JPH07294932A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH07294932A
JPH07294932A JP6083273A JP8327394A JPH07294932A JP H07294932 A JPH07294932 A JP H07294932A JP 6083273 A JP6083273 A JP 6083273A JP 8327394 A JP8327394 A JP 8327394A JP H07294932 A JPH07294932 A JP H07294932A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
substrate
angle
twist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6083273A
Other languages
Japanese (ja)
Inventor
憲一 ▲高▼取
Kenichi Takatori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6083273A priority Critical patent/JPH07294932A/en
Publication of JPH07294932A publication Critical patent/JPH07294932A/en
Priority to US08/768,506 priority patent/US5864376A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations

Abstract

PURPOSE:To obtain a satisfactory display of high contrast and wide visual field by preventing the change of liquid crystal orientation in the twisting direction in the liquid crystal display device which has plural areas different by orientation directions. CONSTITUTION:In the liquid crystal display device which has plural areas different by orientation directions, a twist angle 1 is within the range of 80 to 100 deg., and a chiral pitch 2 is within the range of 20 to 200mum. Besides these conditions, one or more areas of one or both of substrates 17 and 18 have pretilt angles within the range of 0 to 1.5 deg., By this constitution, a high contrast is secured without bringing about reverse twist orientation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示装置に関し、特
に、広視野でコントラストの良好な表示を得ることの可
能な液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device capable of obtaining a display having a wide field of view and good contrast.

【0002】[0002]

【従来の技術】従来の広視野でコントラストの良好な表
示を得ることが可能な液晶表示装置として、特開昭63
−106624号公報に示されているものがある。これ
を例にとって従来の技術を説明する。図12にこの液晶
表示素子の平面図、図13にこの液晶表示素子の断面図
(図12のa−a′線断面図)を示す。一方のガラス基
板22上には、画素単位の表示用透明電極20,配向膜
10と、この透明電極20を駆動する薄膜トランジスタ
13とが形成されている。他方のガラス基板21上に
は、表示用透明電極19,配向膜9が形成されている。
配向膜9,10は共にポリイミドで形成されている。対
向する透明電極19,20間に形成される画素Bは、例
えば縦横200μmの正方形であり、マトリックス上に
複数配列されている。この画素Bを形成する表示用の透
明電極の中央部に、ポリイミドからなる帯状スペーサ2
3が設けられている。この結果、各画素Bは、帯状スペ
ーサ23によって、領域IとIIに分割される。この分割
された領域IとIIは、模式的には図14に示すように形
成される。すなわち、一方のガラス基板21と対向する
他方のガラス基板22にそれぞれ図14に示す矢印方向
にラビング処理する。
2. Description of the Related Art As a conventional liquid crystal display device capable of obtaining a display having a wide field of view and good contrast, Japanese Patent Application Laid-Open No. 63-63242 is known.
There is one disclosed in Japanese Patent Laid-Open No. 106624. The conventional technique will be described taking this as an example. 12 is a plan view of this liquid crystal display element, and FIG. 13 is a sectional view of the liquid crystal display element (a sectional view taken along the line aa 'in FIG. 12). On one glass substrate 22, a display transparent electrode 20 for each pixel, an alignment film 10, and a thin film transistor 13 for driving the transparent electrode 20 are formed. On the other glass substrate 21, a display transparent electrode 19 and an alignment film 9 are formed.
The alignment films 9 and 10 are both made of polyimide. The pixels B formed between the transparent electrodes 19 and 20 facing each other are, for example, squares of 200 μm in length and width, and are arranged in a matrix. A strip-shaped spacer 2 made of polyimide is formed at the center of the display transparent electrode forming the pixel B.
3 is provided. As a result, each pixel B is divided into regions I and II by the strip spacer 23. The divided regions I and II are typically formed as shown in FIG. That is, the other glass substrate 22 facing the one glass substrate 21 is rubbed in the direction of the arrow shown in FIG.

【0003】この従来例での視覚依存性の改善効果を説
明するために、図14を観察方向を方位角方向で45°
変えた時のラビング方向および上下基板間での液晶配向
の捻じれ方向を示す平面透視図を図15に示す。図中、
7は分割された領域I、8は分割された領域II、25は
第1の基板でのラビング方向、26は第2の基板でのラ
ビング方向、27は上下基板間での液晶配向の捻じれ角
を示す。更に図15をb−b′に沿って切断した、基板
表面での配向規制力の立ち上がり方向および上下基板間
での液晶配向の電界による立ち上がり方向を示す断面図
を図16に示す。図中、5は液晶物質、6は電界による
液晶配向の立ち上がり方向、17は第1の基板、18は
第2の基板を示す。
In order to explain the effect of improving the visual dependency in this conventional example, FIG. 14 shows that the observation direction is 45 ° in the azimuth direction.
FIG. 15 is a plan perspective view showing the rubbing direction and the twisting direction of the liquid crystal alignment between the upper and lower substrates when changed. In the figure,
7 is a divided region I, 8 is a divided region II, 25 is a rubbing direction on the first substrate, 26 is a rubbing direction on the second substrate, and 27 is a twist of liquid crystal alignment between the upper and lower substrates. Indicates a corner. Further, FIG. 16 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along line bb 'in FIG. In the figure, 5 is a liquid crystal substance, 6 is a rising direction of liquid crystal alignment by an electric field, 17 is a first substrate, and 18 is a second substrate.

【0004】この従来例では、分割された各々の領域で
の液晶配向は、図15に示すように螺旋型の捻じれ(ツ
イストとも呼ばれる)の向きは同じ向きであるが、図1
6に示すように基板表面に対する角度(プレチルト角と
も呼ばれる)の方向が異なっている。基板表面に対する
角度の違いにより、電圧印加時には液晶分子の立ち上が
る方向(チルト方向とも呼ばれる)が図16に矢印6で
示すように異なるため、光が基板に対する鉛直方向から
傾いた斜め方向より入射する場合に各々の領域が互いの
光学特性を補償しあう。その結果、電圧印加時における
視覚依存性は上下基板間の各画素内の配向の異なる領域
同士で相殺され、視覚依存性の少ない光学特性が得られ
る。特に、階調表示時に視角を変化しても階調反転の現
象が見られなくなっている。
In this conventional example, the liquid crystal alignment in each of the divided regions has the same spiral twist (also called twist) as shown in FIG.
As shown in FIG. 6, the directions of angles (also called pretilt angles) with respect to the substrate surface are different. When the voltage is applied, the rising direction of liquid crystal molecules (also referred to as the tilt direction) is different as indicated by arrow 6 in FIG. 16 due to the difference in the angle with respect to the substrate surface. Therefore, when light is incident from an oblique direction inclined from the vertical direction with respect to the substrate. In addition, the respective regions compensate each other's optical characteristics. As a result, the visual dependence upon voltage application is canceled by the regions of different orientations in each pixel between the upper and lower substrates, and optical characteristics with little visual dependence are obtained. In particular, the phenomenon of gradation inversion is no longer observed even when the viewing angle is changed during gradation display.

【0005】また、この従来例と同様の原理に基づきこ
の従来例より工程数が少ない従来例として、アメリカ合
衆国のエスアイディー’92ダイジェスト(SID’9
2Digest)798頁に示されているものや、日本
のジャパンディスプレイ’92ダイジェスト(Japa
n Display’92 Digest)591頁に
示されているもの、更にアメリカ合衆国のエスアイディ
ー’92ダイジェスト(SID’92 Digest)
269頁に示されているもの等がある。これらの例では
上記の従来例と同様に、分割された各々の領域での液晶
配向は螺旋型の捻じれの向きは同じであるが基板表面に
対する角度が異なっている。しかし上記の従来例と異な
る点は、基板表面で液晶に与える配向規制力の方向やそ
の角度の大小の構成である。これらの例と上記の従来例
との違いを明確にするために、これらの3種類の従来例
についてもラビング方向および上下基板間での液晶配向
の捻じれ方向を示す平面透視図と、基板表面での配向規
制力の立ち上がり方向および上下基板間での液晶配向の
電界による立ち上がり方向を示す断面図をそれぞれ示
す。
As a conventional example having a smaller number of steps than the conventional example based on the same principle as this conventional example, SID '92 digest (SID'9) in the United States of America.
2 Digest) page 798, and Japan Display '92 digest (Japan).
n Display '92 Digest) shown on page 591, as well as the SID '92 Digest of the United States of America (SID '92 Digest).
Some are shown on page 269. In these examples, as in the case of the above-described conventional example, the liquid crystal orientation in each of the divided regions has the same spiral twist direction but different angles with respect to the substrate surface. However, what is different from the above-mentioned conventional example is the configuration of the direction and the angle of the alignment regulating force applied to the liquid crystal on the substrate surface. In order to clarify the difference between these examples and the above-mentioned conventional example, a plan perspective view showing the rubbing direction and the twisting direction of the liquid crystal alignment between the upper and lower substrates and the substrate surface are also shown for these three types of conventional examples. 3A and 3B are cross-sectional views showing the rising direction of the alignment regulating force in 1 and the rising direction of the liquid crystal alignment between the upper and lower substrates by the electric field.

【0006】図17は、アメリカ合衆国のエスアイディ
ー’92ダイジェスト(SID’92 Digest)
798頁に示されている従来例でのラビング方向および
上下基板間での液晶配向の捻じれ方向を示す平面透視図
である。図18は、図17をc−c′に沿って切断し
た、基板表面での配向規制力の立ち上がり方向および上
下基板間での液晶配向の電界による立ち上がり方向を示
す断面図である。この例では、上基板のラビング方向は
1種類、下基板のラビング方向は1種類であり、上下の
基板とも領域IとIIで材料を変えている。これにより図
18に示すように領域Iでは下基板18での液晶の基板
表面に対する角度は上基板17での角度より高く、領域
IIでは下基板18での液晶の基板表面に対する角度は上
基板17での角度より低い。その結果、電圧印加時に
は、図中に矢印6で示したように領域Iでは下基板での
配向規制力の方向に液晶配向が立ち上がり、領域IIでは
上基板での配向規制力の方向に液晶配向が立ち上がる。
FIG. 17 shows the SID '92 digest of the United States of America (SID '92 Digest).
It is a plane perspective view showing the rubbing direction and the twisting direction of the liquid crystal alignment between the upper and lower substrates in the conventional example shown on page 798. FIG. 18 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along the line cc ′ in FIG. In this example, the upper substrate has one rubbing direction and the lower substrate has one rubbing direction, and the materials are changed in the regions I and II of the upper and lower substrates. As a result, as shown in FIG. 18, in the region I, the angle of the liquid crystal in the lower substrate 18 with respect to the substrate surface is higher than that in the upper substrate 17,
In II, the angle of the liquid crystal in the lower substrate 18 with respect to the substrate surface is lower than the angle in the upper substrate 17. As a result, when a voltage is applied, the liquid crystal alignment rises in the direction of the alignment control force on the lower substrate in the region I as shown by the arrow 6 in the figure, and in the direction of the alignment control force on the upper substrate in the region II. Stands up.

