体積}×100(%)で算出し
た。
With respect to the above-mentioned cylindrical molded body, sheet-shaped molded body and powder for the intermediate layer, the shrinkage rate under the simultaneous firing conditions was measured separately. The shrinkage ratio was calculated by {(volume before firing-volume after firing) / volume before firing} × 100 (%).

【0050】次に、前記空気極シートの表面に表1に示
した中間層シートを前記固体電解質シートを重ね、約1
0kg/cm2 の圧力で圧着した。そして、それぞれの
積層体を大気中で1450〜1550℃で5時間同時焼
成した。
Next, the intermediate layer sheet shown in Table 1 was placed on the surface of the air electrode sheet, and the solid electrolyte sheet was overlaid thereon to form about 1 layer.
It pressure-bonded at a pressure of 0 kg / cm 2 . And each laminated body was co-fired in the atmosphere at 1450 to 1550 ° C. for 5 hours.

【0051】得られた積層焼結体に対して、密着性の評
価を行った。密着性は、積層焼結体において剥がれ、あ
るいはクラックの有無を外観検査により行い評価した。
Adhesion was evaluated for the obtained laminated sintered body. The adhesiveness was evaluated by performing a visual inspection for the presence or absence of peeling or cracks in the laminated sintered body.

【0052】[0052]

【表1】 [Table 1]

【0053】表1から明らかなように、空気極層と固体
電解質層との間に何ら中間層を形成しないNo.1では、
電解質層に剥離が生じ、同時焼成後の密着性が不十分で
あった。これに中間層を介在させて同時焼成した試料に
おいて、中間層の収縮率が空気極層と固体電解質層の中
間的な値でない試料No.2、5、6においても電解質の
剥離とクラックが生じた。
As is clear from Table 1, in No. 1 in which no intermediate layer is formed between the air electrode layer and the solid electrolyte layer,
Peeling occurred in the electrolyte layer, and the adhesion after co-firing was insufficient. In the samples co-fired with the intermediate layer interposed therebetween, peeling and cracking of the electrolyte also occurred in Samples No. 2, 5, and 6 in which the contraction rate of the intermediate layer was not an intermediate value between the air electrode layer and the solid electrolyte layer. It was

【0054】これに対して、中間層の収縮率が空気極層
と固体電解質層の中間的な値を有する中間層を介在させ
た本発明品では、電解質の剥離やクラックの発生が見ら
れず、優れた密着性を示した。
On the other hand, in the product of the present invention in which the intermediate layer having a contraction rate of the intermediate layer having an intermediate value between the air electrode layer and the solid electrolyte layer is interposed, no peeling or cracking of the electrolyte is observed. , Showed excellent adhesion.

【0055】実験2 次に、前記空気極シートと前記集電体シートを同時焼成
するに際して、シート間に介在させるための種々の中間
層形成用の粉末を調製した。中間層の組成については表
2に示した。中間層を形成するLa0.85Ca0.15MnO
3 系粉末は、La2 3 、MnO2 、CaCO3 の粉末
を上記の組成となるように秤量混合した後に1500℃
で3時間仮焼した後、粉砕し平均粒径が3〜6μmの固
溶体粉末を得た。また、La0.8 Ca90.21 CrO3
粉末は、La2 3 、Cr2 3、CaCO3 の粉末を
La0.80Ca0.21CrO3 となるように秤量混合した後
に1400℃で3時間仮焼した後粉砕して平均粒径が2
〜12μmの粉末を作製したものである。これらの粉末
を用いて、実施例1に従いドクターブレード法により中
間層のシートを作製した。
Experiment 2 Next, when the air electrode sheet and the current collector sheet were simultaneously fired, various intermediate layer-forming powders to be interposed between the sheets were prepared. The composition of the intermediate layer is shown in Table 2. La 0.85 Ca 0.15 MnO forming the intermediate layer
The 3 type powder is 1500 ° C after the powders of La 2 O 3 , MnO 2 and CaCO 3 are weighed and mixed so as to have the above composition.
After calcination for 3 hours, it was pulverized to obtain a solid solution powder having an average particle size of 3 to 6 μm. The La 0.8 Ca 90.21 CrO 3 based powder was prepared by mixing the La 2 O 3 , Cr 2 O 3 and CaCO 3 powders so as to be La 0.80 Ca 0.21 CrO 3 and calcining at 1400 ° C. for 3 hours. Crushed to an average particle size of 2
This is a powder of about 12 μm. Using these powders, an intermediate layer sheet was produced by the doctor blade method according to Example 1.

