JPH07296184A - Center projecting method - Google Patents

Center projecting method

Info

Publication number
JPH07296184A
JPH07296184A JP6089770A JP8977094A JPH07296184A JP H07296184 A JPH07296184 A JP H07296184A JP 6089770 A JP6089770 A JP 6089770A JP 8977094 A JP8977094 A JP 8977094A JP H07296184 A JPH07296184 A JP H07296184A
Authority
JP
Japan
Prior art keywords
projection
plane
projected
image
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6089770A
Other languages
Japanese (ja)
Other versions
JP3411665B2 (en
Inventor
Yoshihiro Goto
良洋 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP08977094A priority Critical patent/JP3411665B2/en
Priority to US08/374,088 priority patent/US5694530A/en
Publication of JPH07296184A publication Critical patent/JPH07296184A/en
Priority to US08/708,959 priority patent/US5900878A/en
Priority to US08/856,675 priority patent/US5953013A/en
Application granted granted Critical
Publication of JP3411665B2 publication Critical patent/JP3411665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce distortion around an image although the more a distance between a viewpoint and a projected plane is reduced, the more the distortion around the projected image is enlarged when a projecting object is projected by a general-purpose center projecting method concerning the center projecting method for projecting the projecting object on the projected plane by emitting a beam from the view point in the shape of a cone. CONSTITUTION:After or when the projecting object is projected onto the projected plane composed of a plane, the distortion is corrected by projecting it again onto the projected plane by eyeball conversion. In this case, the eyeball conversion is the reprojection onto the projected plane through the projection onto a projected plane (projected spherical plane) defining a semispherical plane farther from the view point as this projected plane among the two semispherical planes provided by bisecting a spherical plane, which is provided with a center on a line of sight, orthogonally to the line of sight at that center position after or when the projecting object is projected onto the projected plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンピュータグラフイ
ックスに係り、特に中心投影方法の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to computer graphics, and more particularly to improvement of a central projection method.

【0002】[0002]

【従来の技術】中心投影方法は、図9(a)に示すよう
に、一点(視点)eから円錐状に光線を発して、投影対
象を投影面4上に投影する方法である。この方法が断層
像の投影に応用され、三次元画像の構成に利用されてい
る(例えば、特願平6−3492号)。
2. Description of the Related Art The central projection method is a method of projecting a projection target on a projection surface 4 by emitting a light beam in a conical shape from a point (viewpoint) e as shown in FIG. This method is applied to the projection of a tomographic image and is used to construct a three-dimensional image (for example, Japanese Patent Application No. 6-3492).

【0003】ところで従来、上記のような中心投影方法
(一般的中心投影方法)における投影面は、コンピュー
タグラフイックスに関する代表的な文献である「コンピ
ュータ・グラフイックス」(J.D.FOLEY &
A.VAN DAM著 今宮淳美訳 昭和59年7月1
5日 日本コンピュータ協会発行)の275〜316ペ
ージ等を見ても分かるように平面であった。
By the way, conventionally, the projection plane in the above-described central projection method (general central projection method) is "Computer Graphix" (JD FOLEY &
A. Written by VAN DAM Translated by Atsumi Imamiya July 1, 1984
It was flat as you can see on pages 275-316 of the 5th Japan Computer Association).

【0004】[0004]

【発明が解決しようとする課題】上記のように従来技術
では、中心投影方法における投影面は平面であった。こ
のため、次のような歪が発生した。図9(b)におい
て、投影対象40a,40bを投影面4に投影すると、
それぞれ投影像40A,40Bとなる。投影対象40a
と投影対象40bの長さ(図示左右方向の寸法)が同じ
であるとすると、投影対象40bは斜めから見ることに
なるので投影対象40aより短く見える筈である。
As described above, in the prior art, the projection surface in the central projection method is a plane. Therefore, the following distortion was generated. In FIG. 9B, when the projection targets 40a and 40b are projected on the projection surface 4,
It becomes projected images 40A and 40B, respectively. Projection target 40a
If the projection target 40b has the same length (the size in the left-right direction in the drawing), the projection target 40b will be viewed obliquely, and therefore should appear shorter than the projection target 40a.

【0005】しかし、図9(b)から分かるように、そ
のようにはならず(逆に長くなり)、またこのような投
影方向に依存する歪は、視点eと投影面4との距離が小
さくなるほど大きくなるという問題点があった。
However, as can be seen from FIG. 9 (b), this is not the case (longer conversely), and such distortion depending on the projection direction is caused by the distance between the viewpoint e and the projection surface 4. There was a problem that the smaller the size, the larger the size.

【0006】本発明の目的は、投影方向に依存する投影
像の歪をなくすことのできる中心投影方法を提供するこ
とにある。
An object of the present invention is to provide a central projection method capable of eliminating distortion of a projected image depending on the projection direction.

【0007】[0007]

【課題を解決するための手段】上記目的は、視点から円
錐状に光線を発して、投影対象を投影面上に投影する中
心投影方法において、前記投影対象を、平面からなる投
影面への投影後又は投影時に、眼球変換により前記平面
からなる投影面に再投影することにより達成される。
The above object is to provide a central projection method of projecting a projection object onto a projection surface by emitting light rays in a conical shape from a viewpoint, and projecting the projection object onto a projection surface composed of a plane. This is accomplished by reprojecting onto the projection plane consisting of the plane by eyeball conversion after or at the time of projection.

【0008】[0008]

【作用】図8(a)は眼球を示しており、光線7は水晶
体(レンズ)6を通って球面上の網膜5に像を結ぶ。こ
のように、自然界では網膜5を球面にして投影方向に依
存する歪をなくしている。
8A shows the eyeball, and the light ray 7 passes through the crystalline lens (lens) 6 to form an image on the spherical retina 5. In this way, in the natural world, the retina 5 is made spherical to eliminate the distortion depending on the projection direction.

