JPH09265526A - Center projecting method using eyeball conversion - Google Patents

Center projecting method using eyeball conversion

Info

Publication number
JPH09265526A
JPH09265526A JP8074364A JP7436496A JPH09265526A JP H09265526 A JPH09265526 A JP H09265526A JP 8074364 A JP8074364 A JP 8074364A JP 7436496 A JP7436496 A JP 7436496A JP H09265526 A JPH09265526 A JP H09265526A
Authority
JP
Japan
Prior art keywords
projection
eyeball
image
conversion
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8074364A
Other languages
Japanese (ja)
Other versions
JP3755925B2 (en
Inventor
Yoshihiro Goto
良洋 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP07436496A priority Critical patent/JP3755925B2/en
Publication of JPH09265526A publication Critical patent/JPH09265526A/en
Application granted granted Critical
Publication of JP3755925B2 publication Critical patent/JP3755925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a projection image which is not reduced by eyeball conversion or enlarged to desired size without deterioration in picture quality by preliminarily finding the reduction rate of a projection object after the eyeball conversion as to a desired position pixel, giving the resulting enlargement rate as a constant in a calculation expression during eyeball conversion, and performing the eyeball conversion for all pixels. SOLUTION: An enlarged eyeball-converted reprojection image 100C is obtained from an eyeball-unconverted projection image 100A as an original projection image directly, without using a reduced projection image 100B. In this case, the reduction rate of the eyeball unconverted projection image 100A after the eyeball conversion is found as preliminary processing as to the pixel at a desired position of the projection image 100AZ. Then the enlargement rate calculated on the basis of this reduction rate is given as a constant in the calculation expression during eyeball conversion and this expression is used to perform the eyeball conversion including enlargement processing for all the pixels of the eyeball unconverted projection image 100A, thereby reprojecting the image on a projection surface formed of a plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータグラ
フイックスに係り、特に中心投影方法に伴う画像歪みの
補正に有効な眼球変換を用いた中心投影方法の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a computer graphics, and more particularly to improvement of a central projection method using eyeball transformation which is effective for correction of image distortion caused by the central projection method.

【0002】[0002]

【従来の技術】中心投影方法は、図5(a)に示すよう
に、一点(視点)eから円錐状に光線を発して投影対象
40a,40bを投影面4上に投影し、投影像40A,
40Bを得る方法である。この方法が断層像の投影に応
用され、三次元画像の構成に利用されている(例えば、
特願平6−3492号)。
2. Description of the Related Art As shown in FIG. 5A, a center projection method projects a projection image 40A by projecting projection objects 40a and 40b onto a projection surface 4 by emitting light rays in a conical shape from a point (viewpoint) e. ,
It is a method of obtaining 40B. This method is applied to the projection of tomographic images and is used to construct three-dimensional images (for example,
Japanese Patent Application No. 6-3492).

【0003】ところで従来、上記のような中心投影方法
(一般的中心投影方法)における投影面は、コンピュー
タグラフイックスに関する代表的な文献である「コンピ
ュータ・グラフイックス」(J.D.FOLEY &
A.VAN DAM著 今宮淳美訳 昭和59年7月1
5日 日本コンピュータ協会発行)の275〜316ペ
ージ等を見ても分かるように平面であった。
By the way, conventionally, the projection plane in the above-described central projection method (general central projection method) is "Computer Graphix" (JD FOLEY &
A. Written by VAN DAM Translated by Atsumi Imamiya July 1, 1984
It was flat as you can see on pages 275-316 of the 5th Japan Computer Association).

【0004】このため、次のような歪が発生した。図5
(b)において、投影対象40a,40bを投影面4に
投影すると、それぞれ投影像40A,40Bとなる。投
影対象40aと投影対象40bの長さ(図示左右方向の
寸法)が同じであるとすると、投影対象40bは斜めか
ら見ることになるので投影対象40aより短く見える筈
である。しかし、図5(b)から分かるように、そのよ
うにはならず(逆に長くなり)、またこのような投影方
向に依存する歪は、視点eと投影面4との距離が小さく
なるほど大きくなるという問題点があった。
For this reason, the following distortion was generated. FIG.
In (b), when the projection targets 40a and 40b are projected on the projection surface 4, they become projection images 40A and 40B, respectively. Assuming that the projection target 40a and the projection target 40b have the same length (dimension in the left-right direction in the drawing), the projection target 40b will be viewed obliquely, and therefore should appear shorter than the projection target 40a. However, as can be seen from FIG. 5 (b), this is not the case (longer conversely), and such distortion depending on the projection direction increases as the distance between the viewpoint e and the projection surface 4 decreases. There was a problem that

【0005】そこで本発明者は、特願平6−89770
号に示すように、投影方向に依存する投影像の歪をなく
すことのできる投影方法を発明するに至った。この投影
方法は、視点から円錐状に光線を発して、投影対象を投
影面上に投影する中心投影方法において、前記投影対象
を、平面からなる投影面への投影後又は投影時に、眼球
変換により前記平面からなる投影面に再投影することに
より、投影方向に依存する投影像の歪をなくそうとする
ものである。
Therefore, the inventor of the present invention filed Japanese Patent Application No. 6-89770.
As shown in No. 6, the inventors have invented a projection method capable of eliminating the distortion of the projected image depending on the projection direction. This projection method is a central projection method in which light rays are emitted in a conical shape from the viewpoint and the projection target is projected onto the projection surface. By re-projecting on the projection plane composed of the plane, the distortion of the projected image depending on the projection direction is eliminated.

【0006】すなわち、図6(a)は眼球を示してお
り、光線7は水晶体(レンズ)6を通って球面上の網膜
5に像を結ぶ。このように、自然界では網膜5を球面に
して投影方向に依存する歪をなくしている。この中心投
影方法(以下、眼球変換を用いた中心投影方法とい
う。)では、図6(b)に示すように投影面は半球面と
なっている(投影球面3参照)。これにより、投影方向
に依存する投影像の歪が補正され、投影方向の違いによ
って投影データ(長さないし大きさ)が異なってしまう
ことのないようになされている。
That is, FIG. 6A shows an eyeball, and a light ray 7 passes through a crystalline lens (lens) 6 to form an image on a spherical retina 5. In this way, in the natural world, the retina 5 is made spherical to eliminate the distortion depending on the projection direction. In this central projection method (hereinafter referred to as the central projection method using eyeball conversion), the projection surface is a hemispherical surface as shown in FIG. 6B (see projection spherical surface 3). Thereby, the distortion of the projected image depending on the projection direction is corrected so that the projection data (length or size) does not change due to the difference in the projection direction.

【0007】以下、眼球変換を用いた中心投影方法の詳
細を説明する。図7はそのフローチャートである。図7
に示すように、眼球変換を用いた中心投影方法は、投影
対象を、まず一般的な中心投影方法によって平面からな
る投影面(1次投影平面:詳細を後述する眼球変換によ
る歪補正前の投影平面)へ投影する(ステップ1)。そ
して、その投影後又は投影時に、後述眼球変換により前
記投影平面(2次投影平面:後述眼球変換による歪補正
後の投影平面)に再投影し、前記投影対象の投影像を得
るものである(ステップ2)。ここで眼球変換とは、投
影対象の、投影平面への投影後又は投影時に、視線上に
中心をもつ球面をその中心位置において視線に直交する
方向に2分割して得られる2つの半球面のうち、視点に
遠い側の半球面を投影面とする該投影面(投影球面)へ
の投影を介しての、前記投影平面への再投影をいう。
The details of the center projection method using eyeball conversion will be described below. FIG. 7 is a flowchart thereof. Figure 7
As shown in FIG. 2, the center projection method using eyeball transformation is a projection plane (primary projection plane: projection before distortion correction by eyeball transformation, which will be described in detail later) that is a plane formed by a general center projection method. Project onto a plane) (step 1). Then, after the projection or at the time of projection, the projection image of the projection target is obtained by re-projecting on the projection plane (secondary projection plane: projection plane after distortion correction by the below-mentioned eye transformation) by the below-mentioned eye transformation ( Step 2). Here, the eyeball conversion means a two hemispheres obtained by dividing a spherical surface having a center on the line of sight into two in a direction orthogonal to the line of sight at or after the projection of the projection target onto the projection plane. Of these, reprojection onto the projection plane is performed through projection onto the projection surface (projection spherical surface) having a hemispherical surface far from the viewpoint as the projection surface.