【0056】次に、前記空気極シートの表面に表2に示
した中間層シートを前記固体電解質シートを重ね、10
kg/cm2 の圧力で圧着した。そして、それぞれの積
層体を大気中で1450〜1550℃で5時間同時焼成
した。得られた積層焼結体に対して、実験1と同様な方
法により、密着性を評価した。
Next, the intermediate layer sheet shown in Table 2 was placed on the surface of the air electrode sheet and the solid electrolyte sheet was overlaid thereon.
It was pressure-bonded at a pressure of kg / cm 2 . And each laminated body was co-fired in the atmosphere at 1450 to 1550 ° C. for 5 hours. With respect to the obtained laminated sintered body, the adhesion was evaluated by the same method as in Experiment 1.

【0057】[0057]

【表2】 [Table 2]

【0058】表2から明らかなように、空気極層と集電
体層との間に何ら中間層を形成しない場合には、試料N
o.14においては集電体層の剥離が生じ、同時焼成後の
密着性が不十分であった。
As is apparent from Table 2, when no intermediate layer was formed between the air electrode layer and the current collector layer, Sample N
In o.14, peeling of the current collector layer occurred and adhesion after co-firing was insufficient.

【0059】これに中間層を介在させて同時焼成した試
料において、中間層の収縮率が空気極層と集電体層の中
間的な値でない試料No.15、18、21でも満足すべ
き密着性が得られなかった。
In the samples co-fired with an intermediate layer interposed therebetween, the samples of which the shrinkage factor of the intermediate layer is not an intermediate value between the air electrode layer and the current collector layer, Nos. 15, 18, and 21 have satisfactory adhesion. The sex was not obtained.

【0060】これに対して、中間層の収縮率が空気極層
と集電体層の中間的な値を有する中間層を介在させた本
発明品では電解質の剥離やクラックの発生が見られず、
優れた密着性を示した。
On the other hand, in the product of the present invention in which the intermediate layer having the intermediate layer having a contraction rate intermediate between the air electrode layer and the current collector layer is interposed, neither peeling of the electrolyte nor cracking is observed. ,
It showed excellent adhesion.

【0061】実施例2 上記実験1、2の結果に基づき、燃料電池セルの作製を
行った。まず、円筒状基体用成形体として、円筒状基体
を形成する粉末として市販の15モル%CaOを添加し
た平均粒径が10μmのCaO安定化ZrO2 粉末にバ
インダ−を添加し押出成形法により外径18mm、内径
13mmの円筒状成形体を得た。
Example 2 A fuel cell was prepared based on the results of Experiments 1 and 2 above. First, as a molded body for a cylindrical substrate, a binder was added to CaO-stabilized ZrO 2 powder having an average particle size of 10 μm in which a commercially available 15 mol% CaO was added as a powder for forming a cylindrical substrate, and the mixture was extruded by an extrusion molding method. A cylindrical molded body having a diameter of 18 mm and an inner diameter of 13 mm was obtained.

【0062】一方、実験1で用いた空気極シートの片面
に、実験1における試料No.3、8、11と同様な組成
の中間層シートを、また集電体層が積層される位置に
は、実験2における試料No.16、20、24と同様な
組成の中間層シートを積層し、中間層シートが外側にな
るように先の円筒状成形体表面に巻き付けた。そして、
実験1における固体電解質シートおよび実験2における
集電体シートをそれぞれ所定箇所に巻き付けた。
On the other hand, on one side of the air electrode sheet used in Experiment 1, an intermediate layer sheet having the same composition as Sample Nos. 3, 8, and 11 in Experiment 1 was placed at the position where the current collector layer was laminated. An intermediate layer sheet having the same composition as Sample Nos. 16, 20, and 24 in Experiment 2 was laminated and wound around the surface of the cylindrical molded body so that the intermediate layer sheet was on the outside. And
The solid electrolyte sheet in Experiment 1 and the current collector sheet in Experiment 2 were wound around predetermined places.