【0009】本発明方法では、図8(b)に示すように
投影面は半球面となっている(投影球面3参照)。これ
により、投影方向に依存する投影像の歪が補正され、投
影方向の違いによって投影データ(長さないし大きさ)
が異なってしまうことのないようになされている。
In the method of the present invention, the projection surface is a hemispherical surface as shown in FIG. 8B (see projection spherical surface 3). As a result, the distortion of the projected image depending on the projection direction is corrected, and the projection data (length or size) depends on the difference in the projection direction.
It is designed so that it does not differ.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明による中心投影方法の一実施例を
示すフローチャートである。図1に示すように、本発明
による中心投影方法は、投影対象を、まず一般的な中心
投影方法によって平面からなる投影面(1次投影平面:
後述眼球変換による歪補正前の投影平面、すなわち従来
方法の投影平面)へ投影する(ステップ1)。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of the center projection method according to the present invention. As shown in FIG. 1, according to the center projection method of the present invention, a projection target is first formed by a general center projection method as a projection plane (primary projection plane:
Projection is performed on a projection plane before distortion correction by eyeball conversion described later, that is, a projection plane of a conventional method) (step 1).

【0011】そして、その投影後又は投影時に、後述眼
球変換により前記投影平面(2次投影平面:後述眼球変
換による歪補正後の投影平面)に再投影し、前記投影対
象の投影像を得るものである(ステップ2)。
After or at the time of projection, the projection image of the projection target is obtained by re-projecting onto the projection plane (secondary projection plane: projection plane after distortion correction by the below-mentioned eye transformation) by the below-mentioned eye transformation. (Step 2).

【0012】ここで眼球変換とは、投影対象の、投影平
面への投影後又は投影時に、視線上に中心をもつ球面を
その中心位置において視線に直交する方向に2分割して
得られる2つの半球面のうち、視点に遠い側の半球面を
投影面とする該投影面(投影球面)への投影を介して
の、前記投影平面への再投影をいう。
The term “eyeball conversion” as used herein means two values obtained by dividing a spherical surface having a center on the line of sight into two in the direction orthogonal to the line of sight after or at the time of projecting the projection target onto the projection plane. Of the hemispheres, it means reprojection onto the projection plane through projection onto the projection plane (projection sphere) whose projection surface is the hemisphere on the side far from the viewpoint.

【0013】すなわち本発明では、前記投影球面を投影
面として中心投影することとなるもので、この場合、投
影面である半球面に沿った各点(アドレス)がCRTの
表示画素(アドレス)に対応する。そして、前記投影球
面に投影したと同じ効果を平面(CRT画面)上で得る
ために眼球変換を行い、歪補正をするものである。
That is, according to the present invention, the projection sphere is centrally projected as the projection surface, and in this case, each point (address) along the hemisphere which is the projection surface becomes a display pixel (address) of the CRT. Correspond. Then, in order to obtain the same effect as that projected on the projection spherical surface on a plane (CRT screen), eyeball conversion is performed and distortion correction is performed.

【0014】以下、図2及び図3を参照して上記本発明
方法の眼球変換による歪補正の原理について説明する。
まず図2を参照して説明すると、図2は視点eがh=2
Rの場合について示したものである。図2において、3
は視線(Z軸)上に中心をもつ球面をその中心位置にお
いて視線に直交する方向に2分割して得られる2つの半
球面I,IIのうち、視点に遠い側の半球面(半球面
I)からなる投影面(以下、投影球面という)である。
また、4は平面からなる投影面(以下、投影平面とい
う)で、眼球変換による歪補正前の投影平面、すなわち
従来方法の投影平面としての1次投影平面でもあり、か
つ眼球変換による歪補正後の投影平面としての2次投影
平面でもある。この投影平面4は、CRTの表示面であ
る画面に相当する。
The principle of distortion correction by eyeball conversion of the method of the present invention will be described below with reference to FIGS. 2 and 3.
First, referring to FIG. 2, in FIG. 2, the viewpoint e is h = 2.
It shows the case of R. In FIG. 2, 3
Of two hemispheres I and II obtained by dividing a spherical surface having a center on the line of sight (Z axis) in the direction orthogonal to the line of sight at the center position, the hemisphere (hemisphere I ) Is a projection surface (hereinafter referred to as a projection spherical surface).
Further, 4 is a projection plane formed of a plane (hereinafter referred to as a projection plane), which is also a projection plane before distortion correction by eyeball conversion, that is, a primary projection plane as a projection plane of a conventional method, and after distortion correction by eyeball conversion. It is also a secondary projection plane as a projection plane of. The projection plane 4 corresponds to the screen that is the display surface of the CRT.

【0015】また、X,Y,Zは三次元座標系の各軸、
Oは三次元座標系の原点、eは視点、hは視点eと投影
平面4との距離、Rは投影球面3の半径、Pは投影平面
4上の点(X1,Y1)、ψは直線OPとX軸とのなす
角、Qは投影平面4上のP点に対応する投影球面3上の
点(直線Peと投影球面3の交点)、θは直線Z1 Qと
Z軸のなす角、Lは投影球面3上の円弧OQ、L´はL
と同じ長さをもった直線OP上の線分、ηはCRT表示
アドレス(X軸に平行にとる)、ξはCRT表示アドレ
ス(Y軸に平行にとる)、である。
X, Y, Z are each axis of the three-dimensional coordinate system,
O is the origin of the three-dimensional coordinate system, e is the viewpoint, h is the distance between the viewpoint e and the projection plane 4, R is the radius of the projection sphere 3, P is a point (X1, Y1) on the projection plane 4, and ψ is a straight line. An angle formed by OP and the X axis, Q is a point on the projection spherical surface 3 corresponding to a point P on the projection plane 4 (an intersection of the straight line Pe and the projection spherical surface 3), θ is an angle formed by the straight line Z1 Q and the Z axis, L is an arc OQ on the projection sphere 3, L'is L
Is a line segment on the straight line OP having the same length as, η is a CRT display address (taken in parallel with the X axis), and ξ is a CRT display address (taken in parallel with the Y axis).