【0008】すなわち、眼球変換を用いた中心投影方法
では、前記投影球面を投影面として中心投影することと
なるもので、この場合、投影面である半球面に沿った各
点(アドレス)がCRTの表示画素(アドレス)に対応
する。そして、前記投影球面に投影したと同じ効果を平
面(CRT画面)上で得るために眼球変換を行い、歪補
正をするものである。
That is, according to the center projection method using the eyeball transformation, center projection is performed with the projection sphere as the projection surface. In this case, each point (address) along the hemisphere, which is the projection surface, is CRT. Corresponding to the display pixel (address) of. Then, in order to obtain the same effect as that projected on the projection spherical surface on a plane (CRT screen), eyeball conversion is performed and distortion correction is performed.

【0009】次に、図8及び図9を参照して上記眼球変
換による歪補正の原理について説明する。まず図8を参
照して説明すると、図8は視点eがh=2Rの場合につ
いて示したものである。図8において、3は視線(Z
軸)上に中心をもつ球面をその中心位置において視線に
直交する方向に2分割して得られる2つの半球面I,I
Iのうち、視点に遠い側の半球面(半球面I)からなる
投影面(以下、投影球面という)である。また、4は平
面からなる投影面(以下、投影平面という)で、眼球変
換による歪補正前の投影平面、すなわち従来方法の投影
平面としての1次投影平面でもあり、かつ眼球変換によ
る歪補正後の投影平面としての2次投影平面でもある。
この投影平面4は、CRTの表示面である画面に相当す
る。
Next, the principle of the distortion correction by the eyeball conversion will be described with reference to FIGS. 8 and 9. First, referring to FIG. 8, FIG. 8 shows a case where the viewpoint e is h = 2R. In FIG. 8, 3 is the line of sight (Z
Two hemispheres I, I obtained by dividing a spherical surface having a center on the axis) in the direction orthogonal to the line of sight at the center position.
Of I, it is a projection surface (hereinafter referred to as a projection spherical surface) formed of a hemispherical surface (hemispherical surface I) farther from the viewpoint. Further, 4 is a projection plane formed of a plane (hereinafter referred to as a projection plane), which is also a projection plane before distortion correction by eyeball conversion, that is, a primary projection plane as a projection plane of a conventional method, and after distortion correction by eyeball conversion. It is also a secondary projection plane as a projection plane of.
The projection plane 4 corresponds to a screen which is a display surface of a CRT.

【0010】また、X,Y,Zは三次元座標系の各軸、
Oは三次元座標系の原点、eは視点、hは視点eと投影
平面4との距離、Rは投影球面3の半径、Pは投影平面
4上の点(X1,Y1)、ψは直線OPとX軸とのなす
角、Qは投影平面4上のP点に対応する投影球面3上の
点(直線Peと投影球面3の交点)、θは直線Z1 Qと
Z軸のなす角、Lは投影球面3上の円弧OQ、L´はL
と同じ長さをもった直線OP上の線分、ηはCRT表示
アドレス(X軸に平行にとる)、ξはCRT表示アドレ
ス(Y軸に平行にとる)、である。
Further, X, Y and Z are each axis of the three-dimensional coordinate system,
O is the origin of the three-dimensional coordinate system, e is the viewpoint, h is the distance between the viewpoint e and the projection plane 4, R is the radius of the projection sphere 3, P is a point (X1, Y1) on the projection plane 4, and ψ is a straight line. An angle formed by OP and the X axis, Q is a point on the projection spherical surface 3 corresponding to a point P on the projection plane 4 (an intersection of the straight line Pe and the projection spherical surface 3), θ is an angle formed by the straight line Z1 Q and the Z axis, L is an arc OQ on the projection sphere 3, L'is L
Is a line segment on the straight line OP having the same length as, η is a CRT display address (taken in parallel with the X axis), and ξ is a CRT display address (taken in parallel with the Y axis).

【0011】これによれば、次の式が成り立つ。眼球に
対応した、h=2・Rのとき、 三角形e O Pについて、tan(θ/2)=sqrt(X
12+Y12)/2R 三角形X1 O Pについて、tan(ψ)=Y1/X1 が与えられる。
According to this, the following equation is established. When h = 2 · R corresponding to the eyeball, tan (θ / 2) = sqrt (X
For the 1 2 + Y1 2 ) / 2R triangle X1 OP, tan (ψ) = Y1 / X1 is given.

【0012】したがって、X1,Y1を指定すると、対応
するη1,ξ1 は、 ψ=arctan(Y1/X1) θ=2・arctan[sqrt(X12+Y12)/2R] L=R・θ …(01) を使って、 η1=L・cos(ψ) ξ1=L・sin(ψ) となる。
Therefore, when X1 and Y1 are specified, the corresponding η1 and ξ1 are as follows: ψ = arctan (Y1 / X1) θ = 2 · arctan [sqrt (X1 2 + Y1 2 ) / 2R] L = R · θ (( 01), η1 = L · cos (ψ) ξ1 = L · sin (ψ).

【0013】このη1,ξ1が表示メモリ上の画素アドレ
スとなる。すなわち、投影平面4の(X1,Y1)の点
は、CRT画面上では点(η1,ξ1)に表示することに
なるもので、これにより眼球変換による歪補正が行われ
たことになる。
These η1 and ξ1 are pixel addresses on the display memory. That is, the point (X1, Y1) on the projection plane 4 is displayed at the point (η1, ξ1) on the CRT screen, which means that the distortion correction by the eyeball conversion is performed.

【0014】更に、この眼球変換により画像サイズは縮
小する(点Pから点(η1,ξ1)に縮む)。したがっ
て、歪補正後の投影平面4への投影像の画像サイズは、
眼球変換により補正して投影した像の画像サイズよりも
大きく投影可能となる。
Further, the image size is reduced by this eyeball conversion (from the point P to the point (η1, ξ1)). Therefore, the image size of the projection image on the projection plane 4 after distortion correction is
It becomes possible to project larger than the image size of the image projected after being corrected by the eyeball conversion.

【0015】次に、視点eがh=2R以外の場合につい
て図9により説明する。この図9(a),(b)におい
て、図8と同一符号は同一又は相当部分を示す。また、
Uは直線eQの長さ、γは線分ePとZ軸とのなす角、
wはQからZ軸に垂直に下ろした直線の長さ、である。
Next, the case where the viewpoint e is other than h = 2R will be described with reference to FIG. 9A and 9B, the same reference numerals as those in FIG. 8 indicate the same or corresponding portions. Also,
U is the length of the straight line eQ, γ is the angle between the line segment eP and the Z axis,
w is the length of a straight line drawn from Q perpendicular to the Z axis.

【0016】これによれば、次の式が成り立つ。 U=sqrt[(h−R)2+R2−2・(h−R)・R・c
os(π−θ)] とすると、 U・sinγ=R・sinθ となる。
According to this, the following equation holds. U = sqrt [(h−R) 2 + R 2 −2 · (h−R) · R · c
os (π−θ)], U · sinγ = R · sin θ.

【0017】またγは、 tanγ=sqrt(X12+Y12)/h で与えられる。これより、X1,Y1を指定するとθが求
まる。
Γ is given by tan γ = sqrt (X1 2 + Y1 2 ) / h. From this, when X1 and Y1 are specified, θ can be obtained.

【0018】ψはtanψ=Y1/X1から求めると、L
=R・θであるので、 η1=L・cosψ ξ1=L・sinψ となる。
Ψ is L when calculated from tan ψ = Y1 / X1
= R · θ, η1 = L · cosψ ξ1 = L · sinψ.