【0063】さらに、燃料極を形成する粉末としてNi
O粉末とZrO2 (10モル%Y23 含有)粉末を重
量比で70:30の割合で混合した混合粉末に水を溶媒
として加えてスラリーを作製し、ドクタ−ブレ−ド法に
より厚み50μmのNiO/ZrO2 のシ−トを作製
し、アクリル系樹脂の接着材を介在させて固体電解質シ
ートの所定箇所に巻き付けて円筒状積層体を作製した。
Further, as powder for forming the fuel electrode, Ni was used.
Water was added as a solvent to a mixed powder in which O powder and ZrO 2 (containing 10 mol% Y 2 O 3 ) powder were mixed at a weight ratio of 70:30 to prepare a slurry, and the thickness was measured by a doctor blade method. A sheet of NiO / ZrO 2 having a thickness of 50 μm was produced and wound around a solid electrolyte sheet at a predetermined position with an acrylic resin adhesive interposed to produce a cylindrical laminate.

【0064】このようにして作製した積層体を1500
℃で5時間同時焼成して燃料電池セルを作製した。この
様にして得られた燃料電池セルの内側に酸素ガスを外側
に水素ガスを流し1000℃で発電試験を行い、出力密
度を測定した。その結果を表3のセルNo.1〜3として
示した。
The laminated body produced in this manner is set to 1500
A fuel cell was produced by co-firing at 5 ° C. for 5 hours. The power density was measured by conducting an electric power generation test at 1000 ° C. by flowing oxygen gas inside and hydrogen gas outside on the fuel cell thus obtained. The results are shown as cells Nos. 1 to 3 in Table 3.

【0065】実施例3 実験1において用いた空気極形成用粉末を用いて押出成
形法により、内径18mm、外径13mmの寸法の円筒
状空気極成形体を作製した。この円筒状成形体の表面
に、固体電解質シートの配置箇所に実験1における試料
No.3、9の中間層シートと集電体シートの配置位置に
実験2における試料No.16、17、22の中間層シー
トを積層した。そして、実験1で用いた固体電解質シー
トおよび実験2で用いた集電体シートをそれぞれの中間
層スラリーの塗布位置にアクリル系樹脂を接着材として
積層した。その後、実施例2で用いた燃料極シートを固
体電解質シートの表面に集電体シートと接触しないよう
にアクリル系樹脂を接着材として積層し、円筒状積層体
を作製した。
Example 3 Using the powder for forming an air electrode used in Experiment 1, a cylindrical air electrode formed body having an inner diameter of 18 mm and an outer diameter of 13 mm was produced by an extrusion molding method. On the surface of this cylindrical molded body, in the positions where the solid electrolyte sheet is arranged, the samples No. 3, 9 in Experiment 1 and the intermediate layer sheets of the samples No. 16, 9 in Experiment 2 are arranged in the positions where the current collector sheet is arranged. The interlayer sheets were laminated. Then, the solid electrolyte sheet used in Experiment 1 and the current collector sheet used in Experiment 2 were laminated at the coating positions of the respective intermediate layer slurries using acrylic resin as an adhesive. After that, the fuel electrode sheet used in Example 2 was laminated on the surface of the solid electrolyte sheet with an acrylic resin as an adhesive so as not to come into contact with the current collector sheet, to produce a cylindrical laminate.

【0066】そして、この円筒状積層体を1550℃で
2時間焼成した。この様にして得られた燃料電池セルの
内側に酸素ガスを外側に水素ガスを流し1000℃で発
電試験を行い、出力密度を測定した。その結果を表3の
セルNo.4〜6に示した。
Then, this cylindrical laminate was fired at 1550 ° C. for 2 hours. The power density was measured by conducting an electric power generation test at 1000 ° C. by flowing oxygen gas inside and hydrogen gas outside on the fuel cell thus obtained. The results are shown in cells Nos. 4 to 6 of Table 3.