【0007】図19は、日本のジャパンディスプレイ’
92ダイジェスト(Japan Display’92
Digest)591頁に示されている従来例でのラ
ビング方向および上下基板間での液晶配向の捻じれ方向
を示す平面透視図である。図20は、図19をd−d′
に沿って切断した、基板表面での配向規制力の立ち上が
り方向および上下基板間での液晶配向の電界による立ち
上がり方向を示す断面図である。この例では、上基板の
ラビング方向は1種類、下基板のラビング方向は2種類
である。また、図20に示すように下基板の液晶の基板
表面に対する角度は上基板の角度より領域I,領域IIと
も高く、下基板の領域Iと領域IIの配向規制力の方向が
異なっている。その結果、電圧印加時には、図中に矢印
6で示すように領域I,領域II共に、下基板での配向規
制力の方向に液晶配向が立ち上がる。
FIG. 19 shows Japan Display Japan '.
92 Digest (Japan Display '92
FIG. 9 is a plan perspective view showing a rubbing direction and a twisting direction of liquid crystal alignment between upper and lower substrates in a conventional example shown on page 591 of Digest. FIG. 20 shows FIG. 19 as d-d ′.
FIG. 6 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along the line. In this example, the upper substrate has one rubbing direction and the lower substrate has two rubbing directions. Further, as shown in FIG. 20, the angle of the liquid crystal of the lower substrate with respect to the substrate surface is higher than the angle of the upper substrate in both the regions I and II, and the directions I and II of the lower substrate are different in the direction of the alignment control force. As a result, when a voltage is applied, liquid crystal alignment rises in the direction of the alignment regulating force on the lower substrate in both regions I and II as indicated by arrow 6 in the figure.

【0008】図21は、アメリカ合衆国のエスアイディ
ー’92ダイジェスト(SID’92Digest)2
69頁に示されている従来例でのラビング方向および上
下基板間での液晶配向の捻じれ方向の平面透視図であ
る。図22は、図21をe−e′に沿って切断した、基
板表面での配向規制力の立ち上がり方向および上下基板
間での液晶配向の電界による立ち上がり方向を示す断面
図である。この例では、上基板のラビング方向は1種
類、下基板でのラビング方向は1種類であり、また、上
下の基板での液晶の基板表面に対する角度は同じであ
る。しかし、それぞれの領域での配向規制力の方向が上
下基板で異なり、電圧無印加時には中央部の液晶配向が
水平に保たれ、電圧印加時には図中に示した斜め方向の
電界により液晶方向の立ち上がり方向が決定される。
FIG. 21 shows the SID '92 Digest 2 of the United States.
It is a plane perspective view of the rubbing direction and the twist direction of the liquid crystal alignment between the upper and lower substrates in the conventional example shown on page 69. 22 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along line ee 'in FIG. In this example, the upper substrate has one rubbing direction, the lower substrate has one rubbing direction, and the upper and lower substrates have the same angle of liquid crystal with respect to the substrate surface. However, the direction of the alignment control force in each region is different between the upper and lower substrates, the liquid crystal alignment in the center is kept horizontal when no voltage is applied, and when voltage is applied, the liquid crystal direction rises due to the oblique electric field shown in the figure. The direction is determined.

【0009】これら3種類の従来例では、図17から図
21に示したように構造の工夫により上記の従来例より
工程数が低減されている。しかしどの方法でも、電圧印
加時には液晶分子の立ち上がる方向が図18,図20,
図22に示すように各領域で異なるため、光が基板に対
する鉛直方向から傾いた斜め方向より入射する場合に、
各々の領域が互いの光学特性を互いに補償しあう。その
結果、電圧印加時における視覚依存性は上下基板間の各
画素内の配向の異なる領域同士で相殺され、視覚依存性
の少ない光学特性が得られる。
In these three types of conventional examples, the number of steps is reduced as compared with the above-described conventional example by devising the structure as shown in FIGS. However, in any method, when the voltage is applied, the rising direction of the liquid crystal molecule is as shown in FIGS.
Since each region is different as shown in FIG. 22, when light is incident from an oblique direction inclined from the vertical direction with respect to the substrate,
The respective areas mutually compensate each other's optical characteristics. As a result, the visual dependence upon voltage application is canceled by the regions of different orientations in each pixel between the upper and lower substrates, and optical characteristics with little visual dependence are obtained.

【0010】[0010]

【発明が解決しようとする課題】このような液晶表示装
置の広視野な特性を実現するには、各画素内に液晶の配
向方向が異なる領域が安定に存在することが必須であ
る。従来例の項に示した構成による上記の4種類の従来
例において、複数の領域に配向方向が分割される。しか
しながら、印加電圧が高い時や基板外部からの使用者の
接触等による圧力がかかった時に、良好な視覚改善効果
が得られないことがあった。このような現象は、特に工
程数の少ない上記の3種類の従来例で頻繁に発生した。
この現象を調べた結果、一画素内で領域は複数に分割さ
れているが、一つ若しくは全ての領域の液晶の配向方向
が変化していることが原因であることが分かった。
In order to realize the wide field of view characteristics of such a liquid crystal display device, it is essential that each pixel has a stable region in which the alignment direction of the liquid crystal is different. In the above-described four types of conventional examples having the configuration described in the section of the conventional example, the orientation direction is divided into a plurality of regions. However, when the applied voltage is high or when pressure is applied from the outside of the substrate due to a user's contact or the like, a good visual improvement effect may not be obtained. Such a phenomenon frequently occurred particularly in the above-mentioned three types of conventional examples having a small number of steps.
As a result of investigating this phenomenon, it was found that the region is divided into a plurality of regions within one pixel, but the cause is that the alignment direction of the liquid crystal in one or all regions is changed.

【0011】この変化は、次に示すような変化であっ
た。工程数の少ない従来の液晶表示装置においては工程
数を減らす代わりに、上下基板の内一方の基板表面での
配向方向や角度若しくは新たに設けた電界の方向により
電界による液晶配向の立ち上がり方向が決定されるよう
に構成する。そのため、図18,図20,図22に示す
ように上下の基板上での液晶の配向方向が異なる構成の
領域が存在する。具体的には、図18の従来例の領域I
と領域II、図20の従来例の領域II、図22の従来例の
領域IとIIである。このような液晶の配向方向の構成
は、上下の基板上での液晶の配向方向が同じ構成に比べ
てエネルギー的に不安定である。このように上下の基板
上で液晶の配向方向が異なる構成を以下では“π型プレ
チルト”と呼び、上下の基板上で液晶の配向方向が同じ
構成を“ノーマル・プレチルト”と呼ぶ。すなわち、ノ
ーマル・プレチルトよりπ型プレチルトの方がエネルギ
ー的に不安定であると言い換えられる。
This change was as follows. In a conventional liquid crystal display device with a small number of steps, instead of reducing the number of steps, the rising direction of the liquid crystal orientation due to the electric field is determined by the orientation direction or angle on one of the upper and lower substrates or the direction of the newly provided electric field. To be configured. Therefore, as shown in FIG. 18, FIG. 20, and FIG. 22, there are regions where the orientation directions of the liquid crystal are different on the upper and lower substrates. Specifically, the area I of the conventional example of FIG.
And region II, the region II of the conventional example in FIG. 20, and the regions I and II of the conventional example in FIG. Such a configuration of the liquid crystal alignment direction is energetically unstable as compared with a configuration in which the liquid crystal alignment directions on the upper and lower substrates are the same. Such a configuration in which the liquid crystal alignment directions on the upper and lower substrates are different from each other is referred to as “π-pretilt” below, and a configuration in which the liquid crystal alignment directions are the same on the upper and lower substrates is referred to as “normal pretilt”. In other words, the π-type pretilt is more energetically unstable than the normal pretilt.

【0012】ここで例えば図17,図18の領域Iに対
し、同じラビング方向であるが上下基板間での液晶の捻
じれ方向が異なる構成が存在し得る。この捻じれ方向が
異なる構成のラビング方向および上下基板間での液晶配
向の捻じれ方向を図23に示した。図24に図23をf
−f′に沿って切断した、基板表面での配向規制力の立
ち上がり方向および上下基板間での液晶配向の電界によ
る立ち上がり方向を示す。このような捻じれ方向が異な
る領域では液晶材の自発的な捻じれ力に逆らった方向に
液晶が螺旋型に捻じれるため、捻じれ方向に関しては図
17の領域Iの構成よりもエネルギー的に不安定であ
る。このように液晶材の自発的な捻じれ力方向と実際に
液晶が上下基板間で捻じれる方向(ツイスト方向とも呼
ばれる)が一致しない場合を以下では“リバース・ツイ
スト”と呼び、液晶材の自発的な捻じれ力方向と実際に
液晶が上下基板間で捻じれる方向が一致する場合を“ノ
ーマル・ツイスト”と呼ぶ。すなわち、捻じれ方向に関
して、図23はリバース・ツイストであり、図17の領
域Iのノーマル・ツイストよりもエネルギ−的に不安定
である。しかし、図23の構成は図24に示すように上
下基板表面での液晶の配向方向は同じであるノーマル・
プレチルト構成であるため、液晶の基板からの立ち上が
り方向に関しては図18の領域Iのπ型プレチルト構成
よりもエネルギー的に安定である。すなわち、π型プレ
チルトでありノーマル・ツイストである図17,図18
の領域Iに対し、ノーマル・プレチルトでありリバース
・ツイストである図23,図24のような他の液晶配向
の構成が考えられる。この二つの配向の構成は、エネル
ギーの大小関係が逆転すれば他の構成に容易に変化しう
ると考えられる。
Here, for example, in the region I of FIGS. 17 and 18, there may be a structure in which the rubbing direction is the same but the twisting direction of the liquid crystal between the upper and lower substrates is different. FIG. 23 shows the rubbing direction and the twisting direction of the liquid crystal alignment between the upper and lower substrates in the structure in which the twisting directions are different. 23 is shown in FIG.
The rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, which are cut along -f ', are shown. In such a region where the twisting direction is different, the liquid crystal is twisted in a spiral type in a direction countering the spontaneous twisting force of the liquid crystal material, so that the twisting direction is more energetically than the configuration of the region I in FIG. It is unstable. The case where the direction of the spontaneous twisting force of the liquid crystal material and the direction in which the liquid crystal is actually twisted between the upper and lower substrates (also called the twist direction) does not match is called “reverse twist” in the following, and it is called the “reverse twist”. The case where the normal twisting force direction and the actual twisting direction of the liquid crystal between the upper and lower substrates are the same is called "normal twist". That is, with respect to the twisting direction, FIG. 23 shows the reverse twist, which is more unstable in terms of energy than the normal twist in the region I of FIG. However, in the configuration of FIG. 23, as shown in FIG. 24, the alignment directions of liquid crystal on the upper and lower substrate surfaces are the same.
Because of the pretilt structure, the rising direction of the liquid crystal from the substrate is more energy stable than the π-type pretilt structure in the region I of FIG. That is, the π-type pretilt and the normal twist are shown in FIGS.
Other liquid crystal alignment configurations such as those shown in FIGS. 23 and 24, which are the normal pretilt and the reverse twist for the region I of FIG. It is considered that the configuration of these two orientations can be easily changed to another configuration if the magnitude relation of energy is reversed.