【0019】このη1,ξ1が表示メモリ上の画素アドレ
スとなる。すなわち、投影平面4の(X1,Y1)の点
は、CRT画面上では点(η1,ξ1)に表示することに
なるもので、これにより眼球変換による歪補正が行われ
たことになる。投影対象はマウス等の入力装置により入
力したデータでもよく、また断層像(三次元計測による
ボリューム画像を分解して得られた断層像も含む)等の
ような演算装置により演算した結果のデータでもよい。
These η1 and ξ1 are pixel addresses on the display memory. That is, the point (X1, Y1) on the projection plane 4 is displayed at the point (η1, ξ1) on the CRT screen, which means that the distortion correction by the eyeball conversion is performed. The projection target may be data input by an input device such as a mouse, or may be data obtained by a calculation device such as a tomographic image (including a tomographic image obtained by decomposing a volume image by three-dimensional measurement). Good.

【0020】図10〜図12は、複数の断層像から、一
般的な中心投影方法により三次元画像を構成する方法
(特願平6−3492号)につき表すが、このような場
合においても、中心投影をする以上、歪をなくすためは
眼球変換が必要になるもので、以下、三次元画像の構成
方法に、この眼球変換を用いた中心投影方法を適用した
場合の一例を説明する。なお、図11,図12いずれの
場合においても、最初に平面からなるX,Y投影面(投
影平面)4上に断層像を投影し、次に眼球変換により
η,ξ面に変換することになる。
10 to 12 show a method (Japanese Patent Application No. 6-3492) for constructing a three-dimensional image from a plurality of tomographic images by a general center projection method. Even in such a case, As long as the central projection is performed, eyeball conversion is necessary to eliminate the distortion. An example of applying the central projection method using the eyeball conversion to the three-dimensional image forming method will be described below. In both cases of FIG. 11 and FIG. 12, it is necessary to first project a tomographic image on an X, Y projection plane (projection plane) 4 consisting of a plane, and then convert it to an η, ξ plane by eyeball conversion. Become.

【0021】まず、上記三次元画像の構成方法におい
て、中心投影による座標変換について述べる。中心投影
による投影面への各断層像の投影に当たっての、各断層
像の画素座標の投影面上の座標への変換は次のように行
われる。
First, in the method of constructing a three-dimensional image, coordinate conversion by central projection will be described. The conversion of the pixel coordinates of each tomographic image to the coordinates on the projection surface when projecting each tomographic image on the projection plane by the central projection is performed as follows.

【0022】図10に示す例では、説明を簡単化するた
め投影面と断層像面、更にはx−y面が各々平行である
ように座標系をとっている。この図10において、x,
y,zは三次元座標系(x,y,z)の各軸、e点(x
1,y1,d1)は視点eの位置、P点(X,Y)は投影
面(表示画面に相当する)4上の点、S点(x0,y0,
d0)はe点(x1,y1,d1)とP点(X,Y)を通る
直線22と断層像23Aの交わる点、である。
In the example shown in FIG. 10, the coordinate system is set so that the projection plane, the tomographic image plane, and the xy plane are parallel to each other for simplification of description. In FIG. 10, x,
y and z are each axis of the three-dimensional coordinate system (x, y, z), and point e (x
1, y1, d1) is the position of the viewpoint e, P point (X, Y) is a point on the projection plane (corresponding to the display screen) 4, S point (x0, y0,
d0) is a point where the straight line 22 passing through the point e (x1, y1, d1) and the point P (X, Y) intersects with the tomographic image 23A.

【0023】また、Dは投影面4の位置(z軸上)で、
任意に設定可能である。
D is the position of the projection plane 4 (on the z-axis),
It can be set arbitrarily.

【0024】d0は断層像23Aの位置(z軸上)で、
計測時に決まる。
D0 is the position of the tomographic image 23A (on the z-axis),
Determined at the time of measurement.

【0025】d1は視点eのz座標、である。D1 is the z coordinate of the viewpoint e.

【0026】これによれば、次の式が成り立つ。According to this, the following equation holds.

【0027】 X={(D−d1)/(d0−d1)}×(x0−x1)+x1 …(1) Y={(D−d1)/(d0−d1)}×(y0−y1)+y1 …(2) x0={(d0−D)/(d1−D)}×(x1−x)+X …(3) y0={(d0−D)/(d1−D)}×(y1−y)+Y …(4) 投影された画像を投影面4に相当する表示画面(図示せ
ず)上に、縦512画素×横512画素で表示すると
き、X,Yは−256から+256までの値を取る。そ
れぞれのX,Yに対してd0の断層像23A上では上掲
(3),(4)式によりx0,y0が決まり、どの点が投
影すべきかが決まる。断層像23は複数あって、d0も
複数個あるので、1組のX,Yに対して複数の投影すべ
き点x0,y0が決まる。
X = {(D-d1) / (d0-d1)} × (x0-x1) + x1 (1) Y = {(D-d1) / (d0-d1)} × (y0-y1) + Y1 (2) x0 = {(d0-D) / (d1-D)} * (x1-x) + X ... (3) y0 = {(d0-D) / (d1-D)} * (y1-- y) + Y (4) When the projected image is displayed on a display screen (not shown) corresponding to the projection surface 4 with 512 pixels in the vertical direction and 512 pixels in the horizontal direction, X and Y are from -256 to +256. Take a value. On the tomographic image 23A of d0 for each X and Y, x0 and y0 are determined by the above equations (3) and (4), and which point should be projected. Since there are a plurality of tomographic images 23 and a plurality of d0, a plurality of points x0 and y0 to be projected are determined for one set of X and Y.

【0028】同様の座標系において、断層像23Aの他
にも断層像23B〜23Eを用意し、y軸方向から見た
図を図11(a)に示す。この図11(a)において、
断層像23A〜23Eは同一対象物について同一方向に
等間隔で得られた断層像(図示例では等間隔であるが、
必ずしも等間隔である必要はない)であり、断層像23
Bには、臓器領域B1,B2,B3が強調して書いてあ
る。臓器領域B1,B2,B3を投影面4に投影するとB1
´,B2´,B3´となる。同様に、断層像23Cの臓器
領域C1,C2を投影面4に投影するとC1´,C2´とな
る。
In the same coordinate system, tomographic images 23B to 23E are prepared in addition to the tomographic image 23A, and a view seen from the y-axis direction is shown in FIG. In FIG. 11 (a),
The tomographic images 23A to 23E are tomographic images obtained at equal intervals in the same direction for the same object (in the illustrated example, they are at equal intervals,
It does not necessarily have to be at equal intervals), and the tomographic image 23
In B, the organ regions B1, B2, and B3 are highlighted. When the organ regions B1, B2, B3 are projected on the projection plane 4, B1
It becomes', B2 ', B3'. Similarly, when the organ regions C1 and C2 of the tomographic image 23C are projected on the projection plane 4, the regions become C1 'and C2'.

【0029】ここで、投影データ(ここでは、B1´,
B2´,B3´;C1´,C2´)を表示メモリ(図示せ
ず)に書く時は、三次元的効果を出すために、視点eか
ら見てより遠くに存在する投影データを先に書き込み、
それより近くの投影データは後から上書きする。したが
ってここでは、投影データC1,C2より投影データB
1,B2,B3の方が視点eより遠くに存在するので、投
影データB1´,B2´,B3´を先に書いて、投影デー
タC1´,C2´は後から上書きすることになる。なお図
11(a)では、投影データB1´,B2´,B3´;C1
´,C2´は各々投影面4から離して示しているが、こ
れは表示メモリに書き込む投影データB1´,B2´,B
3´;C1´,C2´の順番を判り易くしたために過ぎ
ず、最初に書かれる投影データB1´,B2´,B3´
も、それに上書きされる投影データC1´,C2´も実際
には投影面4上に書かれる。
Here, the projection data (here, B1 ',
When writing B2 ', B3'; C1 ', C2') in the display memory (not shown), projection data existing farther from the viewpoint e is written first in order to produce a three-dimensional effect. ,
Later projection data is overwritten. Therefore, here, the projection data B is obtained from the projection data C1, C2.
Since 1, B2 and B3 exist farther than the viewpoint e, the projection data B1 ', B2' and B3 'are written first and the projection data C1' and C2 'are overwritten later. In FIG. 11A, projection data B1 ', B2', B3 '; C1
Although ′ and C2 ′ are shown separately from the projection plane 4, these are projection data B1 ′, B2 ′ and B to be written in the display memory.
3 ';C1', C2 'is simply for making the order easier to understand, and projection data B1', B2 ', B3' written first
Also, the projection data C1 'and C2' that are overwritten are actually written on the projection surface 4.

【0030】図11(b)は、図11(a)よりも一般
化して示したもので、投影面と断層像面が平行でない場
合の例である。この場合は、断層像23A,23B,2
3C…から補間演算で投影面4と平行な面に向けられた
断層像23a,23b,23c…を作っておく必要があ
る。その他は、図11(a)の場合と同様である。な
お、b1´;c1´,c2´;d1´は、補間演算された断
層像23b,23c,23d上の臓器領域b1;c1,c
2;d1の投影データである。
FIG. 11B is a more generalized view than FIG. 11A and shows an example in which the projection plane and the tomographic image plane are not parallel. In this case, the tomographic images 23A, 23B, 2
It is necessary to create the tomographic images 23a, 23b, 23c, ... Directed to the plane parallel to the projection plane 4 from 3C. Others are the same as in the case of FIG. Note that b1 ';c1', c2 ';d1' are organ regions b1; c1, c on the tomographic images 23b, 23c, 23d that have been interpolated.
2; d1 projection data.

【0031】図12は、視点、断層像及び投影面がより
複雑な位置関係をもった場合の中心投影による座標変換
を説明するための図で、断層像23上のS点(x0,z
0,y0)の投影結果が投影平面上のP点(x,y,z)
になることを示す。
FIG. 12 is a diagram for explaining the coordinate conversion by the central projection when the viewpoint, tomographic image and projection plane have a more complicated positional relationship, and is S point (x0, z on the tomographic image 23.
The projection result of (0, y0) is P point (x, y, z) on the projection plane.
Indicates that

【0032】この図12において、中心投影による投影
平面4への断層像23の投影に当たっての、断層像23
の画素座標の投影平面4上の座標への変換は次のように
行われる。ここで、aはx軸と投影平面4の交わる点、
bはy軸と投影平面4の交わる点、cはz軸と投影平面
4の交わる点、である。
In FIG. 12, the tomographic image 23 is projected when the tomographic image 23 is projected on the projection plane 4 by the central projection.
The conversion of the pixel coordinates of the above into the coordinates on the projection plane 4 is performed as follows. Where a is the intersection of the x-axis and the projection plane 4,
b is a point where the y axis intersects the projection plane 4, and c is a point where the z axis intersects the projection plane 4.

【0033】また、αは原点から投影平面4に下ろした
垂線をz−x面に投影した線がx軸となす角、βは前記
垂線がx−z面となす角、e点(x1,y1,z1)は視
点eの位置、P点(x,y,z)は投影面(表示画面に
相当する)4上の点、S点(x0,z0,y0)はe点
(x1,y1,z1)とP点(x,y,z) を通る直線
22と断層像23の交わる点、とすると、次の式が成り
立つ。
Further, α is an angle formed by a line obtained by projecting a perpendicular line drawn from the origin onto the projection plane 4 on the zx plane with the x axis, β is an angle formed by the perpendicular line with the xz plane, and point e (x1, y1, z1) is the position of the viewpoint e, point P (x, y, z) is a point on the projection plane (corresponding to the display screen) 4, point S (x0, z0, y0) is point e (x1, y1). , Z1) and the point at which the tomographic image 23 intersects with the straight line 22 passing through the point P (x, y, z), the following equation holds.

【0034】まず、投影平面4は、 (x/a)+(y/b)+(z/c)=1 …(5) で表わされる。また、e点(x1,y1,z1)とP点
(x,y,z) を通る直線22は (x0−x)/(x1−x)=(y0−y)/(y1−y)=(z0−z)/(z1 −z) …(6) で与えられる。
First, the projection plane 4 is represented by (x / a) + (y / b) + (z / c) = 1 (5). Further, a straight line 22 passing through the point e (x1, y1, z1) and the point P (x, y, z) is represented by (x0−x) / (x1−x) = (y0−y) / (y1−y) = (Z0−z) / (z1−z) (6)

【0035】投影平面4がC1点(xc1,yc1,zc
1)を通るとき、 k1=sinα k2=cosα/sinβ k3=cosα・cosβ/sinβ ai=1/a bi=1/b ci=1/c として、 z=[X・k1−Y・k2−yc1・k3−{(ci・k3・zc1)/bi}+{ (ai・k3・X)/(bi・cosα)}−{(ai・k3・xc1)/bi} ]/[1−{(ci・k3)/bi}+{(ai・k3・sinα)/(bi・c osα)}] …(7) x=(X−z・sinα)/cosα …(8) y=[yc1+{−ci・(z−zc1)−ai・(x−xc1)}]/bi …(9) ここで、上記C1点(xc1,yc1,zc1)には、例え
ば、視点e(x1,y1,z1)から投影平面4に下ろし
た垂線と投影平面4の交わる点(この点と視点e間の距
離はh)として、 zc1=z1+−[h/sqrt{1+(c2/a2)+(c2/b2)}] (「z1+−」の「−」はz0<zc1のとき) …(10) xc1=x1+{c・(z1−zc1)/a} …(11) yc1=y1+{c・(z1−zc1)/b} …(12) を使ってもよい。
The projection plane 4 is at point C1 (xc1, yc1, zc
When passing through 1), k1 = sinα k2 = cosα / sinβ k3 = cosα · cosβ / sinβ ai = 1 / a bi = 1 / b ci = 1 / c, and z = [X · k1−Y · k2-yc1 * K3-{(ci * k3 * zc1) / bi} + {(ai * k3 * X) / (bi * cos [alpha])}-{(ai * k3 * xc1) / bi}] / [1-{(ci · K3) / bi} + {(ai · k3 · sinα) / (bi · cosα)}] (7) x = (X−z · sinα) / cosα (8) y = [yc1 + {-ci -(Z-zc1) -ai * (x-xc1)}] / bi (9) Here, the point C1 (xc1, yc1, zc1) is, for example, from the viewpoint e (x1, y1, z1). As a point where the perpendicular line drawn to the projection plane 4 and the projection plane 4 intersect (the distance between this point and the viewpoint e is h), zc1 = z1 +-[h / sqrt {1+ (c 2 / a 2 ) + (c 2 / b 2 )}] (“−” of “z 1 + −” when z 0 <zc 1) (10) xc 1 = x 1 + Δc · (z 1 −zc 1) / A} (11) yc1 = y1 + {c ・ (z1−zc1) / b} (12)

【0036】投影された画像を投影平面4に相当する表
示画面(図示せず)上に、縦512画素×横512画素
で表示するとき、X,Yは−256から+256までの
値を取る。それぞれのX,Yに対して上掲(7),
(8),(9)式によりx,yが決まる。e点のx1,
y1,z1は任意に与えるので、下掲(13),(14)
式により、y0=d0の断層像上で画素S点の座標x0,
z0が決まる。
When a projected image is displayed on a display screen (not shown) corresponding to the projection plane 4 with 512 pixels in the vertical direction and 512 pixels in the horizontal direction, X and Y take values from -256 to +256. The above (7) for each X and Y,
X and y are determined by the equations (8) and (9). x1 at point e,
Since y1 and z1 are given arbitrarily, the following (13), (14)
From the equation, the coordinates x0, x of the pixel S on the tomographic image of y0 = d0
z0 is determined.

【0037】 x0={(d0−y)/(y1−y)}×(x1−x)+x …(13) z0={(d0−y)/(y1−y)}×(z1−z)+z …(14) 断層像は複数あって、d0も複数個あるので、1組の
X,Yに対して複数の投影すべき点x0,y0が決まる。
X0 = {(d0-y) / (y1-y)} × (x1-x) + x (13) z0 = {(d0-y) / (y1-y)} × (z1-z) + Z (14) Since there are a plurality of tomographic images and a plurality of d0, a plurality of points x0 and y0 to be projected are determined for one set of X and Y.

【0038】なお、図12中のRは視点eからS点まで
の距離を示すもので、このRはP点の画素値(輝度)を
求める際のパラメータとなる。P点の画素値は、設定さ
れた画素値(輝度)の最大値Rmaxから上記Rを引算
した値に比例する。このP点は表示メモリ上では(η,
ξ)点に対応するので(η,ξ)点に前記画素値を格納
する。
Note that R in FIG. 12 indicates the distance from the viewpoint e to the point S, and this R is a parameter for obtaining the pixel value (luminance) at the point P. The pixel value at point P is proportional to the value obtained by subtracting the above R from the maximum value Rmax of the set pixel value (luminance). This point P is (η,
The pixel value is stored at the point (η, ξ) because it corresponds to the point ξ).

【0039】以上のような座標変換を、表示画面に相当
する投影平面4上の全ての点について行う。また、全て
の断層像23について行う。更に、構成された結果像で
ある三次元画像に対して行っても、あるいは構成前の1
枚、1枚の断層像に対して行ってもよい。
The above coordinate conversion is performed for all points on the projection plane 4 corresponding to the display screen. This is performed for all tomographic images 23. Furthermore, even if the three-dimensional image that is the resultant image is constructed,
It may be performed for each tomographic image.

【0040】[0040]

【発明が解決しようとする課題】上述眼球変換を用いた
中心投影方法によれば、投影方向に依存する投影像の歪
(一般的中心投影方法に伴う画像歪み)が補正され、投
影方向の違いによって投影データが異なってしまうこと
がなくなり、この方法を適用してなる、例えば血管内壁
面像等の三次元画像の観察,診断をより有効なものとす
る。しかしながら、得られる画像(再投影像)は必然的
に縮小されてしまう。そこで元の、すなわち眼球変換前
の、あるいはそれ以上の画像サイズで画像観察,診断を
したい場合には、眼球変換後の縮小画像を補間拡大する
ことが考えられる。しかしこのように眼球変換後の縮小
画像を単純に補間拡大して得られる画像は、その元とな
るデータは全て縮小された投影像のデータであり(原投
影対象のデータではなく)、これに補間法を用いて拡大
することになるので画質が劣化するという問題点があっ
た。
According to the center projection method using the eyeball transformation described above, the distortion of the projected image depending on the projection direction (the image distortion associated with the general center projection method) is corrected, and the difference in the projection direction. Therefore, the projection data will not be different from each other, and the observation and diagnosis of a three-dimensional image such as an inner wall surface image of a blood vessel by applying this method will be more effective. However, the obtained image (reprojection image) is inevitably reduced. Therefore, when it is desired to perform image observation and diagnosis with the original image size, that is, before the eyeball conversion or at a larger image size, it is conceivable to interpolate and enlarge the reduced image after the eyeball conversion. However, in the image obtained by simply interpolating and enlarging the reduced image after eyeball conversion in this way, the original data is all the reduced projected image data (not the original projection target data). There is a problem that the image quality deteriorates because the image is enlarged by using the interpolation method.

【0041】本発明の目的は、一般的中心投影方法に伴
う画像歪みの補正が可能で、しかも眼球変換による縮小
のない、あるいは所望の大きさに拡大された投影像を画
質劣化なしに得ることができる眼球変換を用いた中心投
影方法を提供することにある。
It is an object of the present invention to be able to correct image distortion associated with a general center projection method, and to obtain a projected image which is not reduced by eyeball conversion or enlarged to a desired size without image quality deterioration. It is an object of the present invention to provide a central projection method using eyeball transformation capable of performing the following.

【0042】[0042]

【課題を解決するための手段】上記目的は、投影対象
の、平面からなる投影面への中心投影方法による投影後
又は投影時に、当該投影対象を、視線上に中心をもつ球
面をその中心位置において視線に直交する方向に2分割
して得られる2つの半球面のうち、視点に遠い側の半球
面を投影面とする該投影面(投影球面)への投影を介し
て前記平面からなる投影面へ再投影する眼球変換を用い
た中心投影方法において、前記投影対象の所望位置の画
素について前記眼球変換をすることにより前記投影対象
の眼球変換後の縮小率を求め、この縮小率に基づいて算
出した拡大率を眼球変換時の計算式中に定数として与
え、これを用いて前記投影対象の全画素に対して前記眼
球変換を行い前記平面からなる投影面へ再投影すること
により達成される。
SUMMARY OF THE INVENTION The above object is to provide a spherical surface centered on the line of sight of a projection target after or at the time of projection by a central projection method on a projection plane consisting of a plane. Of two hemispheres obtained by dividing the hemisphere into two in the direction orthogonal to the line of sight, the projection consisting of the plane through the projection onto the projection plane (projection sphere) with the hemisphere on the side far from the viewpoint as the projection plane. In the central projection method using the eyeball transformation to re-project on the surface, the reduction rate after the eyeball transformation of the projection target is obtained by performing the eyeball transformation for the pixel at the desired position of the projection target, and based on this reduction rate. It is achieved by giving the calculated enlargement factor as a constant in the calculation formula at the time of eyeball conversion, and using this to perform the eyeball conversion for all the pixels of the projection target and re-projecting on the projection plane composed of the plane. .

【0043】一旦、眼球変換により縮小された投影像か
ら縮小のない、あるいは所望の大きさに拡大された投影
像を得る場合は、その元となるデータは全て上記縮小さ
れた投影像のデータであり(原投影対象のデータではな
く)、補間法を用いて拡大することになり、画質の劣化
が生じる。これに対して、投影対象のサンプリングされ
た所望位置の画素について眼球変換をして投影対象の眼
球変換後の縮小率を求め、それにより算出した拡大率を
眼球変換時の計算式中に定数として与え、これを用いて
全画素に対して眼球変換を行う方法により、縮小のな
い、あるいは所望の大きさに拡大された投影像を得る場
合には、たとえ補間法を用いることになってもその元と
なるデータは原投影対象データである。すなわち本発明
方法では、眼球変換後の縮小投影像を経由せずに一般的
中心投影方法に伴う画像歪みだけを補正でき、眼球変換
による縮小のない、あるいは所望の大きさに拡大された
投影像を画質劣化なしに得られる。
When a projection image which is not reduced or is enlarged to a desired size is obtained from the projection image reduced by the eyeball transformation, all the original data is the reduced projection image data. Yes (rather than the original projection target data), the image will be enlarged by using the interpolation method, resulting in deterioration of image quality. On the other hand, the reduction rate after the eyeball conversion of the projection target is obtained by performing the eyeball conversion on the sampled desired position pixel of the projection target, and the enlargement ratio calculated thereby is set as a constant in the calculation formula at the time of the eyeball conversion. If a projection image that has no reduction or is enlarged to a desired size is obtained by the method of performing eyeball conversion on all pixels using this, even if an interpolation method is used, The original data is the original projection target data. That is, in the method of the present invention, it is possible to correct only the image distortion associated with the general center projection method without going through the reduced projection image after eyeball conversion, and there is no reduction due to eyeball conversion, or a projected image enlarged to a desired size. Can be obtained without image quality deterioration.

【0044】[0044]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図1は、本発明による眼球変換を用
いた中心投影方法の一実施形態を示すフローチャートで
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing an embodiment of a center projection method using eyeball conversion according to the present invention.

【0045】すなわち本発明は、投影対象の、平面から
なる投影面への中心投影方法による投影後又は投影時
に、当該投影対象を、視線上に中心をもつ球面をその中
心位置において視線に直交する方向に2分割して得られ
る2つの半球面のうち、視点に遠い側の半球面を投影面
とする該投影面(投影球面)への投影を介して前記平面
からなる投影面へ再投影する眼球変換を用いた中心投影
方法に適用されるものである。そして、このような眼球
変換を用いた中心投影方法において、まず投影対象の所
望位置の画素について前記眼球変換(特願平6−897
70号による眼球変換:一般的眼球変換)をすることに
より投影対象の眼球変換後の縮小率eを求める(ステッ
プ110)。次に、この縮小率に基づいて算出した拡大
率eを眼球変換時の計算式中に定数として与える(ステ
ップ111)。そして、その計算式を用いて投影対象の
全画素に対し眼球変換(本発明における眼球変換)を行
い前記平面からなる投影面へ再投影する(ステップ11
2)ことにより、一般的中心投影方法に伴う画像歪みが
補正され、かつ一般的眼球変換による縮小のない、ある
いは所望の大きさに拡大された投影像を画質劣化なしに
得るものである。
That is, according to the present invention, after or at the time of projection by the central projection method of the projection target onto a projection plane formed of a plane, the projection target is a spherical surface having its center on the line of sight orthogonal to the line of sight at the center position. Of the two hemispheres obtained by dividing into two in the direction, the projection on the projection plane (projection spherical surface) having the hemisphere on the side far from the viewpoint as the projection surface is re-projected to the projection surface composed of the plane. It is applied to a central projection method using eyeball transformation. In the center projection method using such eyeball conversion, first, the eyeball conversion (Japanese Patent Application No. 6-897) is performed for the pixel at the desired position of the projection target.
The eyeball conversion by No. 70: general eyeball conversion) is performed to obtain the reduction ratio e of the projection target after the eyeball conversion (step 110). Next, the enlargement rate e calculated based on this reduction rate is given as a constant in the equation for eyeball conversion (step 111). Then, the eyeball conversion (eyeball conversion in the present invention) is performed on all the pixels to be projected by using the calculation formula, and reprojection is performed on the projection plane composed of the plane (step 11).
As a result, the image distortion caused by the general center projection method is corrected, and a projected image which is not reduced by general eyeball conversion or enlarged to a desired size is obtained without image quality deterioration.

【0046】これを、図2を参照して具体的に説明する
と、いま、眼球変換による歪み補正のされていない投影
像(眼球変換なし投影像)100Aについて一般的眼球
変換をして投影像100Bを得たものとする。この場
合、投影像100Aとしては、一般的眼球変換の対象と
なる投影像であればそのいずれでもよく、また単数,複
数の別を問わないが、ここでは複数の断層像を積み上げ
て積上げ三次元画像を得、これを任意の方向から見た二
次元画像に陰影付け等の処理を行って再構成された血管
分岐部内壁面の三次元画像である。複数の断層像は、C
T装置等による複数の断層像の他、MRI装置等の三次
元計測によるボリューム画像を分解して得た複数の断層
像であってもよい。
This will be described in detail with reference to FIG. 2. Now, with respect to the projection image 100A which has not been subjected to distortion correction by eyeball conversion (projection image without eyeball conversion) 100A, general eyeball conversion is performed to obtain a projection image 100B. Shall be obtained. In this case, the projection image 100A may be any projection image that is a target of general eyeball conversion, and it does not matter whether it is a single image or a plurality of images, but here, a plurality of tomographic images are stacked and stacked to form a three-dimensional image. It is a three-dimensional image of the inner wall surface of the blood vessel bifurcation reconstructed by obtaining an image and performing a process such as shading on a two-dimensional image viewed from an arbitrary direction. Multiple tomographic images are C
In addition to a plurality of tomographic images obtained by a T apparatus or the like, a plurality of tomographic images obtained by decomposing a volume image obtained by three-dimensional measurement by an MRI apparatus or the like may be used.

【0047】上記投影像(拡大なし眼球変換再投影像)
100Bの画像サイズは、眼球変換なし投影像100A
の画像サイズ100A´と比較して分かるように、縮小
されている。この一般的眼球変換後の縮小された投影像
100Bを単純に補間拡大しても元の画像サイズ100
A´の、あるいはそれ以上に拡大された投影像(拡大・
眼球変換再投影像)100Cが得られるが、このような
ルート(イ)で拡大された投影像100Cは、その元と
なるデータは全て縮小された投影像100Bのデータで
あり(原投影像である投影像100Aのデータではな
く)、これに補間法を用いて拡大することになるので画
質が劣化してしまう。
The projected image (eye-transformed reprojected image without magnification)
The image size of 100B is the projection image 100A without eye conversion.
As can be seen by comparing with the image size 100A ′ of No. Even if the reduced projection image 100B after the general eyeball conversion is simply interpolated and enlarged, the original image size 100
Projected image of A'or larger
The eye-transformed reprojection image) 100C is obtained, but the projection image 100C magnified by such route (a) is the data of the projection image 100B whose original data are all reduced (in the original projection image, The image quality is deteriorated because the image is deteriorated because it is enlarged by using the interpolation method instead of the data of a certain projected image 100A.

【0048】本発明方法では、縮小された投影像100
B(ルート(イ))を経由せずに、原投影像である眼球
変換なし投影像100Aから直接に、すなわちルート
(ロ)経由で拡大・眼球変換再投影像100Cを得るも
のである。その際、予備的処理として、眼球変換なし投
影像100Aの所望位置の画素について眼球変換(一般
的眼球変換)をすることにより投影像100Aの眼球変
換後の縮小率eを求める(上記ステップ110参照)。
In the method of the present invention, the reduced projected image 100
The enlarged / eyeball-transformed reprojection image 100C is obtained directly from the projection image 100A without eyeball conversion, which is the original projection image, without going through B (route (a)), that is, via the route (b). At that time, as a preliminary process, an eyeball conversion (general eyeball conversion) is performed on a pixel at a desired position of the projection image 100A without eyeball conversion to obtain a reduction rate e after the eyeball conversion of the projection image 100A (see step 110 above). ).

【0049】いま、投影像100Aの所望位置の画素、
ここでは投影像100Aの中心から+Y方向の端に位置
する画素EG1について眼球変換をしたところ、画素E
G1が画素EG1´の位置に縮小,移動されたものとす
る。このとき縮小率rがr=r1/r2で、r2=画像サ
イズ100A´(Y軸方向)/2とすると、投影像10
0Aから直接に(ルート(ロ)経由で)元の画像サイズ
100A´の投影像100Cを得るには、拡大率e=定
数/rとして補間拡大すればよい。すなわち定数=1と
したとき、拡大率e=1/rとして補間拡大すればよ
い。
Now, the pixel at the desired position of the projected image 100A,
Here, when the eyeball conversion is performed on the pixel EG1 located at the end in the + Y direction from the center of the projected image 100A, the pixel E
It is assumed that G1 has been reduced and moved to the position of the pixel EG1 '. At this time, if the reduction ratio r is r = r1 / r2 and r2 = image size 100A '(Y-axis direction) / 2, the projected image 10
In order to directly obtain the projection image 100C of the original image size 100A ′ (via the route (b)) from 0A, interpolation enlargement may be performed with the enlargement ratio e = constant / r. That is, when the constant is set to 1, interpolation enlargement may be performed with the enlargement ratio e = 1 / r.

【0050】そして、このようにして求めた拡大率e
を、前掲眼球変換(一般的眼球変換)時の計算式中に定
数として与える(上記ステップ111参照)。具体的に
は、前掲式(01)を、 L=e・R・θ ……(01´) のように修正する。
Then, the enlargement ratio e thus obtained
Is given as a constant in the above-mentioned eyeball conversion (general eyeball conversion) calculation formula (see step 111 above). Specifically, the above-mentioned formula (01) is modified as L = e · R · θ (01 ').

【0051】その後、この式(01´)を用い、原投影
像である眼球変換なし投影像100Aの全画素に対し
て、拡大処理を含む眼球変換(本発明における眼球変
換)を行い、平面からなる投影面へ再投影する(上記ス
テップ112参照)ものである。
Thereafter, using this equation (01 '), all the pixels of the projection image 100A without the eyeball transformation, which is the original projection image, are subjected to the eyeball transformation including the enlargement processing (eyeball transformation in the present invention), and from the plane. The projection plane is re-projected (see step 112 above).

【0052】なお、前掲式(01)を式(01´)に修
正すること以外、前述眼球変換(一般的眼球変換)にお
ける他の計算式はそのまま用いられる。以上により、一
般的中心投影方法に伴う画像歪みが補正され、かつ一般
的眼球変換による縮小のない、あるいは所望の大きさに
拡大された投影像が画質劣化なしに得られるものであ
る。
Note that other formulas in the above eyeball conversion (general eyeball conversion) can be used as they are, except that the above formula (01) is modified to the formula (01 '). As described above, the image distortion caused by the general center projection method is corrected, and a projected image which is not reduced by general eyeball conversion or enlarged to a desired size can be obtained without image quality deterioration.

【0053】なお上述実施例では、画素EG1´が投影
像100Aの中心から+Y方向の端に位置する画素EG
1になるように拡大率を算出した場合について述べた
が、これのみに限定されることはない。例えば、画素E
G2´が投影像100Aの中心から+Y,+X方向の
端、すなわち図中右上角部に位置する画素EG2になる
ように拡大率を算出してもよく、その場合に得られた、
拡大処理を含む眼球変換(本発明における眼球変換)投
影像を図3中の100Dに示す。図3中の100A´
は、眼球変換なし投影像100Aの画像サイズを示す。
また、画素EG1´,EG2´等が、投影像100Aの端
部に実際に位置する画素EG1,EG2ではなく、それよ
り外側にあると想定した箇所に位置する仮想画素になる
ように(投影像100Aより大きくなるように)拡大率
を算出してもよい。この場合更に、得られた拡大処理を
含む眼球変換(本発明における眼球変換)投影像全体の
うち、任意の部分のみを切り出してモニタ表示するよう
にしてもよい。また、拡大率e=定数/r中の定数は1
のみに限定されることはなく、任意値に設定可能であ
る。
In the above embodiment, the pixel EG1 'is located at the end in the + Y direction from the center of the projected image 100A.
The case where the enlargement ratio is calculated to be 1 has been described, but the present invention is not limited to this. For example, pixel E
The enlargement ratio may be calculated so that G2 ′ is the edge in the + Y, + X direction from the center of the projected image 100A, that is, the pixel EG2 located in the upper right corner in the drawing.
An eyeball transformation (eyeball transformation in the present invention) projection image including the enlargement processing is shown in 100D in FIG. 100A 'in FIG.
Indicates the image size of the projection image 100A without eyeball conversion.
In addition, the pixels EG1 ′, EG2 ′, etc. are not the pixels EG1, EG2 actually located at the end of the projected image 100A, but the virtual pixels located at a position assumed to be outside thereof (projected image). The enlargement ratio may be calculated so as to be larger than 100A. In this case, further, only an arbitrary portion may be cut out from the entire eyeball conversion (eyeball conversion in the present invention) projection image including the obtained enlargement processing and displayed on the monitor. Further, the expansion ratio e = constant / constant in r is 1
It is not limited only to this, and can be set to an arbitrary value.

【0054】図4は本発明方法が適用可能なハードウェ
ア構成例を示すブロック図である。この図4において、
50はCPU、51は主メモリ、52は磁気ディスク、
53は表示メモリ、55はマウスコントローラで、これ
らは共通バス57に接続されている。磁気ディスク52
には、複数の断層像及び本発明方法の実行演算のための
プログラム、各種パラメータ等が格納されている。
FIG. 4 is a block diagram showing a hardware configuration example to which the method of the present invention can be applied. In FIG.
50 is a CPU, 51 is a main memory, 52 is a magnetic disk,
53 is a display memory and 55 is a mouse controller, which are connected to a common bus 57. Magnetic disk 52
Stores a plurality of tomographic images, a program for execution calculation of the method of the present invention, various parameters, and the like.

【0055】CPU50は、これら複数の断層像及び本
発明方法の実行演算のためのプログラムやパラメータ等
を読み出し、主メモリ51を用いて眼球変換(上記予備
的処理としての所望画素に対する一般的眼球変換及び原
投影像である眼球変換なし投影像の全画素に対する本発
明における眼球変換)等の演算を行い、その結果を表示
メモリ53に送り、CRTモニタ54に表示させる。マ
ウスコントローラ55に接続されたマウス56は、上記
眼球変換等の演算の際の、視点位置、上記画素EG1,
EG2等を指定する。眼球変換され歪補正された画像
は、必要に応じて磁気ディスク52に格納される。
The CPU 50 reads out these plural tomographic images and the programs and parameters for execution calculation of the method of the present invention, and uses the main memory 51 to perform eyeball conversion (general eyeball conversion for the desired pixel as the preliminary processing). And calculation of all the pixels of the projection image without the eyeball transformation which is the original projection image) and the like are sent to the display memory 53 and displayed on the CRT monitor 54. The mouse 56 connected to the mouse controller 55 uses the viewpoint position, the pixel EG1,
Specify EG2 etc. The image that has undergone eyeball conversion and distortion correction is stored in the magnetic disk 52 as necessary.

【0056】[0056]

【発明の効果】以上説明したように本発明によれば、投
影対象の所望位置の画素について予備的に眼球変換をし
て投影対象の眼球変換後の縮小率を求め、それによる拡
大率を眼球変換時の計算式中に定数として与え、これを
用いて全画素に対して眼球変換を行う、換言すれば、眼
球変換後の縮小投影像を経由せず、原投影像である眼球
変換なし投影像から直接に拡大・眼球変換再投影像を得
るようにしたので、一般的中心投影方法に伴う画像歪み
だけを補正でき、眼球変換による縮小のない、あるいは
所望の大きさに拡大された投影像を画質劣化なしに得ら
れるという効果がある。
As described above, according to the present invention, the eyeball conversion is preliminarily performed on the pixel at the desired position of the projection target to obtain the reduction ratio after the eyeball conversion of the projection target, and the enlargement ratio resulting from the conversion is calculated. It is given as a constant in the calculation formula at the time of conversion, and this is used to perform eyeball conversion for all pixels.In other words, projection without eyeball conversion, which is the original projection image, does not go through the reduced projection image after eyeball conversion. Since the re-projection image of the enlarged / eyeball conversion is obtained directly from the image, only the image distortion due to the general center projection method can be corrected, and there is no reduction due to the eyeball conversion or the projected image enlarged to a desired size. Is obtained without deterioration of image quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施形態を示すフローチャート
である。
FIG. 1 is a flowchart showing an embodiment of the method of the present invention.

【図2】本発明方法の一実施形態の説明図である。FIG. 2 is an explanatory diagram of an embodiment of the method of the present invention.

【図3】本発明方法の他の実施形態の説明図である。FIG. 3 is an explanatory diagram of another embodiment of the method of the present invention.

【図4】本発明方法が適用可能なハードウェア構成例を
示すブロック図である。
FIG. 4 is a block diagram showing a hardware configuration example to which the method of the present invention is applicable.

【図5】中心投影方法と歪の説明図である。FIG. 5 is an explanatory diagram of a center projection method and distortion.

【図6】眼球投影の説明図である。FIG. 6 is an explanatory diagram of eyeball projection.

【図7】一般的眼球変換を用いた中心投影方法の概略を
示すフローチャートである。
FIG. 7 is a flowchart showing an outline of a center projection method using general eyeball conversion.

【図8】一般的眼球変換による歪補正の原理説明図であ
る。
FIG. 8 is a diagram illustrating the principle of distortion correction by general eyeball conversion.

【図9】同じく一般的眼球変換による歪補正の原理説明
図である。
FIG. 9 is a diagram explaining the principle of distortion correction by general eyeball conversion.

【図10】三次元画像の構成方法における断層像画素座
標の投影面上の座標への変換を説明するための図であ
る。
FIG. 10 is a diagram for explaining conversion of tomographic image pixel coordinates into coordinates on a projection plane in a method of forming a three-dimensional image.

【図11】同じく複数の断層像についての画素座標の投
影面上の座標への変換を説明するための図である。
FIG. 11 is a diagram for explaining conversion of pixel coordinates of a plurality of tomographic images into coordinates on the projection plane.

【図12】視点、断層像及び投影面がより複雑な位置関
係をもった場合の中心投影による座標変換を説明するた
めの図である。
FIG. 12 is a diagram for explaining coordinate conversion by central projection when a viewpoint, a tomographic image, and a projection plane have a more complicated positional relationship.

【符号の説明】[Explanation of symbols]

100A…眼球変換なし投影像、100A´…投影像1
00Aの画像サイズ、100B…拡大なし眼球変換再投
影像、100C,100D…拡大・眼球変換再投影像、
50…CPU、51…主メモリ、52…磁気ディスク、
53…表示メモリ、54…CRTモニタ、55…マウス
コントローラ、56…マウス、57…共通バス、3…投
影球面、4…投影平面、X,Y,Z 三次元座標系の各
軸、O…三次元座標系の原点、e…視点、h…視点eと
投影平面4との距離、R…投影球面3の半径、P…投影
平面4上の点(X1,Y1)、ψ…直線OPとX軸とのな
す角、Q…投影平面4上のP点に対応する投影球面3上
の点(直線Peと投影球面3の交点)、θ…直線Z1 Q
とZ軸のなす角、L…投影球面3上の円弧OQ、L´…
Lと同じ長さをもった直線OP上の線分、η…CRT表
示アドレス(X軸に平行にとる)、ξ…CRT表示アド
レス(Y軸に平行にとる)、U…直線eQの長さ、γ…
線分ePとZ軸とのなす角、w…QからZ軸に垂直に下
ろした直線の長さ。
100A ... Projection image without eyeball conversion, 100A '... Projection image 1
00A image size, 100B ... Eyeball conversion reprojection image without enlargement, 100C, 100D ... Enlargement / eyeball conversion reprojection image,
50 ... CPU, 51 ... Main memory, 52 ... Magnetic disk,
53 ... Display memory, 54 ... CRT monitor, 55 ... Mouse controller, 56 ... Mouse, 57 ... Common bus, 3 ... Projection spherical surface, 4 ... Projection plane, X, Y, Z Each axis of three-dimensional coordinate system, O ... Tertiary Origin of original coordinate system, e ... viewpoint, h ... distance between viewpoint e and projection plane 4, R ... radius of projection sphere 3, P ... point (X1, Y1) on projection plane 4, ψ ... straight lines OP and X Angle formed by axis, Q ... Point on projection spherical surface 3 corresponding to point P on projection plane 4 (intersection point of straight line Pe and projection spherical surface 3), θ ... Straight line Z1 Q
And Z-axis, L ... Arc OQ, L '... on the projection sphere 3
Line segment on the straight line OP having the same length as L, η ... CRT display address (taken parallel to X axis), ξ ... CRT display address (taken parallel to Y axis), U ... Length of straight line eQ , Γ ...
The angle formed by the line segment eP and the Z axis, the length of a straight line perpendicular to the Z axis from w ... Q.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 投影対象の、平面からなる投影面への中
心投影方法による投影後又は投影時に、当該投影対象
を、視線上に中心をもつ球面をその中心位置において視
線に直交する方向に2分割して得られる2つの半球面の
うち、視点に遠い側の半球面を投影面とする該投影面
(投影球面)への投影を介して前記平面からなる投影面
へ再投影する眼球変換を用いた中心投影方法において、
前記投影対象の所望位置の画素について前記眼球変換を
することにより前記投影対象の眼球変換後の縮小率を求
め、この縮小率に基づいて算出した拡大率を眼球変換時
の計算式中に定数として与え、これを用いて前記投影対
象の全画素に対して前記眼球変換を行い前記平面からな
る投影面へ再投影することを特徴とする眼球変換を用い
た中心投影方法。
1. After or at the time of projection by a central projection method of a projection target onto a plane projection plane, the projection target is a spherical surface having a center on the line of sight in a direction orthogonal to the line of sight at the center position. Of the two hemispheres obtained by division, the eyeball transformation for reprojecting onto the projection plane composed of the plane through projection on the projection plane (projection sphere) having the hemisphere on the side far from the viewpoint as the projection plane. In the central projection method used,
Obtain the reduction ratio after the eye conversion of the projection target by performing the eye conversion for the pixel of the desired position of the projection target, the expansion ratio calculated based on this reduction ratio as a constant in the calculation formula at the time of eye conversion. A central projection method using eyeball transformation, characterized in that the eyeball transformation is performed on all the pixels of the projection target by using this, and reprojection is performed on a projection plane composed of the plane.
【請求項2】 投影対象は、断層像であることを特徴と
する請求項1に記載の眼球変換を用いた中心投影方法。
2. The central projection method using eyeball transformation according to claim 1, wherein the projection target is a tomographic image.
【請求項3】 断層像は、三次元計測によるボリューム
画像を分解して得られた断層像であることを特徴とする
請求項2に記載の眼球変換を用いた中心投影方法。
3. The center projection method using eye conversion according to claim 2, wherein the tomographic image is a tomographic image obtained by decomposing a volume image by three-dimensional measurement.
JP07436496A 1996-03-28 1996-03-28 Central projection device using eyeball transformation Expired - Lifetime JP3755925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07436496A JP3755925B2 (en) 1996-03-28 1996-03-28 Central projection device using eyeball transformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07436496A JP3755925B2 (en) 1996-03-28 1996-03-28 Central projection device using eyeball transformation

Publications (2)

Publication Number Publication Date
JPH09265526A true JPH09265526A (en) 1997-10-07
JP3755925B2 JP3755925B2 (en) 2006-03-15

Family

ID=13545035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07436496A Expired - Lifetime JP3755925B2 (en) 1996-03-28 1996-03-28 Central projection device using eyeball transformation

Country Status (1)

Country Link
JP (1) JP3755925B2 (en)

Also Published As

Publication number Publication date
JP3755925B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP3123501B2 (en) Space viewpoint controller
JP3619063B2 (en) Stereoscopic image processing apparatus, method thereof, stereoscopic parameter setting apparatus, method thereof and computer program storage medium
JP4200546B2 (en) Image display device
JPH1011614A (en) Method and device for setting viewpoint position and line-of-sight direction in three-dimensional picture constitution method
JPH09270023A (en) Method and device for displaying three-dimensional picture
JP4282587B2 (en) Texture mapping device
JPH09330423A (en) Three-dimensional shape data transforming device
US10699372B2 (en) Image generation apparatus and image display control apparatus
JPH0528875B2 (en)
JP3411665B2 (en) 3D image construction device
JP2004032484A (en) Projection type image display and method for converting image
JPH09265526A (en) Center projecting method using eyeball conversion
JPH11110588A (en) Three-dimensional image display
JP3706098B2 (en) 3D image construction method
JP7223312B2 (en) volume rendering device
JPH08106523A (en) Center projection method
JPH0836652A (en) Three-dimensional image forming method
JP3712145B2 (en) Three-dimensional image construction method and apparatus
JP4726336B2 (en) Image display device, image display method, information storage medium, and image display program
JP2005012407A (en) Picture projection device and picture processing method
JP4726347B2 (en) Image display device, image display method, information storage medium, and image display program
JPH09138859A (en) Picture synthesis device
JP2000348210A (en) Method and device for synthesizing images and program providing medium
Domeneghetti et al. A Rendering Engine for Integral Imaging in Augmented Reality Guided Surgery
JPH09270029A (en) Method for updating and correcting viewpoint position and method for displaying viewpoint position

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

EXPY Cancellation because of completion of term