【0067】[0067]

【表3】 [Table 3]

【0068】本発明に基づき作製したその他のセルは、
電解質層や集電体層の剥離やクラックがなく、いずれも
高い出力密度を示した。
Other cells produced according to the present invention are:
There was no peeling or cracking of the electrolyte layer or the current collector layer, and all showed high power density.

【0069】[0069]

【発明の効果】以上詳述したように、本発明によれば、
同時焼成を行う際の収縮率の異なる2層間に中間層を介
在させることにより、同時焼成時の層の剥がれやクラッ
クなどの発生を防止することができ、燃料電池セルの製
造工程数を格段に削減できることにより量産性を向上さ
せるとともに、信頼性の高い燃料電池セルを製造するこ
とができる。
As described in detail above, according to the present invention,
By interposing an intermediate layer between two layers that have different shrinkage rates when performing co-firing, it is possible to prevent layer peeling and cracks during co-firing, and to significantly reduce the number of fuel cell manufacturing processes. By being able to reduce the amount, it is possible to improve mass productivity and to manufacture a highly reliable fuel battery cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型燃料電池セルの構造を示す図である。FIG. 1 is a diagram showing a structure of a cylindrical fuel cell unit.

【図2】平板型燃料電池セルの構造を示す図である。FIG. 2 is a view showing a structure of a flat plate type fuel cell unit.

【図3】多孔質セラミック層と緻密質セラミック層を同
時に焼成する場合の焼成時間と焼成前の寸法に対する収
縮率との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a firing time and a shrinkage ratio with respect to a dimension before firing when firing a porous ceramic layer and a dense ceramic layer at the same time.

【符号の説明】[Explanation of symbols]

1 円筒状基体 2 空気極層 3 固体電解質層 4 燃料極層 5 集電体層 1 Cylindrical substrate 2 Air electrode layer 3 Solid electrolyte layer 4 Fuel electrode layer 5 Current collector layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 哲也 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Kimura 1-4 Yamashita-cho, Kokubun-shi, Kagoshima Kyocera Corporation General Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】空気極層、電解質層、燃料極層および集電
体層を有する積層体のうちの少なくとも隣接する2つの
層を同時に焼成する工程を具備する燃料電池セルの製造
方法において、前記2つの層の間に、焼成による収縮率
が前記2つの層の収縮率の中間的値を有する中間層を介
在させて同時焼成することを特徴とする燃料電池セルの
製造方法。
1. A method for producing a fuel cell, comprising the step of simultaneously firing at least two adjacent layers of a laminate having an air electrode layer, an electrolyte layer, a fuel electrode layer, and a current collector layer. A method for producing a fuel cell, comprising performing co-firing with an intermediate layer interposed between two layers, the intermediate layer having a contraction rate of the intermediate value of the two layers.
【請求項2】前記中間層が、前記2つの層のうちのいず
れか一方の成分、または前記2つの層の両方の成分を含
む請求項1記載の燃料電池セルの製造方法。
2. The method for producing a fuel cell according to claim 1, wherein the intermediate layer contains a component of either one of the two layers or a component of both of the two layers.
【請求項3】前記2つの層が、緻密質からなる層と多孔
質からなる層との組合わせからなる請求項1記載の燃料
電池セルの製造方法。
3. The method for producing a fuel cell according to claim 1, wherein the two layers are a combination of a dense layer and a porous layer.
【請求項4】前記2つの層が、固体電解質層と空気極
層、集電体層と空気極層の少なくともいずれかの組み合
わせからなる請求項3記載の燃料電池セルの製造方法。
4. The method for producing a fuel cell according to claim 3, wherein the two layers are a combination of at least one of a solid electrolyte layer and an air electrode layer, and a current collector layer and an air electrode layer.
【請求項5】空気極層、電解質層、燃料極層および集電
体層を有する積層体のうちの少なくとも隣接する2つの
層を同時に焼成する工程を具備する燃料電池セルの製造
方法において、前記2つの層の間に、前記2つの層の構
成成分の混合体からなる中間層を介在させて同時焼成す
ることを特徴とする燃料電池セルの製造方法。
5. A method for producing a fuel cell, comprising the step of simultaneously firing at least two layers adjacent to each other in a laminate having an air electrode layer, an electrolyte layer, a fuel electrode layer and a current collector layer. A method for producing a fuel cell, comprising: performing co-firing with an intermediate layer made of a mixture of the constituents of the two layers interposed between the two layers.
JP09239094A 1994-04-28 1994-04-28 Method for manufacturing fuel cell Expired - Fee Related JP3434883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09239094A JP3434883B2 (en) 1994-04-28 1994-04-28 Method for manufacturing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09239094A JP3434883B2 (en) 1994-04-28 1994-04-28 Method for manufacturing fuel cell