【0013】図25に、π型プレチルトでノーマル・ツ
イストの構成の液晶配向のエネルギーとノーマル・プレ
チルトでリバース・ツイストの構成のエネルギーの印加
電圧による変化の計算例を示す。図中、実線はπ型プレ
チルトでノーマル・ツイストの構成の液晶配向のエネル
ギー、一点鎖線はノーマル・プレチルトでリバース・ツ
イストの構成の液晶配向のエネルギーである。両構成と
も印加電圧が増加するにつれて電界方向に液晶配向が立
ち上がるため、定常的な状態である電圧無印加時に比べ
てエネルギーが増加する。ここで特に注目すべきは、図
に示されるように電圧無印加時にはπ型プレチルトでノ
ーマル・ツイストの構成の方がエネルギー的に安定であ
るが、電圧が高電圧になるとノーマル・プレチルトでリ
バース・ツイストの構成の方がエネルギー的に安定とな
り液晶配向の構成が変化する可能性がある点である。こ
のように各構成のエネルギーに逆転現象がおきる原因に
ついては明確には分かっていない。しかし、従来の液晶
表示装置において視角特性の改善効果が見られなくなる
時、このような捻じれ方向が異なった構成の液晶配向が
発生していることが、液晶の配向方向を確認できる偏光
顕微鏡のこのスコープ像を用いた観察により確認され
た。
FIG. 25 shows an example of calculation of changes in the liquid crystal alignment energy of the normal twist structure with the π-type pretilt and the energy of the reverse twist structure with the normal pretilt according to the applied voltage. In the figure, the solid line represents the energy of the liquid crystal alignment of the normal twist structure with the π-type pretilt, and the dashed line represents the energy of the liquid crystal alignment of the normal twist structure with the reverse twist. In both configurations, the liquid crystal orientation rises in the direction of the electric field as the applied voltage increases, so that the energy increases as compared to the steady state when no voltage is applied. Of particular note here is that the normal twist configuration with π-type pretilt is more stable in terms of energy when no voltage is applied, as shown in the figure, but when the voltage becomes high, the normal pretilt reverse The twist structure is more stable in terms of energy and the structure of liquid crystal alignment may change. The cause of the reversal phenomenon in the energy of each component is not clearly known. However, when the effect of improving the viewing angle characteristics is not observed in the conventional liquid crystal display device, the liquid crystal alignment having such a structure in which the twist directions are different is generated. It was confirmed by observation using this scope image.

【0014】例えば一画素内を2分割する液晶表示装置
の一方の領域がこのような配向に変化した時、視角特性
を補いあう効果がなくなることは明白である。また、2
分割する液晶表示装置の両方の領域がこのような配向に
変化する場合も、全ての画素で同時に変化させず個々に
変化するため表示上で焼き付き等として観察される。更
に、π型プレチルトでノーマル・ツイストの構成の方が
エネルギー的に不安定であるような印加電圧の時でも即
座にノーマル・プレチルトでリバース・ツイストの構成
に変化するとは限らないが、基板外部からの使用者の接
触等による圧力がかかった時には、そのような変化が促
されるために液晶配向が変化し、視角依存性の改善効果
が現れなくなると考えられる。
For example, when one region of the liquid crystal display device which divides one pixel into two is changed to such an orientation, it is obvious that the effect of compensating for the viewing angle characteristics disappears. Also, 2
Even when both regions of the liquid crystal display device to be divided change to such an orientation, they do not change at the same time in all pixels, but change individually, so that they are observed as burn-in on the display. Furthermore, even when the applied voltage is such that the normal twist structure with π-type pretilt is more unstable in terms of energy, the normal pretilt structure does not necessarily immediately change to the reverse twist structure. It is considered that when a pressure is applied by the user's contact or the like, the liquid crystal orientation changes due to the prompting of such a change, and the effect of improving the viewing angle dependency does not appear.

【0015】印加電圧が高くなったり基板外部からの使
用者の接触等による圧力がかかった時に、各構成のエネ
ルギーの逆転現象がなぜ起きるかについては明確ではな
い。しかし、そのエネルギーに影響を与える種々の条件
を検討することにより、望ましい構成のエネルギーを安
定化すること、すなわち捻じれ方向での配向方向の変化
を防ぐことは可能である。また、そのような条件におい
て液晶表示装置がどの程度のコントラスト性能を示すこ
とができるかについて検討することは可能である。
It is not clear why the energy reversal phenomenon of each component occurs when the applied voltage becomes high or pressure is applied by the contact of the user from the outside of the substrate. However, it is possible to stabilize the energy of the desired configuration, ie to prevent changes in the orientation direction in the twist direction, by studying various conditions that affect the energy. Further, it is possible to examine how much contrast performance the liquid crystal display device can exhibit under such conditions.

【0016】すなわち、本発明の目的は、液晶の配向方
向が異なった領域を複数有することにより広視野角を実
現する液晶表示装置において、液晶の捻じれ方向での配
向方向が変化することを防ぎ、広視野で高コントラスト
かつ良好な表示が可能な液晶表示装置を提供することに
ある。
That is, an object of the present invention is to prevent a change in the alignment direction in the twist direction of the liquid crystal in a liquid crystal display device which realizes a wide viewing angle by having a plurality of regions in which the alignment directions of the liquid crystal are different. Another object of the present invention is to provide a liquid crystal display device capable of displaying a wide field of view with high contrast and good quality.

【0017】[0017]

【課題を解決するための手段】第1の発明は、一対の支
持基板間に液晶物質を挟持してなり、前記支持基板間に
液晶の配向方向が異なる領域を複数持つ液晶表示装置に
おいて、80°から100°の範囲である上下基板間で
の液晶配向の捻じれ角を有し、且つ、20μmから20
0μmの範囲である液晶材の自発的な捻じれ力を有する
ことを特徴とする液晶表示装置である。
According to a first aspect of the present invention, there is provided a liquid crystal display device comprising a liquid crystal substance sandwiched between a pair of support substrates and having a plurality of regions having different liquid crystal alignment directions between the support substrates. The twist angle of the liquid crystal alignment between the upper and lower substrates is in the range of 20 ° to 100 °, and 20 μm to 20 μm.
The liquid crystal display device is characterized by having a spontaneous twisting force of the liquid crystal material in the range of 0 μm.

【0018】図1は、第1の基板17と第2の基板18
との間に、液晶の配向方向が異なる2つの領域I(7)
およびII(8)を持つ第1の発明の液晶表示装置の斜視
図であり、1は80°から100°の範囲の上下基板間
での液晶配向の捻じれ角を、2は20μmから200μ
mの範囲の自発的な捻じれ力を示している。
FIG. 1 shows a first substrate 17 and a second substrate 18.
Between two regions I (7) having different liquid crystal alignment directions
FIG. 3 is a perspective view of a liquid crystal display device of the first invention having the above and II (8), in which 1 is a twist angle of liquid crystal alignment between upper and lower substrates in a range of 80 ° to 100 °, and 2 is 20 μm to 200 μ.
It shows a spontaneous twisting force in the range of m.

【0019】第2の発明は、一対の支持基板間に液晶物
質を挟持してなり、前記支持基板間に液晶の配向方向が
異なる領域を複数持つ液晶表示装置において、80°か
ら100°の範囲である上下基板間での液晶配向の捻じ
れ角を有し、且つ、20μmから200μmの範囲であ
る液晶材の自発的な捻じれ力を有し、且つ、0°から
1.5°の範囲であるような少なくとも一方の基板の少
なくとも一領域の基板表面での配向規制力の基板表面か
らの立ち上がり角度を有することを特徴とする液晶表示
装置である。
A second aspect of the invention is a liquid crystal display device comprising a pair of supporting substrates and a liquid crystal material sandwiched between the supporting substrates, and a plurality of regions having different liquid crystal alignment directions between the supporting substrates, in the range of 80 ° to 100 °. The twist angle of the liquid crystal alignment between the upper and lower substrates, and the spontaneous twisting force of the liquid crystal material in the range of 20 μm to 200 μm, and in the range of 0 ° to 1.5 ° And a rising angle from the substrate surface of the alignment control force on the substrate surface of at least one region of at least one of the substrates.

【0020】図2は、第1の基板17と第2の基板18
との間に、液晶の配向方向が異なる2つの領域I(7)
およびII(8)を持つ第2の発明の液晶表示装置の斜視
図であり、1は80°から100°の範囲の上下基板間
での液晶配向の捻じれ角を、2は20μmから200μ
mの範囲の自発的な捻じれ力を、3は0°から1.5°
の範囲の基板表面での配向規制力の基板表面からの立ち
上がり角度を、4は角度3より高い立ち上がり角度を示
している。
FIG. 2 shows a first substrate 17 and a second substrate 18.
Between two regions I (7) having different liquid crystal alignment directions
2 is a perspective view of a liquid crystal display device according to a second invention having II and (8), where 1 is the twist angle of the liquid crystal alignment between the upper and lower substrates in the range of 80 ° to 100 °, and 2 is 20 μm to 200 μm.
Spontaneous twisting force in the range of m is 3 from 0 ° to 1.5 °
The rising angle of the alignment regulating force on the substrate surface in the range of 4 from the substrate surface is 4, and the rising angle of 4 is higher than the angle 3.

【0021】[0021]

【作用】本発明の作用を説明するために、まず、上下基
板間での液晶配向の捻じれ角(ツイスト角とも呼ばれ
る)と液晶材の自発的な捻じれ力(カイラル・ピッチと
も呼ばれる)について説明する。
In order to explain the operation of the present invention, first, the twist angle (also called the twist angle) of liquid crystal alignment between the upper and lower substrates and the spontaneous twisting force of the liquid crystal material (also called the chiral pitch) are described. explain.

【0022】図9に上下基板間での液晶配向の捻じれ角
について説明するための液晶配向の模式図を示す。基板
上で液晶配向に配向規制力を与える方法としては種々あ
るが、ここでは上下の基板17,18上で液晶配向をラ
ビング法により配向規制力を与えたとし、そのラビング
方向を図中に示した。第1の基板でのラビング方向を2
5で、第2の基板でのラビング方向を26で示す。この
ラビング方向が上下の基板で捻じれた位置にあると、上
下基板間に存在する液晶は基板上での配向規制力の条件
を満たすように螺旋型に捻じれる。この時の上下のラビ
ング方向の成す角度の内、図中に円筒状に示した液晶配
向の先端部が含まれる部分の角度θを捻じれ角(ツイス
ト角)と呼ぶ。図中、この捻じれ角を27で示す。
FIG. 9 shows a schematic diagram of liquid crystal alignment for explaining the twist angle of the liquid crystal alignment between the upper and lower substrates. There are various methods for giving the alignment regulating force to the liquid crystal alignment on the substrate, but here, it is assumed that the liquid crystal alignment is provided on the upper and lower substrates 17 and 18 by the rubbing method, and the rubbing direction is shown in the figure. It was Set the rubbing direction on the first substrate to 2
5, the rubbing direction on the second substrate is indicated by 26. When the rubbing direction is at a twisted position between the upper and lower substrates, the liquid crystal existing between the upper and lower substrates is twisted in a spiral shape so as to satisfy the condition of the alignment regulating force on the substrates. Of the angles formed by the upper and lower rubbing directions at this time, the angle θ of the portion including the tip portion of the liquid crystal alignment shown in a cylindrical shape in the drawing is called a twist angle. In the figure, this twist angle is indicated by 27.

【0023】また、図10に液晶材の自発的な捻じれ力
について説明するための液晶配向の模式図を示す。現在
使用しているネマティック液晶中にはキラル分子を添加
しており、前記の上下基板間での捻じれ角を与えなくて
も自発的な捻じれ力を有し、自然とある一定方向に捻じ
れる。この自発的な捻じれ力により、図に示すように下
基板(ガラス基板21)上での液晶配向方向から螺旋状
に一回転するまでの回転の中心軸(螺旋軸)方向で測っ
た距離を捻じれ力(カイラルピッチ)と呼ぶ。すなわ
ち、カイラルピッチが短い方が自発的な捻じれ力は強い
ことになる。図中、カイラルピッチを28で示す。
Further, FIG. 10 shows a schematic diagram of liquid crystal alignment for explaining the spontaneous twisting force of the liquid crystal material. Chiral molecules are added to the nematic liquid crystal currently used, and it has a spontaneous twisting force without giving a twisting angle between the upper and lower substrates and naturally twists in a certain direction. Be done. By this spontaneous twisting force, the distance measured in the direction of the central axis (helix axis) of the rotation from the liquid crystal alignment direction on the lower substrate (glass substrate 21) to one spiral turn as shown in FIG. It is called the twisting power (chiral pitch). That is, the shorter the chiral pitch, the stronger the spontaneous twisting force. In the figure, 28 indicates the chiral pitch.

【0024】配向方向が異なった複数の領域を有する液
晶表示装置において、解決すべき課題の項に示したリバ
ース・ツイストの配向への変化を起こしにくい条件とし
ては、以下の2点が考えられる。第1の点は上下基板間
での液晶配向の捻じれ角が狭いことであり、第2の点は
自発的な捻じれ力が強いこと、すなわちカイラルピッチ
が短いことである。これら2点が配向の変化を起こしに
くい理由は、次のようなものである。上下基板間での捻
じれ角(図9のθ)が狭いということは、すなわち、リ
バース・ツイストの配向となった時の捻じれ角(180
°−θとなる)が広いということである。捻じれ角が狭
い構成の方が、捻じれ角が広い構成よりエネルギー的に
安定であると考えられるので、上下基板間での捻じれ角
が狭い時リバース・ツイストの配向へと変化しにくい。
また、自発的な捻じれ力が強いすなわちカイラルピッチ
が短いということは、液晶が自発的に一定の方向に捻じ
れる傾向が強いということである。すなわち、自発的な
捻じれ力が強い時には、自発的な捻じれ力に逆らった方
向に上下の基板間で捻じれるリバース・ツイストの配向
へは変化しにくいことになる。このような傾向は、実際
の液晶表示装置を作製し印加電圧を変化させ評価した時
のリバース・ツイスト配向が起こらない電圧範囲の幅の
広さと一致する。このような例については実施例に述べ
るが、その図面をここで参照する。
In a liquid crystal display device having a plurality of regions having different alignment directions, the following two points can be considered as conditions under which the change to the reverse twist alignment as described in the section of the problem to be solved is unlikely to occur. The first point is that the twist angle of the liquid crystal alignment between the upper and lower substrates is narrow, and the second point is that the spontaneous twisting force is strong, that is, the chiral pitch is short. The reason why these two points are unlikely to cause a change in orientation is as follows. The narrow twist angle (θ in FIG. 9) between the upper and lower substrates means that the twist angle (180) when the reverse twist orientation is achieved.
That is, ° -θ) is wide. The configuration with a narrow twist angle is considered to be more energy-stable than the configuration with a wide twist angle, so it is less likely to change to the reverse twist orientation when the twist angle between the upper and lower substrates is narrow.
Further, the fact that the voluntary twisting force is strong, that is, the chiral pitch is short, means that the liquid crystal has a strong tendency to spontaneously twist in a certain direction. That is, when the spontaneous twisting force is strong, it is difficult to change to the reverse twist orientation in which the upper and lower substrates are twisted in the direction opposite to the spontaneous twisting force. Such a tendency is consistent with the wide width of the voltage range in which the reverse twist orientation does not occur when an actual liquid crystal display device is manufactured and evaluated by changing the applied voltage. Such examples are described in the Examples, and reference is now made to the drawings.

【0025】図5はカイラルピッチと上下基板間での配
向の捻じれ力を変化させた時のリバース・ツイスト配向
が全く起こらなかった電圧範囲の上限値を等高線で示
す。図から分かるように、カイラルピッチが短く上下基
板間での配向の捻じれ角が狭い方がリバース・ツイスト
配向が起こらない電圧範囲が広い。しかしながら、実際
の表示装置の使用においては、高い電圧範囲まで各領域
の配向が安定であっても、その電圧範囲内で十分なコン
トラスト比が確保できないと実用に耐えない。ここで上
下基板間での液晶配向の捻じれ角とカイラルピッチの条
件を表1のように変えコントラスト比の印加電圧依存性
を測定した結果を図26に示す。
FIG. 5 is a contour line showing the upper limit of the voltage range in which the reverse twist orientation did not occur at all when the orientational twisting force between the upper and lower substrates was changed. As can be seen from the figure, when the chiral pitch is short and the twist angle of the alignment between the upper and lower substrates is narrow, the voltage range in which the reverse twist alignment does not occur is wide. However, in the actual use of the display device, even if the orientation of each region is stable up to a high voltage range, it cannot be put to practical use unless a sufficient contrast ratio can be secured within that voltage range. FIG. 26 shows the results of measuring the dependency of the contrast ratio on the applied voltage by changing the conditions of the twist angle of the liquid crystal alignment and the chiral pitch between the upper and lower substrates as shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】図26の実線と破線の比較より分かるよう
に上下基板での捻じれ角が広い方が低い印加電圧で高い
コントラスト比に達する。また、図の実線と点線の比較
より分かるように、カイラルピッチが長い方が低い印加
電圧で高いコントラスト比に達する。すなわちコントラ
スト比の点からは、リバース・ツイスト配向が起きない
条件とは全く逆に、上下基板間での捻じれ角が広くカイ
ラルピッチが長い方が有利となる。このように、上記に
示したリバース・ツイストの配向が発生しにくい条件と
十分なコントラスト比が確保できる条件とでは違いが見
られる。この点を考慮して、リバース・ツイスト配向が
起こらない条件で確保できるコントラスト比の点から検
討した結果、図5の電圧範囲とは異なり図6に示すよう
な等高線図となる。本発明では実施例に示すようにリバ
ース・ツイストの配向を発生させず且つ十分なコントラ
スト比の確保できる条件を決定している。
As can be seen from the comparison between the solid line and the broken line in FIG. 26, the higher the twist angle between the upper and lower substrates, the higher the contrast ratio at a low applied voltage. Further, as can be seen from the comparison between the solid line and the dotted line in the figure, the longer the chiral pitch, the higher the contrast ratio at a low applied voltage. That is, from the standpoint of contrast ratio, it is advantageous that the twist angle between the upper and lower substrates is wide and the chiral pitch is long, contrary to the condition that the reverse twist orientation does not occur. As described above, a difference can be seen between the conditions in which the reverse twist orientation is unlikely to occur and the conditions in which a sufficient contrast ratio can be secured. Considering this point, as a result of studying from the viewpoint of the contrast ratio which can be secured under the condition that the reverse twist orientation does not occur, a contour map as shown in FIG. 6 is obtained unlike the voltage range of FIG. In the present invention, as shown in the embodiment, conditions are determined in which reverse twist orientation is not generated and a sufficient contrast ratio can be secured.

【0028】更に、次のような条件も考慮して本発明の
要件を決定した。上下基板間の液晶の捻じれを変えた時
の電圧無印加時の赤(620nm),緑(550n
m),青(460nm)の各波長の光の透過光強度を測
定した結果を図27に示す。図で点線は赤色光、実線は
緑色光、一点鎖線は青色光の透過光強度を示す。この測
定に使用した液晶表示装置は緑色光を基準として設計さ
れたものであるので、緑色光に対しては捻じれ角が変化
しても透過光強度は大きくは変化しない。しかし、赤色
光,青色光では捻じれ角が変化すると透過光強度が大き
く変化している。
Further, the requirements of the present invention were determined in consideration of the following conditions. Red (620nm) and green (550n) when no voltage is applied when the twist of the liquid crystal between the upper and lower substrates is changed.
FIG. 27 shows the measurement results of the transmitted light intensities of the light of each wavelength of m) and blue (460 nm). In the figure, the dotted line shows the transmitted light intensity of red light, the solid line shows the green light, and the alternate long and short dash line shows the transmitted light intensity of blue light. Since the liquid crystal display device used for this measurement is designed with reference to green light, the transmitted light intensity does not change significantly with respect to green light even if the twist angle changes. However, with red light and blue light, the transmitted light intensity changes significantly when the twist angle changes.

【0029】上下基板間での捻じれ角が80°より狭い
か100°より広くなると、赤色光と青色光の透過光強
度の差はそれぞれの光強度の一割を越え、波長に対する
依存性が激しくなり正しい色を再現することができなく
なる。緑色光以外を基準として設計されたものでは、こ
の傾向は更に激しくなる。
When the twist angle between the upper and lower substrates is narrower than 80 ° or wider than 100 °, the difference between the transmitted light intensities of the red light and the blue light exceeds 10% of the respective light intensities, and the dependence on the wavelength is present. It becomes intense and it becomes impossible to reproduce the correct color. This tendency is exacerbated in the case of designing other than green light.

【0030】そこで、本発明ではリバース・ツイストの
配向が起こらない条件と色再現性の条件により上下基板
間の捻じれ角の範囲を決定している。また、カイラルピ
ッチに関しては20μmという値は、通常使用されるT
N型液晶表示装置の液晶部の厚みのほぼ4倍であり、こ
の条件では液晶部の厚みが5μmであると自然と90度
捻じれTN型の液晶配向が実現される値である。この値
より短いカイラルピッチは実際の使用においてはほぼ意
味を成さないだけでなく、図26に示したようにカイラ
ルピッチが短くなると十分なコントラスト比を得るため
に必要な電圧値が高くなり過ぎ、実際の使用時の駆動に
おいては適さなくなる。また、実施例に示すように20
0μm(すなわち、通常の液晶部の厚みのほぼ40倍)
を越えると、リバース・ツイストの配向が起きやすく且
つコントラスト比が確保できないことから、20μmか
ら200μmという値を決定している。
Therefore, in the present invention, the range of the twist angle between the upper and lower substrates is determined by the condition that the reverse twist orientation does not occur and the condition of the color reproducibility. Also, regarding the chiral pitch, the value of 20 μm is
The thickness is almost four times the thickness of the liquid crystal portion of the N-type liquid crystal display device, and under this condition, when the thickness of the liquid crystal portion is 5 μm, the TN-type liquid crystal orientation is naturally twisted by 90 °. A chiral pitch shorter than this value does not make much sense in actual use, and as shown in FIG. 26, when the chiral pitch becomes shorter, the voltage value required to obtain a sufficient contrast ratio becomes too high. , It becomes unsuitable for driving during actual use. In addition, as shown in the example, 20
0 μm (that is, approximately 40 times the thickness of the normal liquid crystal part)
If it exceeds, the reverse twist orientation is likely to occur and the contrast ratio cannot be secured, so the value of 20 μm to 200 μm is determined.

【0031】本発明では、この作用の項および実施例に
示すように種々の条件に対して最適な条件を選び本発明
のような条件を決定している。このように第1の発明は
上下基板間での液晶配向の捻じれ角およびカイラルピッ
チを一定の範囲内に制御することにより、配向方向が異
なった複数の領域を有する液晶表示装置の配向の安定性
を確保し良好な表示を得る。
In the present invention, optimum conditions are selected for various conditions as shown in the section of this operation and the embodiment, and the conditions as in the present invention are determined. As described above, according to the first aspect of the present invention, by controlling the twist angle and the chiral pitch of the liquid crystal alignment between the upper and lower substrates within a certain range, the alignment of a liquid crystal display device having a plurality of regions with different alignment directions can be stabilized. To ensure good display.

【0032】更に、第2の発明の作用について述べる。
第2の発明では、第1の発明の条件に加えて、少なくと
も一方の基板の少なくとも一領域の基板表面での配向規
制力の基板表面からの立ち上がり角度(すなわちプレチ
ルト角)が0°から1.5°であるような条件を与え
る。この条件は工程数の少ない従来例においてπ型プレ
チルトでノーマル・ツイストの領域の上下基板の一方若
しくは両方のプレチルト角を低くすることでπ型プレチ
ルトでノーマル・ツイストの構成の状態を安定化する。
図18および図20の従来例では、上下基板の内他方よ
り低いプレチルト角を有する基板側のプレチルト角をよ
り低くすることにより、π型プレチルトの構成がノーマ
ル・プレチルトの構成とプレチルト角に関しほぼ同じエ
ネルギーとなるようにし、ノーマル・プレチルトでリバ
ース・ツイストの構成に変化しにくくする。また、図2
2の従来例では上下基板上でほぼ同じプレチルト角を有
するが、このプレチルト角を両方ともより低くすること
により、π型プレチルトの構成の安定化を図っている。
Further, the operation of the second invention will be described.
In the second invention, in addition to the conditions of the first invention, the rising angle (that is, the pretilt angle) of the alignment regulating force on the substrate surface in at least one region of at least one substrate from 0 ° to 1. A condition is given such that it is 5 °. This condition stabilizes the state of the normal twist configuration by the π-type pretilt by lowering the pretilt angle of one or both of the upper and lower substrates in the normal twist region by the π-type pretilt in the conventional example having a small number of steps.
In the conventional example of FIGS. 18 and 20, the π-type pretilt configuration is substantially the same as the normal pretilt configuration with respect to the pretilt angle by lowering the pretilt angle on the substrate side having a lower pretilt angle than the other of the upper and lower substrates. Uses energy so that normal pretilt makes it difficult to change to the reverse twist configuration. Also, FIG.
In the conventional example No. 2, the upper and lower substrates have substantially the same pretilt angle, but by lowering both of these pretilt angles, the structure of the π-type pretilt is stabilized.

【0033】図25に対し一方の基板上のプレチルト角
を低くした時のπ型プレチルトでノーマル・ツイストの
構成の液晶配向のエネルギーとノーマル・プレチルトで
リバース・ツイストの構成のエネルギーの印加電圧によ
る変化の計算例を図11に示す。このようなプレチルト
角の条件の変化では、配向が安定な電圧範囲が広がると
同時に、確保できるコントラスト比も上昇している。0
°から1.5°という範囲は実施例に示すように1.5
°を越え2°以上となると第1の発明のほとんどの条件
で十分なコントラスト比が確保し難いこと、および、0
°では第1の発明のほぼどの条件でも十分に安定となる
ことから決定されている。このように第2の発明はプレ
チルト角を一定の範囲内に制御することにより、配向方
向が異なった複数の領域を有する液晶表示装置の配向の
安定性を確保し良好な表示を得る。
In contrast to FIG. 25, when the pretilt angle on one of the substrates is lowered, the energy of the liquid crystal alignment of the normal twist structure by the π type pretilt and the energy of the reverse twist structure by the normal pretilt are changed by the applied voltage. An example of calculation of is shown in FIG. With such a change in the pretilt angle condition, the voltage range in which the orientation is stable is widened, and at the same time, the contrast ratio that can be secured is also increased. 0
The range from ° to 1.5 ° is 1.5 as shown in the embodiment.
If it exceeds 2 ° and becomes 2 ° or more, it is difficult to secure a sufficient contrast ratio under most conditions of the first invention, and 0
Is determined to be sufficiently stable under almost all the conditions of the first invention. As described above, according to the second aspect of the present invention, by controlling the pretilt angle within a certain range, the stability of alignment of the liquid crystal display device having a plurality of regions having different alignment directions is ensured and a good display is obtained.

【0034】[0034]

【実施例】本発明の実施例を図3から図8を参照して説
明する。第1の発明の第1の実施例として、液晶の配向
方向が異なった複数の領域を有する従来の液晶表示装置
の内図19,図20に示される従来の液晶表示装置に本
発明を適用した例を示す。
Embodiments of the present invention will be described with reference to FIGS. As a first embodiment of the first invention, the present invention is applied to a conventional liquid crystal display device shown in FIGS. 19 and 20 of a conventional liquid crystal display device having a plurality of regions in which liquid crystal alignment directions are different. Here is an example:

【0035】図3は第1の発明の第1の実施例を示す斜
視図である。図4は本実施例において使用した薄膜トラ
ンジスタアレイを示す模式図である。この実施例におい
ては、能動素子としてアモルファスシリコンによる薄膜
トランジスタ14を用い、一単位画素の大きさを縦15
0μm,横100μmとした。走査電極線15,信号電
極線16は、スパッタ法で形成されたクロミウム(C
r)を用い、線幅を10μmとした。ゲート絶縁膜には
窒化シリコン(SiNx)を用いた。画素電極13は透
明電極であるITO(酸化インジウム錫)を用い、スパ
ッタ法により形成した。このように薄膜トランジスタ1
4をアレイ状に形成したガラス基板を第1の基板17と
した。また、対向側の第2の基板18上には、ITOを
用いた透明電極を形成し、更にカラーフィルタを染色法
によりアレイ状に形成しその上面にシリカを用いた保護
層を設けた。第1の基板17上にポリイミドによる配向
膜を塗布した。その配向膜9表面に、次の表2に示す5
種類の方位角方向[度]にラビング処理を施した。
FIG. 3 is a perspective view showing a first embodiment of the first invention. FIG. 4 is a schematic diagram showing the thin film transistor array used in this example. In this embodiment, a thin film transistor 14 made of amorphous silicon is used as an active element, and the size of one unit pixel is 15 in the vertical direction.
The width was 0 μm and the width was 100 μm. The scanning electrode lines 15 and the signal electrode lines 16 are chromium (C) formed by a sputtering method.
r) was used and the line width was set to 10 μm. Silicon nitride (SiNx) was used for the gate insulating film. The pixel electrode 13 was formed by sputtering using ITO (indium tin oxide) which is a transparent electrode. Thus, the thin film transistor 1
The glass substrate on which 4 was formed in an array was used as the first substrate 17. In addition, a transparent electrode using ITO was formed on the second substrate 18 on the opposite side, color filters were further formed in an array by a dyeing method, and a protective layer using silica was provided on the upper surface thereof. An alignment film made of polyimide was applied on the first substrate 17. On the surface of the alignment film 9, 5 shown in Table 2 below.
A rubbing process was performed in the azimuth direction [degree] of each kind.

【0036】[0036]

【表2】 [Table 2]

【0037】この時の配向膜とラビングの条件の組み合
わせでは、基板表面で液晶配向が有する角度はほぼ1.
5°であった。第2の基板18には第1の基板17とは
異なる構成のポリイミドを用いた配向膜を塗布し第1の
基板と同様に一度目の配向処理を施したが、ラビングの
方向は表2に示す方位角方向[度]とした。
With the combination of the alignment film and the rubbing conditions at this time, the angle of the liquid crystal alignment on the substrate surface is approximately 1.
It was 5 °. The second substrate 18 was coated with an alignment film made of polyimide having a different structure from the first substrate 17 and subjected to the first alignment treatment in the same manner as the first substrate, but the rubbing directions are shown in Table 2. The azimuth angle direction [degree] shown was used.

【0038】一度ラビング処理を施した第2の基板18
上にポジ型レジストを塗布し、一画素の縦幅の半分にあ
たる75μmの領域をマスクして露光し露光部のレジス
トを現像した。表2に示す方位角方向[度]に示すよう
に一度目のラビング方向と180°異なる方向にラビン
グ処理を施し、この後にレジストを剥離した。この結
果、基板表面で液晶配向が有する角度はほぼ3.5°で
あった。この両基板をシリカ粒子によるスペーサを介し
て接着剤で接着し、正の誘電異方性を有し表3に示され
るカイラルピッチを有するネマティック液晶材を5種類
を注入した。液晶材のカイラルピッチは、添加するキラ
ル分子の量を変えることにより変化させた。
The second substrate 18 that has been once rubbed
A positive resist was applied on the surface, and an area of 75 μm corresponding to half the vertical width of one pixel was masked and exposed to light to develop the resist in the exposed area. As shown in the azimuth angle direction [degrees] shown in Table 2, a rubbing treatment was performed in a direction different from the first rubbing direction by 180 °, and then the resist was peeled off. As a result, the angle of the liquid crystal alignment on the substrate surface was about 3.5 °. The two substrates were bonded together with an adhesive via a spacer made of silica particles, and five kinds of nematic liquid crystal materials having positive dielectric anisotropy and having a chiral pitch shown in Table 3 were injected. The chiral pitch of the liquid crystal material was changed by changing the amount of chiral molecules added.

【0039】[0039]

【表3】 [Table 3]

【0040】また、この液晶セルの両側にポリカーバネ
イトを主材料とした偏光板を貼り付けた。この実施例に
おいては、電圧を印加すると一画素内部で画素中心部を
境界として配向が二分された。図5にこの実施例の液晶
表示装置で外部からの接触による圧力等をかけても液晶
配向の捻じれ方向で変化したリバース・ツイスト配向が
全く起きなかった電圧の上限を等高線図で示す。図のよ
うにカイラルピッチが短く、且つ、上下基板間での配向
の捻じれ角が狭い方がリバース・ツイスト配向が起こら
ない電圧範囲が広く、分割された配向が安定であった。
Polarizing plates mainly made of polycarbonate were attached to both sides of the liquid crystal cell. In this example, when a voltage was applied, the alignment was divided into two parts within one pixel with the pixel central part as a boundary. FIG. 5 is a contour diagram showing the upper limit of the voltage in the liquid crystal display device of this embodiment in which the reverse twist alignment, which changes in the twist direction of the liquid crystal alignment, does not occur even when pressure or the like is applied from the outside. As shown in the figure, when the chiral pitch was short and the twist angle of the alignment between the upper and lower substrates was narrow, the voltage range in which the reverse twist alignment did not occur was wide, and the divided alignment was stable.

【0041】この液晶表示装置で、リバース・ツイスト
配向が起こらない条件で確保できたコントラスト比を示
す等高線図を図6に示す。図6に見るように、本実施例
ではコントラスト比100を確保し、且つ、全くリバー
ス・ツイスト配向による表示の乱れを起こさないために
は、カイラルピッチが100μmより短くし上下基板間
での配向の捻じれ角を、およそ88°より広くする必要
があることが分かった。また、作用の項に示したように
20μmより短いカイラルピッチおよび80°より狭い
か100°より広い捻じれ角は実用的ではない。よっ
て、この実施例での実用的なカイラルピッチは20から
100μm、捻じれ角は88°から100°の範囲であ
った。
FIG. 6 is a contour map showing the contrast ratio secured in this liquid crystal display device under the condition that reverse twist alignment does not occur. As shown in FIG. 6, in the present embodiment, in order to secure the contrast ratio of 100 and to prevent the display disorder due to the reverse twist alignment at all, the chiral pitch is set to be shorter than 100 μm and the alignment between the upper and lower substrates is made smaller. It has been found that the twist angle needs to be greater than approximately 88 °. Further, as shown in the section of action, a chiral pitch shorter than 20 μm and a twist angle narrower than 80 ° or wider than 100 ° are not practical. Therefore, the practical chiral pitch in this example was 20 to 100 μm, and the twist angle was in the range of 88 ° to 100 °.

【0042】次に、第1の発明の第2の実施例として、
液晶の配向方向が異なった複数の領域を有する従来の液
晶表示装置の内図17,図18に示される従来の液晶表
示装置に本発明を適用した例を示す。本実施例において
は、配向膜の塗布以前までの工程は第1の実施例と同様
に行い、基板同士の接着や使用する液晶材も同様とし
た。配向処理のみ異なる方法を用い、同じ基板上に2種
類の配向膜を用い、ラビング法により行った。具体的に
は、まず第1の基板17,第2の基板18共に基板表面
からの立ち上がり角度が約1.5°であるポリイミドに
よる配向膜を塗布した。この配向膜の上に、基板表面か
らの立ち上がり角度が約3.5°である別のポリイミド
による配向膜を画素の縦幅の半分である75μmの幅の
印刷マスクを用い印刷法により塗布した。その後、第1
の基板17は表2に示す方位角方向[度]に、第2の基
板18は表2の二度目のラビング方向に示す方位角方向
[度]にラビング処理を行った。この実施例において
も、電圧を印加すると一画素内部で画素中心部を境界と
して配向が二分された。また、この液晶表示装置でリバ
ース・ツイスト配向が起こらない条件で確保できたコン
トラスト比を示す等高線図は図6と同様のものとなっ
た。
Next, as a second embodiment of the first invention,
An example in which the present invention is applied to the conventional liquid crystal display device shown in FIGS. 17 and 18 of a conventional liquid crystal display device having a plurality of regions in which the orientation directions of liquid crystal are different. In this example, the steps up to the application of the alignment film were performed in the same manner as in the first example, and the bonding between the substrates and the liquid crystal material used were also the same. A rubbing method was performed using two different alignment films on the same substrate, using different alignment treatments. Specifically, first, an alignment film made of polyimide having a rising angle from the substrate surface of about 1.5 ° was applied to both the first substrate 17 and the second substrate 18. On this alignment film, another polyimide alignment film having a rising angle from the substrate surface of about 3.5 ° was applied by a printing method using a print mask having a width of 75 μm which is half the vertical width of the pixel. Then the first
The substrate 17 was rubbed in the azimuth direction [degrees] shown in Table 2, and the second substrate 18 was rubbed in the azimuth direction [degrees] shown in the second rubbing direction in Table 2. Also in this example, when a voltage was applied, the orientation was divided into two parts within one pixel with the pixel central part as a boundary. Further, the contour map showing the contrast ratio secured under the condition that the reverse twist orientation does not occur in this liquid crystal display device is the same as that in FIG.

【0043】また、第1の発明の第3の実施例として、
液晶の配向方向が異なった複数の領域を有する従来の液
晶表示装置の内図21,図22に示される従来の液晶表
示装置に本発明を適用した例を示す。本実施例において
は、カラーフィルタを形成する第2の基板18上の透明
電極の形状および配向処理の方法のみを第1の実施例と
異なるものとした。具体的には次のように行った。第2
の基板18上の透明電極を第1の基板17の上の画素電
極13よりすべての辺上で5μm幅広くした。その結
果、上下の電極間に図22に示すような方向の電界が発
生する。また、両基板ともポリイミドによる配向膜を塗
布し、第1の基板17は表2に示す方位角方向[度]
に、第2の基板18は表2の二度目のラビング方向に示
す方位角方向[度]にラビング処理を行った。この時の
基板表面からの立ち上がり角度は1.5°であった。こ
の実施例においても、電圧を印加すると一画素内部で画
素中心部を境界として配向が二分された。また、この液
晶表示装置でリバース・ツイスト配向が起こらない条件
で確保できたコントラスト比を示す等高線図は図6と同
様のものとなった。
Further, as a third embodiment of the first invention,
An example in which the present invention is applied to a conventional liquid crystal display device shown in FIGS. 21 and 22 of a conventional liquid crystal display device having a plurality of regions in which liquid crystal orientation directions are different is shown. In this embodiment, only the shape of the transparent electrode on the second substrate 18 forming the color filter and the method of the orientation treatment are different from those in the first embodiment. Specifically, it carried out as follows. Second
The transparent electrode on the substrate 18 is wider than the pixel electrode 13 on the first substrate 17 by 5 μm on all sides. As a result, an electric field in the direction shown in FIG. 22 is generated between the upper and lower electrodes. Further, both substrates are coated with an alignment film made of polyimide, and the first substrate 17 has an azimuth direction [degree] shown in Table 2.
Then, the second substrate 18 was rubbed in the azimuth direction [degrees] shown in the second rubbing direction in Table 2. At this time, the rising angle from the substrate surface was 1.5 °. Also in this example, when a voltage was applied, the orientation was divided into two parts within one pixel with the pixel central part as a boundary. Further, the contour map showing the contrast ratio secured under the condition that the reverse twist orientation does not occur in this liquid crystal display device is the same as that in FIG.

【0044】次に、本発明の第2の発明の第1の実施例
として、液晶の配向方向が異なった複数の領域を有する
従来の液晶表示装置の内図19,図20に示される従来
の液晶表示装置に本発明を適用した例を示す。本実施例
では、第1の発明の第1の実施例に対し第1の基板17
上の配向膜の種類のみを変えた。具体的には配向膜の種
類とラビングの条件より、第1の基板17の基板表面か
らの液晶配向の立ち上がり角度が2.0°,1.0°,
0.5°,0.0°となる構成とした。
Next, as a first embodiment of the second invention of the present invention, a conventional liquid crystal display device having a plurality of regions in which liquid crystal alignment directions are different from each other is shown in FIG. 19 and FIG. An example in which the present invention is applied to a liquid crystal display device will be shown. In this embodiment, the first substrate 17 is different from the first embodiment of the first invention.
Only the type of alignment film above was changed. Specifically, depending on the type of the alignment film and the rubbing condition, the rising angle of the liquid crystal alignment from the substrate surface of the first substrate 17 is 2.0 °, 1.0 °,
It was set to 0.5 ° and 0.0 °.

【0045】図7に本実施例において第1の基板17の
基板表面での立ち上がり角度を1.0°とした時の、液
晶材のカイラルピッチ[μm]と上下基板間での配向の
捻じれ角[度]を変化させた時のリバース・ツイスト配
向が全く起こらない条件で確保できるコントラスト比の
上限値を等高線で示した図を示す。第1の発明の第1の
実施例の基板表面での立ち上がり角度が1.5°の時の
確保できるコントラスト比の上限値を等高線で示した図
6と比べると、コントラスト比100の範囲がはるかに
広くなっている。特に上下基板間での捻じれ角が90°
の時にはカイラルピッチが180μm程度までコントラ
スト比100が確保できた。
FIG. 7 shows the chiral pitch [μm] of the liquid crystal material and the twisting of the alignment between the upper and lower substrates when the rising angle of the first substrate 17 on the substrate surface is 1.0 ° in this embodiment. The figure which shows the upper limit of the contrast ratio which can be ensured by the contour line under the condition that the reverse twist orientation does not occur at all when the angle [degree] is changed is shown. Compared with FIG. 6 showing the upper limit value of the contrast ratio that can be ensured when the rising angle on the substrate surface of the first embodiment of the first invention is 1.5 °, compared with FIG. 6, the range of the contrast ratio 100 is much larger. Has become wide. Especially, the twist angle between the upper and lower substrates is 90 °
At that time, a contrast ratio of 100 could be secured up to a chiral pitch of about 180 μm.

【0046】更に、図8に本実施例において第1の基板
17の基板表面での立ち上がり角度を0.5°とした時
の、液晶材のカイラルピッチ[μm]と上下基板間での
配向の捻じれ角[度]を変化させた時のリバース・ツイ
スト配向が全く起こらない条件で確保できるコントラス
ト比の上限値を等高線で示した図を示す。この図におい
ては、図7に比べてはるかにコントラスト比の範囲が広
がっている。また、基板表面での立ち上がり角度を0.
0°とした時には捻じれ角が80°から100°の範囲
でカイラルピッチが20μmから200μmの範囲では
コントラスト比100が必ず確保できた。一方、基板表
面からの立ち上がり角度が2.0°の時には、この範囲
内でコントラスト比100が確保できる条件はほとんど
無かった。また、プレチルト角を変化させる方法とし
て、配向膜の焼成条件若しくはラビング処理のラビング
強度を変える方法によった場合も同様の結果が得られ
た。
Further, FIG. 8 shows the chiral pitch [μm] of the liquid crystal material and the alignment between the upper and lower substrates when the rising angle of the first substrate 17 on the substrate surface is 0.5 ° in this embodiment. The figure which shows the upper limit of the contrast ratio which can be ensured by the contour line on the condition that reverse twist orientation does not occur at all when the twist angle [degree] is changed is shown. In this figure, the range of the contrast ratio is much wider than in FIG. 7. In addition, the rising angle on the substrate surface is 0.
When it was set to 0 °, the contrast ratio of 100 was always ensured when the twist angle was in the range of 80 ° to 100 ° and the chiral pitch was in the range of 20 μm to 200 μm. On the other hand, when the rising angle from the substrate surface was 2.0 °, there was almost no condition that the contrast ratio of 100 could be secured within this range. Similar results were obtained when the pretilt angle was changed by changing the firing conditions of the alignment film or the rubbing strength of the rubbing treatment.

【0047】次に、第2の発明の第2の実施例として、
液晶の配向方向が異なった複数の領域を有する従来の液
晶表示装置の内図17,図18に示される従来の液晶表
示装置に本発明を適用した例を示す。本実施例において
は、配向膜の塗布以前までの工程は第1の実施例と同様
に行い、基板同士の接着や使用する液晶材も同様とし
た。配向処理のみ異なる方法を用い、斜方蒸着法とラビ
ング法の2種類の組み合わせにより行った。まず、第1
の基板17上に酸化シリコン(SiO)を基板面の法線
方向から60°すなわち基板面から30°の角度で方位
角方位に関しては表2に示した第1の基板のラビング方
向と90°の方向を成す角度に蒸着した。また、第2の
基板18も同様に酸化シリコン(SiO)を基板面の法
線方向から60°すなわち基板面から30°の角度で方
位角方向に関しては表2に示した第2の基板の二番目の
ラビング方向と90°の方向を成す角度に蒸着した。こ
の方法により、液晶配向は0.0°の角度で表2に示し
た二番目のラビング方向に配向する。この斜方蒸着膜に
よる配向膜の上に、基板表面からの立ち上がり角度が約
3.5°であるポリイミドによる配向膜を画素の縦幅の
半分である75μmの幅の印刷マスクを用い印刷法によ
り塗布した。その後、第1の基板17は表2に示す方位
角方向[度]に、第2の基板18は第2の二番目のラビ
ング方向に示す方位角方向[度]にラビング処理を行っ
た。この実施例でも、第1の実施例で基板表面での立ち
上がり角度を0.0°とした時と同様に捻じれ角が80
°から100°の範囲でカイラルピッチが20μmから
200μmの範囲ではコントラスト比100が必ず確保
できた。
Next, as a second embodiment of the second invention,
An example in which the present invention is applied to the conventional liquid crystal display device shown in FIGS. 17 and 18 of a conventional liquid crystal display device having a plurality of regions in which the orientation directions of liquid crystal are different. In this example, the steps up to the application of the alignment film were performed in the same manner as in the first example, and the bonding between the substrates and the liquid crystal material used were also the same. A different method was used only for the orientation treatment, and two kinds of combinations of the oblique vapor deposition method and the rubbing method were used. First, the first
Of silicon oxide (SiO) on the substrate 17 of 60 ° from the direction normal to the substrate surface, that is, at an angle of 30 ° from the substrate surface, the azimuth azimuth is 90 ° from the rubbing direction of the first substrate shown in Table 2. Deposition was performed at an angle forming a direction. Similarly, the second substrate 18 is made of silicon oxide (SiO) at an angle of 60 ° from the normal direction of the substrate surface, that is, at an angle of 30 ° from the substrate surface, and is the same as the second substrate shown in Table 2 in the azimuth direction. Deposition was performed at an angle of 90 ° with the second rubbing direction. By this method, the liquid crystal alignment is aligned in the second rubbing direction shown in Table 2 at an angle of 0.0 °. An alignment film made of polyimide having a rising angle of about 3.5 ° from the substrate surface is printed on the alignment film made of the oblique deposition film by using a printing mask having a width of 75 μm which is half the vertical width of the pixel. Applied. After that, the first substrate 17 was rubbed in the azimuth direction [degrees] shown in Table 2, and the second substrate 18 was rubbed in the azimuth direction [degrees] shown in the second second rubbing direction. Also in this embodiment, the twist angle is 80 as in the first embodiment when the rising angle on the substrate surface is 0.0 °.
The contrast ratio of 100 was always ensured in the range of 20 to 200 μm in the range of 20 to 200 μm in the range of 90 to 100 °.

【0048】これら全ての実施例では、基板外部からの
使用者による接触等による圧力がかかった時にも広視野
な特性が損なわれることが無く、且つ、焼き付き等の現
象も観察されず、且つ、コントラスト比100以上の特
性が得られた。また、使用する光の波長に対する依存性
が少ないため、表示の色再現性も良好であった。
In all of these examples, the characteristics of a wide field of view are not impaired even when pressure is applied from the outside of the substrate by the user, etc., and the phenomenon such as image sticking is not observed, and A characteristic with a contrast ratio of 100 or more was obtained. Further, the color reproducibility of the display was good because the dependence on the wavelength of the light used was small.

【0049】[0049]

【発明の効果】本発明を適用するならば、配向方向が異
なった複数の領域を有する液晶表示装置において捻じれ
方向の配向が不安定になることを防ぐことができる。そ
の結果、印加電圧が高くなったり、基板外部からの使用
者による接触等による圧力がかかった時にも広視野な特
性が損なわれることがなく、且つ、焼き付き等の現象も
観察されなくなる。また、実施例に示したような範囲で
使用することにより実用上十分なコントラスト比を常に
確保することができる。その結果、広視野で高コントラ
スト且つ色再現性が良く焼き付き等の問題もない液晶表
示装置が容易に得られる。
By applying the present invention, it is possible to prevent the alignment in the twisting direction from becoming unstable in a liquid crystal display device having a plurality of regions having different alignment directions. As a result, the characteristics of a wide field of view are not impaired even when the applied voltage becomes high and pressure is applied by the user from the outside of the substrate, and the phenomenon such as burn-in is not observed. In addition, by using in the range as shown in the embodiment, it is possible to always secure a practically sufficient contrast ratio. As a result, it is possible to easily obtain a liquid crystal display device having a wide field of view, high contrast, good color reproducibility, and no problem such as burn-in.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の液晶表示装置の斜視図である。FIG. 1 is a perspective view of a liquid crystal display device of a first invention.

【図2】第2の発明の液晶表示装置の斜視図である。FIG. 2 is a perspective view of a liquid crystal display device of a second invention.

【図3】第1の発明の第1の実施例を示す斜視図であ
る。
FIG. 3 is a perspective view showing a first embodiment of the first invention.

【図4】第1の発明の第1の実施例における薄膜トラン
ジスタアレイを示す平面図である。
FIG. 4 is a plan view showing a thin film transistor array in a first embodiment of the first invention.

【図5】第1の発明の第1の実施例において、液晶材の
カイラルピッチ[μm]と上下基板間での配向の捻じれ
角[度]を変化させた時のリバース・ツイスト配向が全
く起こらなかった電圧範囲の上限値[V]を等高線で示
した図である。
FIG. 5 shows the reverse twist alignment when the chiral pitch [μm] of the liquid crystal material and the twist angle [degree] of the alignment between the upper and lower substrates are changed in the first embodiment of the first invention. It is the figure which showed the upper limit [V] of the voltage range which did not occur by the contour line.

【図6】第1の発明の第1の実施例において、液晶材の
カイラルピッチ[μm]と上下基板間での配向の捻じれ
角[度]を変化させた時のリバース・ツイスト配向が全
く起こらない条件で確保できるコントラスト比の上限値
を等高線で示した図である。
FIG. 6 shows the reverse twist alignment when the chiral pitch [μm] of the liquid crystal material and the twist angle [degree] of the alignment between the upper and lower substrates are changed in the first embodiment of the first invention. It is the figure which showed the upper limit of the contrast ratio which can be ensured on the condition that it does not occur with the contour line.

【図7】第2の発明の第1の実施例において一方の基板
表面での立ち上がり角度を1.0°とした時の、液晶材
のカイラルピッチ[μm]と上下基板間での配向の捻じ
れ角[度]を変化させた時のリバース・ツイスト配向が
全く起こらない条件で確保できるコントラスト比の上限
値を等高線で示した図である。
FIG. 7 shows the chiral pitch [μm] of the liquid crystal material and the twist of the alignment between the upper and lower substrates when the rising angle on the surface of one substrate is 1.0 ° in the first embodiment of the second invention. FIG. 8 is a diagram showing contour lines showing the upper limit value of the contrast ratio that can be ensured under the condition that reverse twist alignment does not occur at all when the tilt angle [degree] is changed.

【図8】第2の発明の第1の実施例において一方の基板
表面での立ち上がり角度を0.5°とした時の、液晶材
のカイラルピッチ[μm]と上下基板間での配向の捻じ
れ角[度]を変化させた時のリバース・ツイスト配向が
全く起こらない条件で確保できるコントラスト比の上限
値を等高線で示した図である。
FIG. 8 is a view showing the chiral pitch [μm] of the liquid crystal material and the twisting of the alignment between the upper and lower substrates when the rising angle on the surface of one substrate is 0.5 ° in the first embodiment of the second invention. FIG. 8 is a diagram showing contour lines showing the upper limit value of the contrast ratio that can be ensured under the condition that reverse twist alignment does not occur at all when the tilt angle [degree] is changed.

【図9】本発明の作用を説明するために、上下基板間で
の液晶配向の捻じれ角(ツイスト角とも呼ばれる)につ
いて説明するための液晶配向の模式図である。
FIG. 9 is a schematic diagram of liquid crystal alignment for explaining a twist angle (also referred to as a twist angle) of liquid crystal alignment between upper and lower substrates in order to explain the operation of the present invention.

【図10】本発明の作用を説明するために、液晶材の自
発的な捻じれ力(カイラル・ピッチとも呼ばれる)につ
いて説明するための液晶配向の模式図である。
FIG. 10 is a schematic diagram of liquid crystal alignment for explaining a spontaneous twisting force (also called a chiral pitch) of a liquid crystal material in order to explain the operation of the present invention.

【図11】本発明の作用を説明するために、図25の条
件と低い方のプレチルト角だけを変化させた時のπ型プ
レチルトでノーマル・ツイストの構成とノーマル・プレ
チルトでリバース・ツイストの構成のエネルギーの印加
電圧による変化の計算例を示す図である。
FIG. 11 is a view showing a condition of FIG. 25 and a normal twist structure with a π-type pretilt and a reverse twist structure with a normal pretilt when only the lower pretilt angle is changed to explain the operation of the present invention. It is a figure which shows the example of calculation of the change with the applied voltage of the energy of.

【図12】従来の広視野を目的として領域を分割した液
晶表示装置の平面図である。
FIG. 12 is a plan view of a conventional liquid crystal display device in which a region is divided for the purpose of wide field of view.

【図13】図12のa−a′線に沿って切断した断面図
である。
FIG. 13 is a cross-sectional view taken along line aa ′ in FIG.

【図14】従来の領域を分割した液晶表示装置のラビン
グ方向の模式図である。
FIG. 14 is a schematic diagram of a rubbing direction of a liquid crystal display device in which a conventional area is divided.

【図15】図14を方位角が45°異なる方向から観察
した時のラビング方向および上下基板間での液晶配向の
捻じれ方向を示す平面透視図である。
15 is a plan perspective view showing a rubbing direction and a twisting direction of liquid crystal alignment between the upper and lower substrates when FIG. 14 is observed from a direction in which an azimuth angle is different by 45 °.

【図16】図15をb−b′に沿って切断した、基板表
面での配向規制力の立ち上がり方向および上下基板間で
の液晶配向の電界による立ち上がり方向を示す断面図で
ある。
16 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along the line bb 'in FIG.

【図17】従来の領域を分割した液晶表示装置のラビン
グ方向および上下基板間での液晶配向の捻じれ方向を示
す平面透視図である。
FIG. 17 is a transparent plan view showing a rubbing direction and a twisting direction of liquid crystal alignment between upper and lower substrates of a liquid crystal display device in which a conventional region is divided.

【図18】図17をc−c′に沿って切断した、基板表
面での配向規制力の立ち上がり方向および上下基板間で
の液晶配向の電界による立ち上がり方向を示す断面図で
ある。
FIG. 18 is a cross-sectional view taken along line cc ′ in FIG. 17, showing the rising direction of the alignment control force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field.

【図19】従来の領域を分割した液晶表示装置のラビン
グ方向および上下基板間での液晶配向の捻じれ方向を示
す平面透視図である。
FIG. 19 is a plan perspective view showing a rubbing direction and a twisting direction of liquid crystal alignment between upper and lower substrates of a liquid crystal display device in which a conventional region is divided.

【図20】図19をd−d′に沿って切断した、基板表
面での配向規制力の立ち上がり方向および上下基板間で
の液晶配向の電界による立ち上がり方向を示す断面図で
ある。
20 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along line dd 'in FIG.

【図21】従来の領域を分割した液晶表示装置のラビン
グ方向および上下基板間での液晶配向の捻じれ方向を示
す平面透視図である。
FIG. 21 is a transparent plan view showing a rubbing direction and a twisting direction of liquid crystal alignment between upper and lower substrates of a liquid crystal display device in which a conventional region is divided.

【図22】図21をe−e′に沿って切断した、基板表
面での配向規制力の立ち上がり方向および上下基板間で
の液晶配向の電界による立ち上がり方向を示す断面図で
ある。
22 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along line ee 'in FIG.

【図23】図17の領域Iにおいて上下基板間で液晶の
捻じれ方向が異なった液晶配向となった時のラビング方
向および上下基板間での液晶配向の捻じれ方向を示す平
面透視図である。
23 is a plan perspective view showing a rubbing direction and a twisting direction of liquid crystal alignment between upper and lower substrates when liquid crystal orientations in which twisting directions of liquid crystals are different between the upper and lower substrates in a region I of FIG. .

【図24】図23をf−f′に沿って切断した、基板表
面での配向規制力の立ち上がり方向および上下基板間で
の液晶配向の電界による立ち上がり方向を示す断面図で
ある。
FIG. 24 is a cross-sectional view showing the rising direction of the alignment regulating force on the substrate surface and the rising direction of the liquid crystal alignment between the upper and lower substrates due to the electric field, taken along line ff ′ in FIG. 23.

【図25】π型プレチルトでノーマル・ツイストの構成
とノーマル・プレチルトでリバース・ツイストの構成の
エネルギーの印加電圧による変化の計算例を示す図であ
る。
FIG. 25 is a diagram showing a calculation example of a change in energy with an applied voltage in a normal twist configuration with a π-type pretilt and a reverse twist configuration with a normal pretilt.

【図26】上下基板間での液晶配向の捻じれ角と液晶の
自発的な捻じれ力の条件を変えコントラスト比の電圧依
存性を測定した結果を示す図である。
FIG. 26 is a diagram showing the results of measuring the voltage dependence of the contrast ratio by changing the conditions of the twist angle of the liquid crystal alignment between the upper and lower substrates and the conditions of the spontaneous twisting force of the liquid crystal.

【図27】上下基板間の液晶の捻じれを変えた時の電圧
無印加時の赤(620nm),緑(550nm),青
(460nm)の各波長の光の透過率を測定した結果を
示す図である。
FIG. 27 shows the results of measuring the transmittance of light of each wavelength of red (620 nm), green (550 nm), and blue (460 nm) when no voltage is applied when the twist of the liquid crystal between the upper and lower substrates is changed. It is a figure.

【符号の説明】[Explanation of symbols]

1 80°から100°の範囲の上下基板間での液晶配
向の捻じれ角 2 20μmから200μmの範囲の液晶材の自発的な
捻じれ力 3 0°から1.5°の範囲の基板表面での配向規制力
の基板表面からの立ち上がり角度 4 角度3より高い基板表面での液晶配向の立ち上がり
角度 5 液晶物質(液晶層) 6 電界による液晶配向の立ち上がり方向 7 分割された領域1 8 分割された領域2 9,10 配向膜 11 画素 13 画素電極 14 薄膜トランジスタ 15 走査電極線 16 信号電極線 17 第1の基板 18 第2の基板 19,20 透明電極 21,22 ガラス基板 23 帯状スペーサ 25 第1の基板でのラビング方向 26 第2の基板でのラビング方向 27 上下基板間での液晶配向の捻じれ角 28 カイラルピッチ a−a′,b−b′,c−c′,d−d′,e−e′,
f−f′ 断面図の切断線
1 Twisting angle of liquid crystal alignment between upper and lower substrates in the range of 80 ° to 100 ° 2 Spontaneous twisting force of liquid crystal material in the range of 20 μm to 200 μm On the substrate surface in the range of 30 ° to 1.5 ° Rising angle of the alignment regulating force from the substrate surface 4 The rising angle of the liquid crystal alignment on the substrate surface higher than 3 5 Liquid crystal substance (liquid crystal layer) 6 The rising direction of the liquid crystal alignment by the electric field 7 Divided region 1 8 Divided Region 2 9,10 Alignment film 11 Pixel 13 Pixel electrode 14 Thin film transistor 15 Scan electrode line 16 Signal electrode line 17 First substrate 18 Second substrate 19,20 Transparent electrode 21,22 Glass substrate 23 Strip spacer 25 First substrate Rubbing direction at 26 26 rubbing direction at second substrate 27 twist angle of liquid crystal alignment between upper and lower substrates 28 chiral pitch aa ', bb', c- c ', d-d', ee ',
f-f 'Sectional cutting line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一対の支持基板間に液晶物質を挟持してな
り、前記支持基板間に液晶の配向方向が異なる領域を複
数持つ液晶表示装置において、80°から100°の範
囲である上下基板間での液晶配向の捻じれ角を有し、且
つ、20μmから200μmの範囲である液晶材の自発
的な捻じれ力を有することを特徴とする液晶表示装置。
1. A liquid crystal display device comprising a pair of supporting substrates and a liquid crystal material sandwiched between the supporting substrates and having a plurality of regions having different liquid crystal alignment directions. A liquid crystal display device characterized by having a twist angle of liquid crystal alignment between the two and having a spontaneous twisting force of the liquid crystal material in the range of 20 μm to 200 μm.
【請求項2】一対の支持基板間に液晶物質を挟持してな
り、前記支持基板間に液晶の配向方向が異なる領域を複
数持つ液晶表示装置において、80°から100°の範
囲である上下基板間での液晶配向の捻じれ角を有し、且
つ、20μmから200μmの範囲である液晶材の自発
的な捻じれ力を有し、且つ、0°から1.5°の範囲で
あるような少なくとも一方の基板の少なくとも一領域の
基板表面での配向規制力の基板表面からの立ち上がり角
度を有することを特徴とする液晶表示装置。
2. A liquid crystal display device, comprising a pair of supporting substrates and a liquid crystal material sandwiched between the supporting substrates, and a plurality of regions having different alignment directions of liquid crystals between the supporting substrates. The upper and lower substrates are in the range of 80 ° to 100 °. The twist angle of the liquid crystal orientation between the two, the spontaneous twisting force of the liquid crystal material in the range of 20 μm to 200 μm, and the range of 0 ° to 1.5 °. A liquid crystal display device, wherein at least one region of at least one of the substrates has a rising angle from the substrate surface of an alignment control force on the substrate surface.
JP6083273A 1994-04-21 1994-04-21 Liquid crystal display device Pending JPH07294932A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6083273A JPH07294932A (en) 1994-04-21 1994-04-21 Liquid crystal display device
US08/768,506 US5864376A (en) 1994-04-21 1996-12-18 LCD of a selected twist angle through an LC material of a selected chiral pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6083273A JPH07294932A (en) 1994-04-21 1994-04-21 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH07294932A true JPH07294932A (en) 1995-11-10

Family

ID=13797754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6083273A Pending JPH07294932A (en) 1994-04-21 1994-04-21 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH07294932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116465A (en) * 2000-08-04 2002-04-19 Minolta Co Ltd Liquid crystal optical modulation device and method for manufacturing the same
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
US7283191B2 (en) 2003-11-19 2007-10-16 Seiko Epson Corporation Liquid crystal display device and electronic apparatus wherein liquid crystal molecules having particular pre-tilt angle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226126A (en) * 1986-03-27 1987-10-05 Stanley Electric Co Ltd Liquid crystal display element
JPS63284520A (en) * 1987-05-18 1988-11-21 Toshiba Corp Liquid crystal display device
JPS6444416A (en) * 1987-08-12 1989-02-16 Fujitsu Ltd Liquid crystal display panel
JPH04355725A (en) * 1991-06-03 1992-12-09 Matsushita Electric Ind Co Ltd Production of active matrix liquid crystal display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226126A (en) * 1986-03-27 1987-10-05 Stanley Electric Co Ltd Liquid crystal display element
JPS63284520A (en) * 1987-05-18 1988-11-21 Toshiba Corp Liquid crystal display device
JPS6444416A (en) * 1987-08-12 1989-02-16 Fujitsu Ltd Liquid crystal display panel
JPH04355725A (en) * 1991-06-03 1992-12-09 Matsushita Electric Ind Co Ltd Production of active matrix liquid crystal display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116465A (en) * 2000-08-04 2002-04-19 Minolta Co Ltd Liquid crystal optical modulation device and method for manufacturing the same
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device
US7283191B2 (en) 2003-11-19 2007-10-16 Seiko Epson Corporation Liquid crystal display device and electronic apparatus wherein liquid crystal molecules having particular pre-tilt angle

Similar Documents

Publication Publication Date Title
JP3120751B2 (en) In-plane switching LCD
KR100225910B1 (en) Lcd device
US20040105062A1 (en) Wide-viewing angle display device and fabrication method for thereof
JP3066255B2 (en) Liquid crystal display
JPH06160878A (en) Liquid crystal display device
KR20030083594A (en) A liquid crystal display
JP2000098405A (en) Liquid crystal display device with lateral electric field system
JP2828073B2 (en) Active matrix liquid crystal display
KR100319467B1 (en) Liquid Crystal Display device
KR20040016404A (en) Liquid crystal display
JPH07181493A (en) Liquid crystal display element
JPH0736044A (en) Pixel orientation dividing type liquid crystal display element
JPH06194655A (en) Liquid crystal display element and its production
JP2002214613A (en) Liquid crystal display
JPH1195228A (en) Liquid crystal display element
JPH09179123A (en) Liquid crystal display element and production of liquid crystal display element.
JPH08190104A (en) Liquid crystal display element
JPH07294932A (en) Liquid crystal display device
EP0352792B1 (en) Liquid crystal device
JP3207374B2 (en) Liquid crystal display device
JP3657708B2 (en) Liquid crystal electro-optical device
JPH09146125A (en) Liquid crystal display element
JP2006301466A (en) Liquid crystal display device
JP3017966B2 (en) Double super twist nematic liquid crystal display
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970311