【0016】これによれば、次の式が成り立つ。眼球に
対応した、h=2・Rのとき、 三角形e O Pについて、tan(θ/2)=sqrt(X
12+Y12)/2R 三角形X1 O Pについて、tan(ψ)=Y1/X1 が与えられる。
According to this, the following equation holds. When h = 2 · R corresponding to the eyeball, tan (θ / 2) = sqrt (X
For the 1 2 + Y1 2 ) / 2R triangle X1 OP, tan (ψ) = Y1 / X1 is given.

【0017】したがって、X1,Y1を指定すると、対応
するη1,ξ1 は、 ψ=arctan(Y1/X1) θ=2・arctan[sqrt(X12+Y12)/2R] L=R・θ を使って、 η1=L・cos(ψ) ξ1=L・sin(ψ) となる。
Therefore, when X1 and Y1 are specified, the corresponding η1 and ξ1 are obtained by using ψ = arctan (Y1 / X1) θ = 2 · arctan [sqrt (X1 2 + Y1 2 ) / 2R] L = R · θ Then, η1 = L · cos (ψ) ξ1 = L · sin (ψ).

【0018】このη1,ξ1が表示メモリ上の画素アドレ
スとなる。すなわち、投影平面4の(X1,Y1)の点
は、CRT画面上では点(η1,ξ1)に表示することに
なるもので、これにより眼球変換による歪補正が行われ
たことになる。
These η1 and ξ1 are pixel addresses on the display memory. That is, the point (X1, Y1) on the projection plane 4 is displayed at the point (η1, ξ1) on the CRT screen, which means that the distortion correction by the eyeball conversion is performed.

【0019】更に、この眼球変換により画像サイズは縮
小する(点Pから点(η1,ξ1)に縮む)。したがっ
て、歪補正後の投影平面4への投影像の画像サイズは、
眼球変換により補正して投影した像の画像サイズよりも
大きく投影可能となる。
Further, the image size is reduced by this eyeball conversion (point P is reduced to point (η1, ξ1)). Therefore, the image size of the projection image on the projection plane 4 after distortion correction is
It becomes possible to project larger than the image size of the image projected after being corrected by the eyeball conversion.

【0020】次に、視点eがh=2R以外の場合につい
て図3により説明する。この図3(a),(b)におい
て、図2と同一符号は同一又は相当部分を示す。また、
Uは直線eQの長さ、γは線分ePとZ軸とのなす角、
wはQからZ軸に垂直に下ろした直線の長さ、である。
Next, the case where the viewpoint e is other than h = 2R will be described with reference to FIG. In FIGS. 3A and 3B, the same reference numerals as those in FIG. 2 indicate the same or corresponding portions. Also,
U is the length of the straight line eQ, γ is the angle between the line segment eP and the Z axis,
w is the length of a straight line drawn from Q perpendicular to the Z axis.

【0021】これによれば、次の式が成り立つ。 U=sqrt[(h−R)2+R2−2・(h−R)・R・c
os(π−θ)] とすると、 U・sinγ=R・sinθ となる。
According to this, the following equation holds. U = sqrt [(h−R) 2 + R 2 −2 · (h−R) · R · c
os (π−θ)], U · sinγ = R · sin θ.

【0022】またγは、 tanγ=sqrt(X12+Y12)/h で与えられる。これより、X1,Y1を指定するとθが求
まる。
Γ is given by tan γ = sqrt (X1 2 + Y1 2 ) / h. From this, when X1 and Y1 are specified, θ can be obtained.

【0023】ψはtanψ=Y1/X1から求めると、L
=R・θであるので、 η1=L・cosψ ξ1=L・sinψ となる。
Ψ is L when calculated from tan ψ = Y1 / X1
= R · θ, η1 = L · cosψ ξ1 = L · sinψ.

【0024】このη1,ξ1が表示メモリ上の画素アドレ
スとなる。すなわち、投影平面4の(X1,Y1)の点
は、CRT画面上では点(η1,ξ1)に表示することに
なるもので、これにより眼球変換による歪補正が行われ
たことになる。
These η1 and ξ1 are pixel addresses on the display memory. That is, the point (X1, Y1) on the projection plane 4 is displayed at the point (η1, ξ1) on the CRT screen, which means that the distortion correction by the eyeball conversion is performed.

【0025】投影対象はマウス等の入力装置により入力
したデータでもよく、また断層像(三次元計測によるボ
リューム画像を分解して得られた断層像も含む)等のよ
うな演算装置により演算した結果のデータでもよい。
The projection target may be data input by an input device such as a mouse, or the result of calculation by a calculation device such as a tomographic image (including a tomographic image obtained by decomposing a volume image by three-dimensional measurement). Data may be used.

【0026】図4〜6は、複数の断層像から、一般的な
中心投影方法により三次元画像を構成する方法(特願平
6−3492号)につき表すが、このような場合におい
ても、中心投影をする以上、歪をなくすためは眼球変換
は必要になるもので、以下、三次元画像の構成方法に本
発明方法を適用した場合の一例を説明する。なお、図
5,図6いずれの場合においても、最初に平面からなる
X,Y投影面(投影平面)4上に断層像を投影し、次に
眼球変換によりη,ξ面に変換することになる。
4 to 6 show a method of constructing a three-dimensional image from a plurality of tomographic images by a general center projection method (Japanese Patent Application No. 6-3492), even in such a case, As long as projection is performed, eyeball conversion is necessary to eliminate distortion, and an example of applying the method of the present invention to a method of constructing a three-dimensional image will be described below. In both cases of FIG. 5 and FIG. 6, it is necessary to first project a tomographic image on an X, Y projection plane (projection plane) 4 consisting of a plane, and then convert it to an η, ξ plane by eyeball conversion. Become.

