JPH07294639A - Supersonic distance measuring instrument and running controller of unmanned vehicle - Google Patents

Supersonic distance measuring instrument and running controller of unmanned vehicle

Info

Publication number
JPH07294639A
JPH07294639A JP6082139A JP8213994A JPH07294639A JP H07294639 A JPH07294639 A JP H07294639A JP 6082139 A JP6082139 A JP 6082139A JP 8213994 A JP8213994 A JP 8213994A JP H07294639 A JPH07294639 A JP H07294639A
Authority
JP
Japan
Prior art keywords
ultrasonic
response
unit
wave signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6082139A
Other languages
Japanese (ja)
Inventor
Kenjiro Birei
賢次郎 美麗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6082139A priority Critical patent/JPH07294639A/en
Publication of JPH07294639A publication Critical patent/JPH07294639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To reduce power consumption of a response part in an ultrasonic distance measuring instrument which consists of a calling part and a response part and the response part operates according to the call from the call part and the distance between the call part and the response part is measured. CONSTITUTION:This instrument consists of a wave transmission circuit 20 for projecting ultrasonic signals, a signal reception circuit 22 for receiving electromagnetic wave signal projected from a response part 31, and a distance operation means (microcomputer 5) and the response part 31 consists of a wave reception circuit 25 for receiving an ultrasonic signal projected from the call part 30 and a signal transmission circuit 28 for projecting an electromagnetic signal when the wave reception circuit 25 receives the ultrasonic signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は被検体との間の距離を測
定する超音波距離測定装置、およびこの超音波距離測定
装置を用いた無人走行台車の走行制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic distance measuring device for measuring a distance to an object and a traveling control device for an unmanned traveling vehicle using the ultrasonic distance measuring device.

【0002】[0002]

【従来の技術】図5は従来の超音波距離測定装置の一例
を示す回路図である。図5において、超音波振動子2は
送波回路3およびゲート回路4を介してマイクロコンピ
ュータ5に接続されている。この超音波振動子2には、
また受波回路6が接続され、この受波回路6はコンパレ
ータ7を介して出力回路8を備えたマイクロコンピュー
タ5に接続されている。
2. Description of the Related Art FIG. 5 is a circuit diagram showing an example of a conventional ultrasonic distance measuring apparatus. In FIG. 5, the ultrasonic transducer 2 is connected to the microcomputer 5 via the wave transmission circuit 3 and the gate circuit 4. In this ultrasonic transducer 2,
A wave receiving circuit 6 is also connected, and the wave receiving circuit 6 is connected via a comparator 7 to a microcomputer 5 having an output circuit 8.

【0003】この超音波距離測定装置の動作は次の通り
である。送波回路3に接続された超音波振動子2はマイ
クロコンピュータ5で制御されるゲート回路4により、
断続的な超音波からなる超音波信号を被検体に取り付け
た反射板12に投射する。投射された超音波信号は反射
板12により反射されて超音波振動子2に戻り、この超
音波振動子2で受波され、受波回路6で増幅され、コン
パレータ7で検出されて、マイクロコンピュータ5に検
出信号が出力される。マイクロコンピュータ5は超音波
振動子2から投射した超音波信号が再びこの超音波振動
子2に戻ってくるまでの時間を計測し、この時間から超
音波振動子2と反射板12との間の距離を演算し、この
距離に対応した電圧値の測定信号を出力回路8から出力
する。
The operation of this ultrasonic distance measuring device is as follows. The ultrasonic transducer 2 connected to the transmitting circuit 3 is controlled by the gate circuit 4 controlled by the microcomputer 5.
An ultrasonic signal composed of intermittent ultrasonic waves is projected onto the reflector 12 attached to the subject. The projected ultrasonic wave signal is reflected by the reflection plate 12 and returns to the ultrasonic wave oscillator 2, received by the ultrasonic wave oscillator 2, amplified by the wave receiving circuit 6, detected by the comparator 7, and detected by the microcomputer. The detection signal is output to 5. The microcomputer 5 measures the time until the ultrasonic wave signal projected from the ultrasonic vibrator 2 returns to the ultrasonic vibrator 2, and from this time, the time between the ultrasonic vibrator 2 and the reflector 12 is measured. The distance is calculated, and the measurement signal of the voltage value corresponding to this distance is output from the output circuit 8.

【0004】しかしながら、この超音波距離測定装置
は、狭い場所では被検体に取り付けた反射板の他に周囲
の物体からの反射超音波を受波し誤動作を起す危険があ
る。また、超音波振動子から投射された超音波信号の経
路は被検体までの往路、およびここで反射されて再びこ
の超音波振動子に戻ってくるまでの復路となり、距離が
長く、かつ反射を含むので、この間の減衰が大きく検出
距離が短かい問題がある。また、往復に時間を要するの
で、応答時間が遅い問題がある。更にまた、超音波振動
子は一般に超音波を投射後にしばらく残響があるので、
この間は反射超音波を受波できないので、検出距離の短
かい側に検出不能領域ができる問題がある。
However, this ultrasonic distance measuring device receives a reflected ultrasonic wave from a surrounding object in addition to the reflecting plate attached to the subject in a narrow place and may cause a malfunction. In addition, the path of the ultrasonic signal projected from the ultrasonic transducer is the outward path to the subject, and the return path where the ultrasonic signal is reflected here and returns to the ultrasonic transducer again. Therefore, there is a problem that the attenuation is large during this period and the detection distance is short. Further, since it takes time to make a round trip, there is a problem that the response time is slow. Furthermore, since the ultrasonic transducer generally reverberates for a while after the ultrasonic wave is projected,
Since the reflected ultrasonic waves cannot be received during this period, there is a problem that an undetectable region is formed on the short detection side.

【0005】これらの問題点を解決するために、図6に
示す超音波距離測定装置が提案されている。図6におい
て、この超音波距離測定装置は呼掛け部30と、応答部
31とから構成され、呼掛け部30は超音波振動子24
が、順次受波回路25およびコンパレータ26を介し
て、出力回路8を備えたマイクロコンピュータ5に接続
され、このマイクロコンピュータ5にはゲート回路27
を介して投光回路28が接続されている。また、応答部
31は送波回路20に超音波振動子21と、ゲート回路
23を介し受光回路22に接続されている。そしてこの
応答部31は被検体に取り付けられる。
In order to solve these problems, an ultrasonic distance measuring device shown in FIG. 6 has been proposed. In FIG. 6, the ultrasonic distance measuring device is composed of an interrogation unit 30 and a response unit 31, and the interrogation unit 30 includes the ultrasonic transducer 24.
Are sequentially connected to the microcomputer 5 having the output circuit 8 via the wave receiving circuit 25 and the comparator 26, and the microcomputer 5 includes a gate circuit 27.
The light projecting circuit 28 is connected via. The response unit 31 is connected to the ultrasonic wave transducer 21 in the wave transmission circuit 20 and the light receiving circuit 22 via the gate circuit 23. The response unit 31 is attached to the subject.

【0006】この超音波距離測定装置の動作は次の通り
である。呼掛け部30の投光回路28はマイクロコンピ
ュータ5で制御されるゲート回路27により、断続的な
光からなる光信号を被検体に取り付けた応答部31の受
光回路22投射する。受光回路22はこの光信号を受
光,増幅してゲート回路23に出力する。ゲート回路2
3は、送波回路20をこの光信号の受光のタイミングで
動作させて、超音波振動子21からこの受光のタイミン
グで超音波信号を呼掛け部30の超音波振動子24に投
射する。この超音波信号は超音波振動子24で受波さ
れ、受波回路25で増幅され、コンパレータ26で検出
されて、検出信号がマイクロコンピュータ5に出力され
る。マイクロコンピュータ5は応答部31の超音波振動
子21から投射された超音波信号が呼掛け部30の超音
波振動子24に達するまでの時間を計測し、この時間か
ら呼掛け部30の超音波振動子24と応答部31の超音
波振動子21との間の距離を演算し、この距離に対応し
た電圧値の測定信号を出力回路8から出力する。なお、
光信号が呼掛け部30から応答部31に達する時間は光
の速度から無視できる。
The operation of this ultrasonic distance measuring device is as follows. The light projecting circuit 28 of the interrogation unit 30 projects an optical signal of intermittent light by the gate circuit 27 controlled by the microcomputer 5 to the light receiving circuit 22 of the response unit 31 attached to the subject. The light receiving circuit 22 receives this optical signal, amplifies it, and outputs it to the gate circuit 23. Gate circuit 2
3 operates the transmitting circuit 20 at the timing of receiving the optical signal, and projects the ultrasonic signal from the ultrasonic transducer 21 to the ultrasonic transducer 24 of the interrogation unit 30 at the timing of receiving the optical signal. This ultrasonic signal is received by the ultrasonic transducer 24, amplified by the wave receiving circuit 25, detected by the comparator 26, and the detection signal is output to the microcomputer 5. The microcomputer 5 measures the time until the ultrasonic signal projected from the ultrasonic transducer 21 of the response section 31 reaches the ultrasonic transducer 24 of the interrogation section 30, and from this time, the ultrasonic wave of the interrogation section 30 is measured. The distance between the vibrator 24 and the ultrasonic vibrator 21 of the response unit 31 is calculated, and the output circuit 8 outputs a measurement signal having a voltage value corresponding to this distance. In addition,
The time required for the optical signal to reach the response unit 31 from the interrogation unit 30 can be ignored from the speed of light.

【0007】この超音波距離測定装置は、被検体に応答
部31を設け、この応答部31が呼掛け部30からの呼
掛けに応じて超音波信号を投射し、呼掛け部30はこの
超音波信号を受波するので、超音波信号の経路は応答部
31から呼掛け部30までの往路だけとなり、しかも反
射板を介することなく直接送られるので、この間の減衰
が少なく検出距離が長くなり、また周囲の物体からの反
射超音波による誤動作がない。更に、超音波信号の経路
が応答部31から呼掛け部30までの往路だけになるの
で、応答時間が早くなる。更にまた、超音波振動子は送
波用と受波用に分離されているので、超音波振動子の残
響により検出距離の短かい側に検出不能領域を生じるこ
とがなくなる。
This ultrasonic distance measuring apparatus is provided with a response section 31 on the subject, and the response section 31 projects an ultrasonic signal in response to an interrogation from the interrogation section 30, and the interrogation section 30 transmits the ultrasonic signal. Since the ultrasonic wave signal is received, the path of the ultrasonic wave signal is only the outward path from the response section 31 to the interrogation section 30, and since it is directly sent without passing through the reflection plate, there is little attenuation during this period and the detection distance becomes long. Also, there is no malfunction due to ultrasonic waves reflected from surrounding objects. Furthermore, since the path of the ultrasonic signal is only the outward path from the response unit 31 to the interrogation unit 30, the response time is shortened. Furthermore, since the ultrasonic transducers are separated for transmitting waves and for receiving waves, reverberation of the ultrasonic transducers does not cause an undetectable region on the short detection side.

【0008】[0008]

【発明が解決しようとする課題】前述の超音波距離測定
装置は優れた性能を有するが、なお次のような問題があ
る。すなわち、この超音波距離測定装置は応答部を被検
体に取り付け、呼掛け部から光信号による呼掛けに応じ
てこの応答部から超音波信号を投射するようにしている
が、一般に超音波振動子の発振効率は非常に悪いので応
答部で消費される電力が大きい問題がある。この応答部
は被検体などに随時取り付けて用いるので、消費電力が
大きいことは問題となる場合が多い。特に、応答部に商
用電源を配線することが困難で、バッテリーを電源とす
る場合には問題となる。
Although the above-mentioned ultrasonic distance measuring device has excellent performance, it still has the following problems. That is, in this ultrasonic distance measuring device, a response unit is attached to the subject and an ultrasonic signal is projected from the response unit in response to an interrogation by an optical signal from the interrogation unit. Since the oscillation efficiency of is extremely low, there is a problem that the power consumed in the response unit is large. Since the response unit is used by being attached to a subject or the like at any time, the large power consumption is often a problem. In particular, it is difficult to connect a commercial power source to the response unit, which is a problem when a battery is used as the power source.

【0009】本発明の目的は呼掛け部と応答部とから構
成され、呼掛け部からの呼掛けに応じて応答部が動作
し、呼掛け部と応答部間の距離を測定する超音波距離測
定装置において、応答部の消費電力を低減することにあ
る。更に、本発明の目的はこの超音波距離測定装置を用
いた無人走行台車の走行制御装置を提供することにあ
る。
An object of the present invention is to configure an interrogation unit and a response unit, and the response unit operates in response to an interrogation from the interrogation unit, and an ultrasonic distance for measuring a distance between the interrogation unit and the response unit. In the measuring device, it is to reduce the power consumption of the response unit. A further object of the present invention is to provide a traveling control device for an unmanned traveling vehicle using this ultrasonic distance measuring device.

【0010】[0010]

【課題を解決するための手段】前述の目的を達成するた
めに、請求項1に記載の超音波距離測定装置において
は、呼掛け部と応答部とから構成され、前記呼掛け部は
超音波信号を投射する送波回路と、前記応答部から投射
された電磁波信号を受信する受信回路と、前記送波回路
から超音波信号を投射してから前記受信回路が応答部か
らの電磁波信号を受信するまでの時間を計測し、この時
間から前記呼掛け部と応答部との間の距離を演算する距
離演算手段とからなり、前記応答部は前記呼掛け部の超
音波信号を受信する受波回路と、この受波回路で前記呼
掛け部から投射された超音波信号を受波したとき電磁波
信号を投射する送信回路とからなるようにする。そし
て、前記電磁波信号は光信号あるいは電波信号からなる
ようにすると好適である。
In order to achieve the above-mentioned object, an ultrasonic distance measuring device according to claim 1 comprises an interrogation unit and a response unit, and the interrogation unit is an ultrasonic wave. A wave transmitting circuit that projects a signal, a receiving circuit that receives the electromagnetic wave signal projected from the response unit, and an ultrasonic signal that is projected from the wave transmitting circuit before the receiving circuit receives the electromagnetic wave signal from the response unit And a distance calculation means for calculating a distance between the interrogation unit and the response unit from the time, the response unit receiving the ultrasonic signal from the interrogation unit. A circuit and a transmission circuit for projecting an electromagnetic wave signal when the ultrasonic wave signal projected from the interrogation section is received by the wave receiving circuit. The electromagnetic wave signal is preferably composed of an optical signal or a radio wave signal.

【0011】また、請求項3に記載の無人走行台車の走
行制御装置においては、無人走行台車に請求項1記載の
超音波距離測定装置の呼掛け部を、この無人走行台車の
走行領域の周辺および領域内にこの超音波距離測定装置
の応答部を複数個設け、無人走行台車は、この無人走行
台車に設けられた運転制御装置のプログラムに基づき、
この呼掛け部と前記各応答部間の距離を順次測定するこ
とにより走行方向および走行距離を定めて走行するよう
にする。
In the traveling control device for an unmanned traveling vehicle according to a third aspect, the interrogation section of the ultrasonic distance measuring device according to the first aspect is provided on the unmanned traveling vehicle around the traveling area of the unmanned traveling vehicle. And a plurality of response units of this ultrasonic distance measuring device is provided in the area, the unmanned traveling vehicle is based on the program of the operation control device provided in this unmanned traveling vehicle,
By sequentially measuring the distance between the interrogation unit and each of the response units, the traveling direction and the traveling distance are determined so that the vehicle travels.

【0012】[0012]

【作用】請求項1に記載の超音波距離測定装置では、呼
掛け部の送波回路から投射された超音波信号を応答部の
受波回路が受波すると、この応答部の送信回路から光あ
るいは電波などからなる電磁波信号が投射され、この電
磁波信号は呼掛け部の受信回路で受信される。従って、
呼掛け部から超音波信号が投射され、この超音波信号が
応答部で受波される時間を計測し、この時間から呼掛け
部と応答部の間の距離が測定でき、かつ周囲の物体から
の反射超音波の影響はなくなる。なお、電磁波信号が応
答部から呼掛け部に達する時間は、光あるいは電波など
電磁波の速度から無視できる。この応答部には超音波を
投射する超音波振動子がないので、その電力消費は少な
い。
In the ultrasonic distance measuring apparatus according to the first aspect, when the receiving circuit of the response section receives the ultrasonic signal projected from the transmitting circuit of the interrogation section, the optical signal is transmitted from the transmitting circuit of the response section. Alternatively, an electromagnetic wave signal such as a radio wave is projected, and this electromagnetic wave signal is received by the reception circuit of the interrogation unit. Therefore,
The ultrasonic signal is projected from the interrogation unit, the time when this ultrasonic signal is received by the response unit is measured, and the distance between the interrogation unit and the response unit can be measured from this time, and the surrounding object The influence of the reflected ultrasonic waves on is eliminated. The time required for the electromagnetic wave signal to reach the interrogation section from the response section can be ignored from the speed of electromagnetic waves such as light or radio waves. Since the response unit has no ultrasonic transducer for projecting ultrasonic waves, its power consumption is low.

【0013】また、無人走行台車に請求項1記載の超音
波距離測定装置の呼掛け部を、この無人走行台車の走行
領域の周辺および領域内にこの超音波距離測定装置の応
答部を複数個設け、無人走行台車は、この無人走行台車
に設けられた運転制御装置のプログラムに基づき、この
呼掛け部と前記各応答部間の距離を順次測定することに
より走行方向および走行距離を定めて走行することによ
り、周囲の物体の反射超音波の影響による誤動作が防止
され、信頼性の高い無人走行が可能になる。そしてこの
応答部をバッテリー給電とすることにより、電力消費が
少なく寿命の長い、このバッテリー給電の応答部は走行
領域の周辺および領域内に必要個数を容易に設けること
ができる。
Further, the unmanned traveling vehicle is provided with an interrogation unit of the ultrasonic distance measuring apparatus according to claim 1, and a plurality of response units of the ultrasonic distance measuring apparatus are provided around and within the traveling area of the unmanned traveling vehicle. The unmanned traveling vehicle travels by setting the traveling direction and traveling distance by sequentially measuring the distance between the interrogation unit and each response unit based on the program of the operation control device provided in the unmanned traveling vehicle. By doing so, malfunction due to the influence of reflected ultrasonic waves of surrounding objects can be prevented, and highly reliable unmanned traveling becomes possible. Since the response unit is battery-powered, the required number of battery-powered response units that consume less power and have a longer life can be easily provided around and within the travel area.

【0014】[0014]

【実施例】図1は本発明の超音波距離測定装置の一実施
例を示す回路図である。図1において、この超音波距離
測定装置は呼掛け部30と応答部31とから構成され、
呼掛け部30は超音波振動子21が、順次送波回路20
およびゲート回路23を介し出力回路8を備えたマイク
ロコンピュータ5に接続され、この送波回路20とゲー
ト回路23の接続点に光や電波など電磁波の受信回路2
2が接続されている。また、応答部31は超音波振動子
24が、順次受波回路25,コンパレータ26およびゲ
ート回路27を介し光や電波など電磁波の送信回路28
に接続されている。そして応答部31は被検体に取り付
けられる。
1 is a circuit diagram showing an embodiment of an ultrasonic distance measuring apparatus of the present invention. In FIG. 1, the ultrasonic distance measuring device is composed of an interrogation unit 30 and a response unit 31,
In the interrogation unit 30, the ultrasonic transducer 21 sequentially transmits the wave transmission circuit 20.
And a gate circuit 23, which is connected to a microcomputer 5 having an output circuit 8, and a receiving circuit 2 for receiving electromagnetic waves such as light and radio waves at a connection point between the transmitting circuit 20 and the gate circuit 23.
2 is connected. Further, in the response unit 31, the ultrasonic transducer 24 sequentially transmits the electromagnetic wave such as light or radio wave through the wave receiving circuit 25, the comparator 26 and the gate circuit 27.
It is connected to the. Then, the response unit 31 is attached to the subject.

【0015】この超音波距離測定装置の動作を図2に示
すタイムチャートを参照して説明する。呼掛け部30の
送波回路20に接続された超音波振動子21はマイクロ
コンピュータ5で制御されるゲート回路23により、断
続的に超音波からなる超音波信号を被検体に取り付けた
応答部31の超音波振動子24に投射する。同時にこの
ゲート回路23により受信回路22を受信可能な状態に
する。投射された超音波信号は応答部31の超音波振動
子24で受波され、受波回路25で増幅され、コンパレ
ータ26で検出されて、ゲート回路27に検出信号を出
力する。ゲート回路27は、この超音波信号の受光のタ
イミングで送信回路28を動作させて電磁波信号を呼掛
け部30の受信回路22に投射する。受信回路22は、
この電磁波信号を受信して受信信号をマイクロコンピュ
ータ5に出力する。マイクロコンピュータ5はこの受信
信号に基づいて受信回路22の受信可能な状態を解除す
るとともに、その内部の時間カウンタで呼掛け部30の
超音波振動子21から投射された超音波信号が応答部3
1の超音波振動子24に達するまでの時間(実際にはマ
イクロコンピュータ5からゲート回路23へのゲート信
号の送出時点から受信回路22からの受信信号が入力さ
れるまでの時間)を計測し、この時間から呼掛け部30
の超音波振動子21と応答部31の超音波振動子24と
の間の距離を演算し、この距離に対応した電圧値の測定
信号を出力回路8から出力する。なお、電磁波信号が応
答部31から呼掛け部30に達する時間は、電磁波の速
度から無視できる。
The operation of this ultrasonic distance measuring apparatus will be described with reference to the time chart shown in FIG. The ultrasonic transducer 21 connected to the wave transmission circuit 20 of the interrogation unit 30 is a response unit 31 in which an ultrasonic signal intermittently composed of ultrasonic waves is attached to the subject by a gate circuit 23 controlled by the microcomputer 5. The ultrasonic transducer 24 is projected. At the same time, the gate circuit 23 brings the receiving circuit 22 into a receivable state. The projected ultrasonic wave signal is received by the ultrasonic vibrator 24 of the response unit 31, amplified by the wave receiving circuit 25, detected by the comparator 26, and outputs a detection signal to the gate circuit 27. The gate circuit 27 operates the transmission circuit 28 at the timing of receiving the ultrasonic signal to project the electromagnetic wave signal on the reception circuit 22 of the interrogation unit 30. The receiving circuit 22 is
The electromagnetic wave signal is received and the received signal is output to the microcomputer 5. The microcomputer 5 cancels the receivable state of the receiving circuit 22 based on this received signal, and the ultrasonic signal projected from the ultrasonic transducer 21 of the interrogation unit 30 is transferred to the response unit 3 by the time counter inside the receiving circuit 22.
The time required to reach the ultrasonic transducer 24 of No. 1 (actually, the time from when the gate signal is sent from the microcomputer 5 to the gate circuit 23 until the reception signal from the reception circuit 22 is input) is measured, Interrogation unit 30 from this time
The distance between the ultrasonic transducer 21 and the ultrasonic transducer 24 of the response unit 31 is calculated, and the output circuit 8 outputs a measurement signal having a voltage value corresponding to this distance. The time for the electromagnetic wave signal to reach the interrogation unit 30 from the response unit 31 can be ignored from the speed of the electromagnetic wave.