Publications (2)

Publication Number Publication Date
JPH07296838A true JPH07296838A (en) 1995-11-10
JP3434883B2 JP3434883B2 (en) 2003-08-11

Family

ID=14053101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09239094A Expired - Fee Related JP3434883B2 (en) 1994-04-28 1994-04-28 Method for manufacturing fuel cell

Country Status (1)

Country Link
JP (1) JP3434883B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229934A (en) * 2000-02-16 2001-08-24 Toto Ltd Method of producing solid electrolyte fuel cell
NL1016458C2 (en) * 2000-10-23 2002-05-01 Stichting En Onderzoek Ct Nede Anode assembly.
JP2002134132A (en) * 2000-10-27 2002-05-10 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2004087490A (en) * 2002-08-06 2004-03-18 Toto Ltd Solid oxide fuel cell
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP2007073272A (en) * 2005-09-05 2007-03-22 Noritake Co Ltd Electron non-conductive composition inclination solid electrolyte membrane
JP2007194170A (en) * 2006-01-23 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Flat solid oxide fuel cell and method of manufacturing same
JP2013197036A (en) * 2012-03-22 2013-09-30 Nippon Soken Inc Fuel cell and method for manufacturing laminated sintered body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2001229934A (en) * 2000-02-16 2001-08-24 Toto Ltd Method of producing solid electrolyte fuel cell
NL1016458C2 (en) * 2000-10-23 2002-05-01 Stichting En Onderzoek Ct Nede Anode assembly.
WO2002035634A1 (en) * 2000-10-23 2002-05-02 Stichting Energieonderzoek Centrum Nederland Anode assembly for an electrochemical cell
JP2002134132A (en) * 2000-10-27 2002-05-10 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
JP2004087490A (en) * 2002-08-06 2004-03-18 Toto Ltd Solid oxide fuel cell
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP2007073272A (en) * 2005-09-05 2007-03-22 Noritake Co Ltd Electron non-conductive composition inclination solid electrolyte membrane
JP2007194170A (en) * 2006-01-23 2007-08-02 Nippon Telegr & Teleph Corp <Ntt> Flat solid oxide fuel cell and method of manufacturing same
JP2013197036A (en) * 2012-03-22 2013-09-30 Nippon Soken Inc Fuel cell and method for manufacturing laminated sintered body

Also Published As

Publication number Publication date
JP3434883B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
US5935727A (en) Solid oxide fuel cells
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JP2008538449A5 (en)
KR101796502B1 (en) Method of manufacturing interconnect coating layer and ceramic interconnects including the interconnect coating layer
JP2012221623A (en) Method for manufacturing unit cell for fuel cell, and unit cell for fuel cell
JP3434883B2 (en) Method for manufacturing fuel cell
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JP5547188B2 (en) Manufacturing method of electrolyte / electrode assembly
JP3339998B2 (en) Cylindrical fuel cell
JPH08236138A (en) Cell of solid electrolyte fuel cell and manufacture thereof
JPH07282823A (en) Manufacture of cell of cylindrical fuel cell
JP2011009173A (en) Method of manufacturing electrolyte-electrode assembly
JP3336171B2 (en) Solid oxide fuel cell
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JP3342611B2 (en) Manufacturing method of cylindrical fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3677387B2 (en) Solid oxide fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP2005216619A (en) Fuel battery cell and fuel battery
JP2001185160A (en) Solid electrolyte fuel cell
JPH11111308A (en) Cylindrical fuel cell
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees