JPH07294776A - Optical receiving module - Google Patents

Optical receiving module

Info

Publication number
JPH07294776A
JPH07294776A JP6082854A JP8285494A JPH07294776A JP H07294776 A JPH07294776 A JP H07294776A JP 6082854 A JP6082854 A JP 6082854A JP 8285494 A JP8285494 A JP 8285494A JP H07294776 A JPH07294776 A JP H07294776A
Authority
JP
Japan
Prior art keywords
axis
substrate
photodetector
light
coaxial connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6082854A
Other languages
Japanese (ja)
Inventor
Yoshinori Hoshina
良典 星名
Hiroshi Narasaki
浩史 楢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6082854A priority Critical patent/JPH07294776A/en
Publication of JPH07294776A publication Critical patent/JPH07294776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To assure a high light reflection attenuation quantity without deterioration of electric signals and optical coupling by rotating a substrate mounted with a photodetector and IC around a coaxial connector at a specific angle and making light incident inclinatorily on this photodetector. CONSTITUTION:An orthogonal coordinate system having its X-axis at a direction where the signals are transmitted through a coaxial connector 3 on the high-frequency substrate 1 mounted with the photodetector 6 and the IC for amplifying its output on the same plane and having its Y-axis at an incident direction of light is taken. The axis rotating 6 from the the Z-axis around the X-axis as a center of rotation is taken as a ZI-axis. The substrate 1 is arranged on the plane created by the X-axis and the ZI-axis. The rotating angle theta is determined by a trade off relation between the optical coupling and the light reflection attenuation quantity. The rotating angle thetais made small when the photodetector is directed to the direction where the absolute value of the Z-axis component of the axial vector perpendicular to the side face of the ferrule 4 is maximized. As a result, the contact relation between the high-frequency signal line on the substrate and the coaxial connector does not change and, therefore, the inclining of the photodetector relative to the optical axis is possible without deteriorating the transmission characteristic of the electric signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信に使用される高
光反射減衰量が要求される高周波光受信モジュールに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency optical receiver module used in optical communication, which requires a high optical return loss.

【0002】[0002]

【従来の技術】伝送速度がGb/s以上になるに従い素
子実装に伴う寄生容量、寄生インダクタンス成分を減ら
すために、受光素子とICを極力近づけて並べ、バイパ
スコンデンサ、電源供給線を含めて同一基板上に実装す
る構造となっている。この実装例としては特開平5−0
74935号公報に示されている。この基板をモジュー
ルに組み込んだ例を図3に示す。モジュールの実装効率
を上げる為には、モジュールを実装する面7と平行に光
が入射し、またモジュールを実装する面7と平行に電気
信号が出ていくことが望ましい。基板1はグランドを強
化するために、グランド面が金属面と密着するように実
装され、ケース2内に気密封止される。光ファイバ端に
あるフェルール4から出射された光は、レンズ5によっ
て集光し1上の受光素子6と光学結合を取る。4の端面
は、端面反射による光反射減衰量を劣化させないため
に、8度程度の斜め研磨または無反射コウティングの手
段がある。フェルールのコストを考えると斜め研磨の方
が安価である。さらに、フェルールからの光が傾いて出
射するので、受光素子に光は傾いて入射し受光面からの
反射光による光反射減衰量も低減する。よって8度程度
の斜め研磨のフェルールを使用する。基板1は、モジュ
ールへの光の入射方向をY軸とすると光学結合が最大と
なる様に、Y軸と垂直に配置されていた。
2. Description of the Related Art As the transmission speed becomes higher than Gb / s, in order to reduce the parasitic capacitance and the parasitic inductance component due to the mounting of the device, the light receiving device and the IC are arranged as close as possible, and the same including the bypass capacitor and the power supply line. It has a structure to be mounted on a substrate. As an example of this implementation, Japanese Patent Laid-Open No. 5-0
No. 74935. An example of incorporating this substrate into a module is shown in FIG. In order to increase the mounting efficiency of the module, it is desirable that light is incident parallel to the surface 7 on which the module is mounted and that an electric signal is output parallel to the surface 7 on which the module is mounted. In order to reinforce the ground, the board 1 is mounted so that the ground surface is in close contact with the metal surface, and is hermetically sealed in the case 2. The light emitted from the ferrule 4 at the end of the optical fiber is condensed by the lens 5 and optically coupled with the light receiving element 6 on the lens 1. For the end surface of No. 4, there is a means of oblique polishing of about 8 degrees or non-reflection coating in order to prevent deterioration of the light reflection attenuation amount due to end surface reflection. Considering the ferrule cost, diagonal polishing is cheaper. Further, since the light from the ferrule is emitted with an inclination, the light is incident on the light receiving element with an inclination, and the light reflection attenuation amount due to the reflected light from the light receiving surface is also reduced. Therefore, an obliquely-polished ferrule of about 8 degrees is used. The substrate 1 was arranged perpendicular to the Y axis so that the optical coupling was maximized when the direction of light incident on the module was the Y axis.

【0003】[0003]

【発明が解決しようとする課題】上記実装方法では受光
素子に光が傾いて入射するが、受光素子によって反射し
た光がレンズによって再集光し、光反射減衰量が劣化す
るモジュール発生した。
In the mounting method described above, light is obliquely incident on the light receiving element, but the light reflected by the light receiving element is re-focused by the lens, and the light reflection attenuation amount deteriorates.

【0004】[0004]

【課題を解決するための手段】基板上の同軸型コネクタ
3を通って信号が伝達する方向をX軸、光の入射方向を
Y軸とする直交座標系をとり、X軸を回転中心としZ軸
からθ回転した軸をZ1軸とし、X軸とZ1軸のつくる
平面上に基板1を配置する。回転角θは光学結合と光反
射減衰量のトレードオフの関係より決める。フェルール
の端面に垂直な軸ベクトルのZ軸成分の絶対値が最大に
なる方向に向けると、回転角θは小さくできる。
A rectangular coordinate system having a direction in which a signal is transmitted through a coaxial connector 3 on a substrate as an X axis and a direction in which light is incident as a Y axis is taken, and the X axis is the center of rotation. The axis rotated by θ from the axis is the Z1 axis, and the substrate 1 is arranged on the plane formed by the X axis and the Z1 axis. The rotation angle θ is determined by the trade-off relationship between optical coupling and light reflection attenuation. The rotation angle θ can be made smaller in the direction in which the absolute value of the Z-axis component of the axis vector perpendicular to the end face of the ferrule is maximized.

【0005】[0005]

【作用】上記構造により、基板上の高周波信号線と同軸
型コネクタの接触関係が変わらないので、電気信号の伝
達特性を劣化させることなく、光素子を光軸に対して傾
けることができる。光素子によって反射された光は、光
素子とフェルールの距離をlとすると、光素子を光軸に
対して傾けない場合に比べレンズ上で l tanθ上方にあ
たりフェルールへの戻り光を低減することができる。
With the above structure, the contact relationship between the high-frequency signal line on the substrate and the coaxial connector does not change, so that the optical element can be tilted with respect to the optical axis without deteriorating the transmission characteristics of the electric signal. When the distance between the optical element and the ferrule is l, the light reflected by the optical element hits l tan θ above the lens and reduces the return light to the ferrule when compared with the case where the optical element is not tilted with respect to the optical axis. it can.

【0006】[0006]

【実施例】図1は本発明の一実施例を説明する図であ
る。光はコア径10μmφのシングルモードファイバを
通り、8度斜め研磨されているフェルールの端面から出
射される。コアガラスの屈折率を1.5とするとフェル
ールの端面から出射される光線は約5度傾いている。フ
ェルールの端面を、フェルールの端面に垂直な軸ベクト
ルのケース上方成分(Z成分)が最大になるように向け
ると、光線はケースの下向きに屈折して出射される。高
周波用の受光素子は容量を小さくするために受光径を小
さくする必要がある。5Gb/s以上の高周波に対応す
るためには30μmφ以下の受光径の素子が使用され、
さらに10Gb/s以上の高周波に対応するためには2
5〜20μmφ以下の受光径の素子が使用される。この
受光素子と光学結合をとるためにはガウシャンビームの
ビームウエスト径を15μmφまで絞り込まなければな
らない。1/4ピッチのセルフォックレンズを使用する
と、フェルールからセルフォックレンズまでの距離を
1.5mm、セルフォックレンズから受光素子までの距
離を1.5mmとすると達成できる。この光学系におい
て、基板を傾けない場合、光反射減衰量の目標を−27
dBとすると約50%のモジュールが目標を達成するこ
とができない。ここで受光素子のある基板面に垂直な軸
ベクトルが、Y軸に対して6〜8度ケースの上を向く様
に基板面を傾ける。基板面を傾けるためには、基板を搭
載する金属面8を斜めに加工することによって達成でき
る。以上の改善によって99%以上のモジュールが光反
射減衰量の目標を達成することができる。また、光学結
合については基板をθ傾けることによって受光径がco
sθ倍になったことと等化である。θが7度だとすると
受光径のZ成分が0.99倍に縮まったと考えられる。
ビームウエストに較べて受光径の方が大きいので光学結
合の劣化はない。図2には裏面入射型の受光素子を使用
した場合の一実施例を示す。フェルールの端面は上記例
と180度回転しており基板を傾ける方向も上記例と反
対側となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining an embodiment of the present invention. The light passes through a single mode fiber having a core diameter of 10 μmφ and is emitted from the end face of the ferrule that is obliquely polished by 8 degrees. If the refractive index of the core glass is 1.5, the light rays emitted from the end face of the ferrule are inclined by about 5 degrees. When the end face of the ferrule is oriented so that the case upper component (Z component) of the axis vector perpendicular to the end face of the ferrule is maximized, the light rays are refracted downward and emitted. The light receiving element for high frequency needs to have a small light receiving diameter in order to reduce the capacitance. In order to support high frequencies of 5 Gb / s or more, elements with a light receiving diameter of 30 μmφ or less are used.
Furthermore, in order to support high frequencies of 10 Gb / s or more, 2
An element having a light receiving diameter of 5 to 20 μmφ or less is used. In order to achieve optical coupling with this light receiving element, the beam waist diameter of the Gaussian beam must be narrowed down to 15 μmφ. When a quarter pitch SELFOC lens is used, this can be achieved when the distance from the ferrule to the SELFOC lens is 1.5 mm and the distance from the SELFOC lens to the light receiving element is 1.5 mm. In this optical system, when the substrate is not tilted, the target of the light reflection attenuation amount is -27.
In dB, about 50% of the modules cannot reach the goal. Here, the substrate surface is tilted so that the axis vector perpendicular to the substrate surface on which the light receiving element is located faces the case 6 to 8 degrees with respect to the Y axis. The tilting of the substrate surface can be achieved by obliquely processing the metal surface 8 on which the substrate is mounted. With the above improvement, 99% or more of the modules can achieve the target of the optical return loss. For optical coupling, the light receiving diameter is
It is sθ times and equalization. If θ is 7 degrees, it is considered that the Z component of the light receiving diameter is reduced by 0.99.
Since the light receiving diameter is larger than the beam waist, there is no deterioration in optical coupling. FIG. 2 shows an embodiment in which a back illuminated light receiving element is used. The end face of the ferrule is rotated 180 degrees from the above example, and the direction of tilting the substrate is also the opposite side to the above example.

【0007】[0007]

【発明の効果】以上詳述のように電気信号、光学結合の
劣化なしに光反射減衰量を大きく取れ、歩留まりを向上
することができる。また、製造に関しても従来モジュー
ルの小変更によって対策でき、従来と同等のコストで作
製可能である。
As described above in detail, a large amount of light reflection attenuation can be obtained without deterioration of electric signals and optical coupling, and the yield can be improved. Further, regarding the manufacturing, it is possible to take measures by making a small change in the conventional module, and it is possible to manufacture at the same cost as the conventional.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】裏面入射型の受光素子を使用した場合の本発明
の一実施例を示す図である。
FIG. 2 is a diagram showing an embodiment of the present invention when a back-illuminated light receiving element is used.

【図3】従来の光受信モジュールの構造例を示す図であ
る。
FIG. 3 is a diagram showing a structural example of a conventional optical receiver module.

【符号の説明】[Explanation of symbols]

1…受光素子,ICが搭載された高周波基板、2…ケー
ス、3…高周波同軸コネクタ、4…フェルール、5…セ
ルフォクレンズ、6…受光素子、7…モジュールの実装
面、8…基板を搭載する金属。
DESCRIPTION OF SYMBOLS 1 ... High-frequency board on which light-receiving element, IC is mounted, 2 ... Case, 3 ... High-frequency coaxial connector, 4 ... Ferrule, 5 ... Selfoc lens, 6 ... Light-receiving element, 7 ... Module mounting surface, 8 ... Board mounted Metal to do.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】受光素子と該受光素子の出力を増幅するI
Cが同一平面上に搭載されており、受光素子の受光面と
平行となるように実装されている基板Aがケース内に気
密封止されており、該基板上の信号を同軸型コネクタに
より出力する光受信モジュールにおいて、前記基板上の
信号が伝達する方向をX軸、モジュールに光が入射する
方向でX軸に垂直な方向をY軸、X軸とY軸に垂直な方
向をZ軸とする直交座標系をとり、X軸を回転中心とし
Z軸から4〜10度回転して傾けた軸をZ1軸とし、X
軸とZ1軸のつくる平面上に基板Aを配置したことを特
徴とする光受信モジュール。
1. A light receiving element and I for amplifying an output of the light receiving element.
C is mounted on the same plane, and a substrate A mounted so as to be parallel to the light receiving surface of the light receiving element is hermetically sealed in a case, and a signal on the substrate is output by a coaxial connector. In the optical receiving module, a direction in which a signal on the substrate is transmitted is an X axis, a direction in which light is incident on the module is a Y axis, and a direction perpendicular to the X axis and the Y axis is a Z axis. The Cartesian coordinate system is used, and the axis tilted from the Z axis by 4 to 10 degrees about the X axis is the Z1 axis,
An optical receiver module in which a substrate A is arranged on a plane formed by the Z axis and the Z1 axis.
JP6082854A 1994-04-21 1994-04-21 Optical receiving module Pending JPH07294776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6082854A JPH07294776A (en) 1994-04-21 1994-04-21 Optical receiving module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6082854A JPH07294776A (en) 1994-04-21 1994-04-21 Optical receiving module

Publications (1)

Publication Number Publication Date
JPH07294776A true JPH07294776A (en) 1995-11-10

Family

ID=13785953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6082854A Pending JPH07294776A (en) 1994-04-21 1994-04-21 Optical receiving module

Country Status (1)

Country Link
JP (1) JPH07294776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022822A1 (en) * 1998-08-05 2000-07-26 Seiko Epson Corporation Optical module and method of manufacture thereof
JP2005108935A (en) * 2003-09-29 2005-04-21 Opnext Japan Inc Optical receiving module and its manufacturing method
US7021840B2 (en) 2002-06-25 2006-04-04 Sumitomo Electric Industries, Ltd. Optical receiver and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022822A1 (en) * 1998-08-05 2000-07-26 Seiko Epson Corporation Optical module and method of manufacture thereof
EP1022822B1 (en) * 1998-08-05 2007-12-12 Seiko Epson Corporation Optical module
US7021840B2 (en) 2002-06-25 2006-04-04 Sumitomo Electric Industries, Ltd. Optical receiver and method of manufacturing the same
JP2005108935A (en) * 2003-09-29 2005-04-21 Opnext Japan Inc Optical receiving module and its manufacturing method

Similar Documents

Publication Publication Date Title
US5390271A (en) Optical interface for hybrid circuit
JP3758526B2 (en) Bidirectional optical communication device, bidirectional optical communication device, and bidirectional optical communication device assembling method
EP0893720B1 (en) A micro-photonics module with a partition wall
JP2926664B2 (en) Optical module
US5181264A (en) Transceiver for bidirectional signal transmission over a monomodal optical fiber
US4398794A (en) Dual directional tap coupler
US5647041A (en) Multimode fiber beam compressor
JP2003207695A (en) Optical communication module and single-core two-way optical modulation module
CN212009027U (en) Optical fiber FA structure and high return loss light receiving device
CN113267856A (en) Transmitting-receiving coaxial compact laser transmitting-receiving device
US4741595A (en) Optical transmission device
JPH04369888A (en) Semiconductor laser module
JP2836583B2 (en) Optical coupling structure between light receiving element and optical fiber
JPH07294776A (en) Optical receiving module
JPS63182617A (en) Optical apparatus
JPH07270642A (en) Optical fiber end with reflecting type lens integrated in one body
CN111367027A (en) Optical fiber FA structure and high return loss light receiving device
JPS60153010A (en) Optical coupling system
CN2550785Y (en) Double wave length single fibre two-way transreceiving integrated active device
JPH10268164A (en) Photodiode module
JPH05273444A (en) Photodetection module
JPH02727Y2 (en)
JP3295327B2 (en) Bidirectional optical module
US6161965A (en) Optical coupling circuit
JPH07198976A (en) Method of converting optical path