【0027】まず、上記三次元画像の構成方法におい
て、中心投影による座標変換について述べる。中心投影
による投影面への各断層像の投影に当たっての、各断層
像の画素座標の投影面上の座標への変換は次のように行
われる。
First, in the method of constructing the three-dimensional image, coordinate conversion by central projection will be described. When projecting each tomographic image on the projection surface by the central projection, conversion of pixel coordinates of each tomographic image into coordinates on the projection surface is performed as follows.

【0028】図4に示す例では、説明を簡単化するため
投影面と断層像面、更にはx−y面が各々平行であるよ
うに座標系をとっている。この図4において、x,y,
zは三次元座標系(x,y,z)の各軸、e点(x1,
y1,d1)は視点eの位置、P点(X,Y)は投影面
(表示画面に相当する)21上の点、S点(x0,y0,
d0)はe点(x1,y1,d1)とP点(X,Y)を通る
直線22と断層像23Aの交わる点、である。
In the example shown in FIG. 4, the coordinate system is set so that the projection plane, the tomographic image plane, and the xy plane are parallel to each other for simplification of description. In FIG. 4, x, y,
z is each axis of the three-dimensional coordinate system (x, y, z), and point e (x1,
y1, d1) is the position of the viewpoint e, point P (X, Y) is a point on the projection surface (corresponding to the display screen) 21, and point S (x0, y0,
d0) is a point where the straight line 22 passing through the point e (x1, y1, d1) and the point P (X, Y) intersects with the tomographic image 23A.

【0029】また、Dは投影面21の投影面21の位置
(z軸上)で、任意に設定可能である。
Further, D is the position of the projection surface 21 of the projection surface 21 (on the z-axis) and can be arbitrarily set.

【0030】d0は断層像23Aの位置(z軸上)で、
計測時に決まる。
D0 is the position of the tomographic image 23A (on the z-axis),
Determined at the time of measurement.

【0031】d1は視点eのz座標、である。D1 is the z coordinate of the viewpoint e.

【0032】これによれば、次の式が成り立つ。According to this, the following equation holds.

【0033】 X={(D−d1)/(d0−d1)}×(x0−x1)+x1 …(1) Y={(D−d1)/(d0−d1)}×(y0−y1)+y1 …(2) x0={(d0−D)/(d1−D)}×(x1−x)+X …(3) y0={(d0−D)/(d1−D)}×(y1−y)+Y …(4) 投影された画像を投影面21に相当する表示画面(図示
せず)上に、縦512画素×横512画素で表示すると
き、X,Yは−256から+256までの値を取る。そ
れぞれのX,Yに対してd0の断層像23A上では上掲
(3),(4)式によりx0,y0が決まり、どの点が投
影すべきかが決まる。断層像23は複数あって、d0も
複数個あるので、1組のX,Yに対して複数の投影すべ
き点x0,y0が決まる。
X = {(D-d1) / (d0-d1)} × (x0-x1) + x1 (1) Y = {(D-d1) / (d0-d1)} × (y0-y1) + Y1 (2) x0 = {(d0-D) / (d1-D)} * (x1-x) + X ... (3) y0 = {(d0-D) / (d1-D)} * (y1-- y) + Y (4) When a projected image is displayed on a display screen (not shown) corresponding to the projection surface 21 with 512 pixels in the vertical direction and 512 pixels in the horizontal direction, X and Y are from -256 to +256. Take a value. On the tomographic image 23A of d0 for each X and Y, x0 and y0 are determined by the above equations (3) and (4), and which point should be projected. Since there are a plurality of tomographic images 23 and a plurality of d0, a plurality of points x0 and y0 to be projected are determined for one set of X and Y.

【0034】同様の座標系において、断層像23Aの他
にも断層像23B〜23Eを用意し、y軸方向から見た
図を図5(a)に示す。この図5(a)において、断層
像23A〜23Eは同一対象物について同一方向に等間
隔で得られた断層像(図示例では等間隔であるが、必ず
しも等間隔である必要はない)であり、断層像23Bに
は、臓器領域B1,B2,B3が強調して書いてある。臓
器領域B1,B2,B3を投影面21に投影するとB1´,
B2´,B3´となる。同様に、断層像23Cの臓器領域
C1,C2を投影面21に投影するとC1´,C2´とな
る。
In the same coordinate system, tomographic images 23B to 23E are prepared in addition to the tomographic image 23A, and a view seen from the y-axis direction is shown in FIG. 5 (a). In FIG. 5A, the tomographic images 23A to 23E are tomographic images obtained at equal intervals in the same direction on the same object (equal intervals in the illustrated example, but not necessarily equal intervals). In the tomographic image 23B, the organ regions B1, B2, B3 are emphasized and written. When the organ areas B1, B2, B3 are projected on the projection surface 21, B1 ',
B2 'and B3'. Similarly, when the organ regions C1 and C2 of the tomographic image 23C are projected on the projection surface 21, they become C1 'and C2'.

【0035】ここで、投影データ(ここでは、B1´,
B2´,B3´;C1´,C2´)を表示メモリ(図示せ
ず)に書く時は、三次元的効果を出すために、視点eか
ら見てより遠くに存在する投影データを先に書き込み、
それより近くの投影データは後から上書きする。したが
ってここでは、投影データC1,C2より投影データB
1,B2,B3の方が視点eより遠くに存在するので、投
影データB1´,B2´,B3´を先に書いて、投影デー
タC1´,C2´は後から上書きすることになる。なお図
7(a)では、投影データB1´,B2´,B3´;C1
´,C2´は各々投影面21から離して示しているが、
これは表示メモリに書き込む投影データB1´,B2´,
B3´;C1´,C2´の順番を判り易くしたために過ぎ
ず、最初に書かれる投影データB1´,B2´,B3´
も、それに上書きされる投影データC1´,C2´も実際
には投影面21上に書かれる。
Here, the projection data (here, B1 ',
When writing B2 ', B3'; C1 ', C2') in the display memory (not shown), projection data existing farther from the viewpoint e is written first in order to produce a three-dimensional effect. ,
The projection data closer to it will be overwritten later. Therefore, here, the projection data B is calculated from the projection data C1 and C2.
Since 1, B2 and B3 exist farther than the viewpoint e, the projection data B1 ', B2' and B3 'are written first and the projection data C1' and C2 'are overwritten later. In FIG. 7A, projection data B1 ', B2', B3 '; C1
′ And C2 ′ are shown separately from the projection plane 21,
This is the projection data B1 ', B2', which is written in the display memory.
The projection data B1 ', B2', B3 'written first is only for making the order of B3'; C1 ', C2' easier to understand.
Also, the projection data C1 'and C2' that are overwritten are actually written on the projection surface 21.

【0036】図5(b)は、図5(a)よりも一般化し
て示したもので、投影面と断層像面が平行でない場合の
例である。この場合は、断層像23A,23B,23C
…から補間演算で投影面21と平行な面に向けられた断
層像23a,23b,23c…を作っておく必要があ
る。その他は、図5(a)の場合と同様である。なお、
b1´;c1´,c2´;d1´は、補間演算された断層像
23b,23c,23d上の臓器領域b1;c1,c2;
d1の投影データである。
FIG. 5B is a more generalized view than FIG. 5A and shows an example in which the projection plane and the tomographic image plane are not parallel. In this case, the tomographic images 23A, 23B, 23C
It is necessary to create the tomographic images 23a, 23b, 23c, ... Others are the same as in the case of FIG. In addition,
b1 ';c1', c2 ';d1' are organ regions b1; c1, c2; on the interpolated tomographic images 23b, 23c, 23d.
This is the projection data of d1.

【0037】図6は、視点、断層像及び投影面がより複
雑な位置関係をもった場合の中心投影による座標変換を
説明するための図で、断層像23上のS点(x0,z0,
y0)の投影結果が投影平面上のP点(x,y,z)に
なることを示す。
FIG. 6 is a diagram for explaining the coordinate conversion by the central projection when the viewpoint, tomographic image and projection plane have a more complicated positional relationship, and is S point (x0, z0, on the tomographic image 23.
It shows that the projection result of (y0) becomes P point (x, y, z) on the projection plane.

【0038】この図6において、中心投影による投影平
面4への断層像23の投影に当たっての、断層像23の
画素座標の投影平面4上の座標への変換は次のように行
われる。ここで、aはx軸と投影平面4の交わる点、b
はy軸と投影平面4の交わる点、cはz軸と投影平面4
の交わる点、である。
In the projection of the tomographic image 23 on the projection plane 4 by the central projection in FIG. 6, the pixel coordinates of the tomographic image 23 are converted into the coordinates on the projection plane 4 as follows. Where a is the intersection of the x-axis and the projection plane 4, b
Is the intersection of the y axis and the projection plane 4, and c is the z axis and the projection plane 4.
Is the point of intersection.

【0039】また、αは原点から投影平面4に下ろした
垂線をz−x面に投影した線がx軸となす角βは前記垂
線がx−z面となす角e点(x1,y1,z1)は視点e
の位置、P点(x,y,z)は投影面(表示画面に相当
する)4上の点、S点(x0,z0,y0)はe点(x1,
y1,z1)とP点(x,y,z) を通る直線22と断
層像23の交わる点、とすると、次の式が成り立つ。
Further, α is an angle formed by a line obtained by projecting a perpendicular line drawn from the origin onto the projection plane 4 on the zx plane with the x axis. Β is an angle e point (x1, y1, y1) formed by the perpendicular line with the xz plane. z1) is the viewpoint e
, Point P (x, y, z) is a point on the projection plane (corresponding to the display screen) 4, point S (x0, z0, y0) is point e (x1,
y1, z1) and the point where the straight line 22 passing through the point P (x, y, z) and the tomographic image 23 intersect, the following formula is established.

【0040】まず、投影平面4は (x/a)+(y/b)+(z/c)=1 …(5) で表わされる。また、e点(x1,y1,z1)とP点
(x,y,z) を通る直線22は (x0−x)/(x1−x)=(y0−y)/(y1−y)=(z0−z)/(z1 −z) …(6) で与えられる。
First, the projection plane 4 is expressed by (x / a) + (y / b) + (z / c) = 1 (5). A straight line 22 passing through the point e (x1, y1, z1) and the point P (x, y, z) is (x0-x) / (x1-x) = (y0-y) / (y1-y) = (Z0-z) / (z1-z) (6)

【0041】投影平面4がC1点(xc1,yc1,zc
1)を通るとき、 k1=sinα k2=cosα/sinβ k3=cosα・cosβ/sinβ ai=1/a bi=1/b ci=1/c として、 z=[X・k1−Y・k2−yc1・k3−{(ci・k3・zc1)/bi}+{ (ai・k3・X)/(bi・cosα)}−{(ai・k3・xc1)/bi} ]/[1−{(ci・k3)/bi}+{(ai・k3・sinα)/(bi・c osα)}] …(7) x=(X−z・sinα)/cosα …(8) y=[yc1+{−ci・(z−zc1)−ai・(x−xc1)}]/bi …(9) ここで、上記C1点(xc1,yc1,zc1)には、例え
ば、視点e(x1,y1,z1)から投影平面4に下ろし
た垂線と投影平面4の交わる点(この点と視点e間の距
離はh)として、 zc1=z1+−[h/sqrt{1+(c2/a2)+(c2/b2)}] (「z1+−」の「−」はz0<zc1のとき) …(10) xc1=x1+{c・(z1−zc1)/a} …(11) yc1=y1+{c・(z1−zc1)/b} …(12) を使ってもよい。
The projection plane 4 is at point C1 (xc1, yc1, zc
When passing through 1), k1 = sinα k2 = cosα / sinβ k3 = cosα · cosβ / sinβ ai = 1 / a bi = 1 / b ci = 1 / c, and z = [X · k1−Y · k2-yc1 * K3-{(ci * k3 * zc1) / bi} + {(ai * k3 * X) / (bi * cos [alpha])}-{(ai * k3 * xc1) / bi}] / [1-{(ci · K3) / bi} + {(ai · k3 · sinα) / (bi · cosα)}] (7) x = (X−z · sinα) / cosα (8) y = [yc1 + {-ci -(Z-zc1) -ai * (x-xc1)}] / bi (9) Here, the point C1 (xc1, yc1, zc1) is, for example, from the viewpoint e (x1, y1, z1). As a point where the perpendicular line drawn to the projection plane 4 and the projection plane 4 intersect (the distance between this point and the viewpoint e is h), zc1 = z1 +-[h / sqrt {1+ (c 2 / a 2 ) + (c 2 / b 2)}] ( "z1 + -" in "-" when the z0 <zc1) ... (10) xc1 = x1 + {c · (z1-zc1) / A} (11) yc1 = y1 + {c · (z1−zc1) / b} (12) may be used.

【0042】投影された画像を投影平面4に相当する表
示画面(図示せず)上に、縦512画素×横512画素
で表示するとき、X,Yは−256から+256までの
値を取る。それぞれのX,Yに対して上掲(7),
(8),(9)式によりx,yが決まる。e点のx1,
y1,z1は任意に与えるので、下掲(13),(14)
式により、y0=d0の断層像上で画素S点の座標x0,
z0が決まる。
When a projected image is displayed on a display screen (not shown) corresponding to the projection plane 4 with 512 pixels in the vertical direction and 512 pixels in the horizontal direction, X and Y take values from -256 to +256. Listed above for each X and Y (7),
X and y are determined by the equations (8) and (9). x1 at point e,
Since y1 and z1 are given arbitrarily, the following (13), (14)
From the equation, the coordinate x0 of the pixel S point on the tomographic image of y0 = d0,
z0 is determined.

【0043】 x0={(d0−y)/(y1−y)}×(x1−x)+x …(13) z0={(d0−y)/(y1−y)}×(z1−z)+z …(14) 断層像は複数あって、d0も複数個あるので、1組の
X,Yに対して複数の投影すべき点x0,y0が決まる。
X0 = {(d0-y) / (y1-y)} × (x1-x) + x (13) z0 = {(d0-y) / (y1-y)} × (z1-z) + Z (14) Since there are a plurality of tomographic images and a plurality of d0, a plurality of points x0 and y0 to be projected are determined for one set of X and Y.

【0044】なお、図6中のRは視点eからS点までの
距離を示すもので、このRはP点の画素値(輝度)を求
める際のパラメータとなる。P点の画素値は、設定され
た画素値(輝度)の最大値Rmaxから上記Rを引算し
た値に比例する。このP点は表示メモリ上では(η,
ξ)点に対応するので(η,ξ)点に前記画素値を格納
する。
Note that R in FIG. 6 indicates the distance from the viewpoint e to the point S, and this R is a parameter for obtaining the pixel value (luminance) at the point P. The pixel value at the point P is proportional to the value obtained by subtracting the above R from the maximum value Rmax of the set pixel value (luminance). This point P is (η,
Since it corresponds to the point (ξ), the pixel value is stored at the point (η, ξ).

【0045】以上のような座標変換を、表示画面に相当
する投影平面4上の全ての点について行う。また、全て
の断層像23について行う。更に、構成された結果像で
ある三次元画像に対して行っても、あるいは構成前の1
枚、1枚の断層像に対して行ってもよい。
The above coordinate conversion is performed for all points on the projection plane 4 corresponding to the display screen. In addition, all tomographic images 23 are performed. Furthermore, even if the three-dimensional image that is the resultant image is constructed,
It may be performed for each tomographic image.

【0046】図7は本発明方法が適用可能なハードウェ
ア構成例を示すブロック図である。この図7において、
50はCPU、51は主メモリ、52は磁気ディスク、
53は表示メモリ、55はマウスコントローラで、これ
らは共通バス57に接続されている。磁気ディスク52
には、複数の断層像及び本発明方法の実行演算のための
プログラムなどが格納されている。
FIG. 7 is a block diagram showing a hardware configuration example to which the method of the present invention can be applied. In this FIG.
50 is a CPU, 51 is a main memory, 52 is a magnetic disk,
53 is a display memory and 55 is a mouse controller, which are connected to a common bus 57. Magnetic disk 52
Stores a plurality of tomographic images and a program for performing calculation of the method of the present invention.

【0047】CPU50は、これら複数の断層像及び本
発明方法の実行演算のためのプログラムを読み出し、主
メモリ51を用いて眼球変換等の演算を行い、その結果
を表示メモリ53に送り、CRTモニタ54に表示させ
る。マウスコントローラ55に接続されたマウス56
は、眼球変換等の演算の際の、視点位置等を指定する。
眼球変換され歪補正された画像は、必要に応じて磁気デ
ィスク52に格納される。
The CPU 50 reads out these plural tomographic images and the program for execution calculation of the method of the present invention, performs calculation such as eyeball conversion using the main memory 51, sends the result to the display memory 53, and displays it on the CRT monitor. 54 is displayed. Mouse 56 connected to mouse controller 55
Specifies the viewpoint position and the like when performing calculations such as eyeball conversion.
The image that has undergone eyeball conversion and distortion correction is stored in the magnetic disk 52 as necessary.

【0048】[0048]

【発明の効果】以上説明したように本発明によれば、投
影方向に依存する投影像の歪が補正され、投影方向の違
いによって投影データ(長さないし大きさ)が異なって
しまうことが防止できるという効果がある。
As described above, according to the present invention, the distortion of the projected image depending on the projection direction is corrected and the projection data (length or size) is prevented from being different due to the difference in the projection direction. The effect is that you can do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の概略を示すフローチャートであ
る。
FIG. 1 is a flow chart showing an outline of the method of the present invention.

【図2】眼球変換による歪補正の原理説明図である。FIG. 2 is a diagram illustrating the principle of distortion correction by eye conversion.

【図3】同じく眼球変換による歪補正の原理説明図であ
る。
FIG. 3 is a diagram illustrating the principle of distortion correction by eyeball conversion.

【図4】三次元画像の構成方法における断層像画素座標
の投影面上の座標への変換を説明するための図である。
FIG. 4 is a diagram for explaining conversion of tomographic image pixel coordinates into coordinates on a projection plane in a method of constructing a three-dimensional image.

【図5】同じく複数の断層像についての画素座標の投影
面上の座標への変換を説明するための図である。
FIG. 5 is a diagram for explaining conversion of pixel coordinates of a plurality of tomographic images into coordinates on the projection surface.

【図6】視点、断層像及び投影面がより複雑な位置関係
をもった場合の中心投影による座標変換を説明するため
の図である。
FIG. 6 is a diagram for explaining coordinate conversion by central projection when a viewpoint, a tomographic image, and a projection plane have a more complicated positional relationship.

【図7】本発明方法が適用可能なハードウェア構成例を
示すブロック図である。
FIG. 7 is a block diagram showing a hardware configuration example to which the method of the present invention can be applied.

【図8】眼球投影の説明図である。FIG. 8 is an explanatory diagram of eyeball projection.

【図9】中心投影方法と歪の説明図である。FIG. 9 is an explanatory diagram of a center projection method and distortion.

【符号の説明】[Explanation of symbols]

3 投影球面 4 投影平面 X,Y,Z 三次元座標系の各軸 O 三次元座標系の原点 e 視点 h 視点eと投影平面4との距離 R 投影球面3の半径 P 投影平面4上の点(X1,Y1) ψ 直線OPとX軸とのなす角 Q 投影平面4上のP点に対応する投影球面3上の
点(直線Peと投影球面3の交点) θ 直線Z1 QとZ軸のなす角 L 投影球面3上の円弧OQ L´ Lと同じ長さをもった直線OP上の線分 η CRT表示アドレス(X軸に平行にとる) ξ CRT表示アドレス(Y軸に平行にとる) U 直線eQの長さ γ 線分ePとZ軸とのなす角 w QからZ軸に垂直に下ろした直線の長さ
3 Projection sphere 4 Projection plane X, Y, Z Each axis of 3D coordinate system O Origin of 3D coordinate system e View point h Distance between viewpoint e and projection plane 4 R Radius of projection sphere 3 P Point on projection plane 4 (X1, Y1) ψ Angle between straight line OP and X axis Q Point on projection spherical surface 3 corresponding to point P on projection plane 4 (intersection point of straight line Pe and projection spherical surface 3) θ Straight line Z1 Q and Z axis Formed angle L A line segment on a straight line OP having the same length as the arc OQ L'L on the projection spherical surface 3 η CRT display address (taken in parallel with X axis) ξ CRT display address (taken in parallel with Y axis) U Length of straight line eQ γ Angle between straight line segment eP and Z axis Length of straight line lowered perpendicular to Z axis from w Q

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 視点から円錐状に光線を発して、投影対
象を投影面上に投影する中心投影方法において、前記投
影対象を、平面からなる投影面への投影後又は投影時
に、眼球変換により前記平面からなる投影面に再投影す
ることを特徴とする中心投影方法。
1. A central projection method for projecting a projection target onto a projection surface by emitting light rays in a conical shape from a viewpoint, wherein the projection target is subjected to eyeball conversion after or after projection onto a projection surface consisting of a plane. A central projection method comprising re-projecting onto a projection plane composed of the plane.
【請求項2】 前記眼球変換は、平面からなる投影面へ
の投影後又は投影時に、視線上に中心をもつ球面をその
中心位置において視線に直交する方向に2分割して得ら
れる2つの半球面のうち、視点に遠い側の半球面を投影
面とする該投影面(投影球面)への投影を介しての、前
記平面からなる投影面への再投影であることを特徴とす
る請求項1に記載中心投影方法。
2. The hemisphere conversion is two hemispheres obtained by dividing a spherical surface having a center on the line of sight into two in a direction perpendicular to the line of sight after or at the time of projection onto a plane projection surface. A re-projection to a projection surface composed of the plane through projection onto the projection surface (projection spherical surface) having a hemispherical surface far from the viewpoint as a projection surface. 1. The center projection method described in 1.
【請求項3】 前記球面の直径は、視点から投影平面ま
での距離に等しいことを特徴とする請求項1又は2に記
載の中心投影方法。
3. The central projection method according to claim 1, wherein the diameter of the spherical surface is equal to the distance from the viewpoint to the projection plane.
【請求項4】 前記投影平面への投影像の画像サイズ
は、眼球変換により補正して投影した像の画像サイズよ
りも大きいことを特徴とする請求項1、2又は3に記載
の中心投影方法。
4. The center projection method according to claim 1, 2 or 3, wherein an image size of a projected image on the projection plane is larger than an image size of an image projected after being corrected by eyeball conversion. .
【請求項5】 投影対象は、入力装置により入力したデ
ータであることを特徴とする請求項1〜4のいずれかに
記載の中心投影方法。
5. The central projection method according to claim 1, wherein the projection target is data input by an input device.
【請求項6】 投影対象は、演算装置により演算した結
果のデータであることを特徴とする請求項1〜4のいず
れかに記載の中心投影方法。
6. The center projection method according to claim 1, wherein the projection target is data obtained as a result of calculation by a calculation device.
【請求項7】 演算装置により演算した結果のデータ
は、三次元計測によるボリューム画像を分解して得られ
た断層像を含む断層像であることを特徴とする請求項6
に記載の中心投影方法。
7. The data obtained as a result of calculation by the calculation device is a tomographic image including a tomographic image obtained by decomposing a volume image obtained by three-dimensional measurement.
The central projection method described in.
【請求項8】 演算装置により演算した結果のデータ
は、一般的中心投影方法を用いて構成した三次元画像で
あることを特徴とする請求項6に記載の中心投影方法。
8. The center projection method according to claim 6, wherein the data obtained as a result of calculation by the calculation device is a three-dimensional image formed by using a general center projection method.
JP08977094A 1994-01-18 1994-04-27 3D image construction device Expired - Lifetime JP3411665B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP08977094A JP3411665B2 (en) 1994-04-27 1994-04-27 3D image construction device
US08/374,088 US5694530A (en) 1994-01-18 1995-01-18 Method of constructing three-dimensional image according to central projection method and apparatus for same
US08/708,959 US5900878A (en) 1994-01-18 1996-09-06 Method of constructing pseudo-three-dimensional image for obtaining central projection image through determining view point position by using parallel projection image and apparatus for displaying projection image
US08/856,675 US5953013A (en) 1994-01-18 1997-04-29 Method of constructing three-dimensional image according to central projection method and apparatus for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08977094A JP3411665B2 (en) 1994-04-27 1994-04-27 3D image construction device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002340774A Division JP3706098B2 (en) 2002-11-25 2002-11-25 3D image construction method

Publications (2)

Publication Number Publication Date
JPH07296184A true JPH07296184A (en) 1995-11-10
JP3411665B2 JP3411665B2 (en) 2003-06-03

Family

ID=13979929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08977094A Expired - Lifetime JP3411665B2 (en) 1994-01-18 1994-04-27 3D image construction device

Country Status (1)

Country Link
JP (1) JP3411665B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050059A1 (en) * 1996-06-25 1997-12-31 Hitachi Medical Corporation Central projection method
US5883933A (en) * 1996-03-29 1999-03-16 Hitachi Medical Corporation Method and apparatus for displaying three-dimensional image
US6990231B2 (en) 1996-10-08 2006-01-24 Hitachi Medical Corporation Method and apparatus for forming and displaying projection image from a plurality of sectional images
JP2013000431A (en) * 2011-06-20 2013-01-07 Hitachi Medical Corp Medical image processor and medical image processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883933A (en) * 1996-03-29 1999-03-16 Hitachi Medical Corporation Method and apparatus for displaying three-dimensional image
WO1997050059A1 (en) * 1996-06-25 1997-12-31 Hitachi Medical Corporation Central projection method
US6990231B2 (en) 1996-10-08 2006-01-24 Hitachi Medical Corporation Method and apparatus for forming and displaying projection image from a plurality of sectional images
JP2013000431A (en) * 2011-06-20 2013-01-07 Hitachi Medical Corp Medical image processor and medical image processing method

Also Published As

Publication number Publication date
JP3411665B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US5949430A (en) Peripheral lenses for simulating peripheral vision on a display device
JP7009495B2 (en) Mixed reality system with multi-source virtual content synthesis and how to use it to generate virtual content
JP3619063B2 (en) Stereoscopic image processing apparatus, method thereof, stereoscopic parameter setting apparatus, method thereof and computer program storage medium
JP6153366B2 (en) Image generation system and program
US20030011535A1 (en) Image display device, image displaying method, information storage medium, and image display program
JPH1011614A (en) Method and device for setting viewpoint position and line-of-sight direction in three-dimensional picture constitution method
JP3770280B2 (en) 3D image display method and apparatus
JP4282587B2 (en) Texture mapping device
JPH09330423A (en) Three-dimensional shape data transforming device
US10699372B2 (en) Image generation apparatus and image display control apparatus
JP3411665B2 (en) 3D image construction device
JP2579421B2 (en) Surface drawing method with surface marking
WO2018201663A1 (en) Solid figure display method, device and equipment
JP3685818B2 (en) 3D image construction method and apparatus
JP3706098B2 (en) 3D image construction method
JP2001202527A (en) Method for displaying three-dimensional graphic and three-dimensionally plotting device
CN112363682B (en) Spliced display screen image display processing method, device and system and computer readable storage medium
JPH08106523A (en) Center projection method
JPH09265526A (en) Center projecting method using eyeball conversion
JP4726336B2 (en) Image display device, image display method, information storage medium, and image display program
JP3712145B2 (en) Three-dimensional image construction method and apparatus
JP4726347B2 (en) Image display device, image display method, information storage medium, and image display program
JP3648404B2 (en) Image generating apparatus and recording medium
JP2000348210A (en) Method and device for synthesizing images and program providing medium
JPH0529455Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

EXPY Cancellation because of completion of term