【0016】この超音波距離測定装置は、応答部31に
超音波を投射する超音波振動子がないので、電力消費が
少なく、かつ原理的に図6に示す呼掛け部と応答部とか
らなる従来の超音波距離測定装置と同様の機能を有す
る。図3は、この超音波距離測定装置を用いた無人走行
台車の走行制御装置を示す平面図である。図3におい
て、41は無人走行台車が走行する領域であり、この走
行領域41の中に各作業場42が配置されており、無人
走行台車40はこの各作業場42の間の通路を走行す
る。そしてこの無人走行台車40には超音波距離測定装
置の呼掛け部30が搭載され、この走行領域41の周辺
および領域内には、無人走行台車40の進行方向に対応
した各地点A〜Jにそれぞれ応答部31が配置される。
Since this ultrasonic distance measuring device does not have an ultrasonic transducer for projecting ultrasonic waves in the response section 31, it consumes less power and, in principle, comprises an interrogation section and a response section shown in FIG. It has the same function as a conventional ultrasonic distance measuring device. FIG. 3 is a plan view showing a traveling control device for an unmanned traveling vehicle using this ultrasonic distance measuring device. In FIG. 3, reference numeral 41 denotes an area in which an unmanned traveling vehicle travels, each work area 42 is arranged in this traveling area 41, and the unmanned traveling vehicle 40 travels in a passage between the respective work areas 42. Then, the interrogation unit 30 of the ultrasonic distance measuring device is mounted on the unmanned traveling vehicle 40, and around the traveling area 41 and at each of the points A to J corresponding to the traveling direction of the unmanned traveling vehicle 40. A response unit 31 is arranged in each case.

【0017】この無人走行台車の走行制御装置の動作を
図4に示すフローチャートを参照して説明する。このフ
ローチャートは無人走行台車40に搭載されている運転
制御用マイクロコンピュータの動作を示す。ここで、無
人走行台車40を図3に示す位置から同図の破線で示す
経路に従って走行させる場合、まず、この無人走行台車
40が進行して呼掛け部30が地点Iの応答部31から
の電磁波信号を受けると、マイクロコンピュータ5はス
テップS1 で1回目の信号(n=1とする。以下同様)
であるか否かを確認し、ステップS3 で距離情報の有無
の確認をし、ステップS5 でその距離がaであることを
確認してステップS6 で右折する。この場合、ステップ
1 でn=1でないときはステップS2 で停止し異常を
表示し、ステップS3 で距離aの測定結果が得られない
ときは、人や非常の物体の侵入が考えられるのでステッ
プS4 で一時停車し、非常事態が回避されて距離情報が
得られるとステップS5 に進む。次にステップS7 で地
点Jの応答部31からの電磁波信号を受けると、マイク
ロコンピュータ5はステップS7 でn=2であるか否か
を確認し、以下同様に処理してステップS12で左折,ス
テップS18で左折する。そして、順次ステップが進み、
ステップS23で荷物の積み下ろしのためK地点で、例え
ば3分間停車させることもできる。このようにして最終
的にステップS35で目的地点に達して停止する。このよ
うにして、無人走行台車40に搭載されている運転制御
用マイクロコンピュータのプログラムを設定することに
より自由に走行ができる。
The operation of the traveling control device for the unmanned traveling vehicle will be described with reference to the flowchart shown in FIG. This flowchart shows the operation of the driving control microcomputer mounted on the unmanned traveling vehicle 40. Here, when the unmanned traveling vehicle 40 is caused to travel from the position shown in FIG. 3 along the route shown by the broken line in the figure, first, the unmanned traveling vehicle 40 advances and the interrogation unit 30 moves from the response unit 31 at the point I. When receiving the electromagnetic wave signal, the microcomputer 5 receives the first signal in step S 1 (n = 1. The same applies hereinafter).
Check whether a, the confirmation of the existence of the distance information in step S 3, the distance at step S 5 turns right in step S 6 and confirmed to be a. In this case, if n = 1 is not satisfied in step S 1 , the operation is stopped and an abnormality is displayed in step S 2 , and if the measurement result of the distance a cannot be obtained in step S 3, it is considered that a person or an emergency object has entered. Therefore, the vehicle temporarily stops at step S 4 , and when the emergency situation is avoided and the distance information is obtained, the process proceeds to step S 5 . Then when receiving electromagnetic signals from the response unit 31 of the point J at step S 7, and confirms whether the microcomputer 5 is n = 2 in step S 7, in step S 12 was treated similarly hereinafter Turn left, turn left at step S 18 . Then, the steps proceed in sequence,
In K point for luggage unloading at step S 23, it is also possible to stop for example 3 minutes. In this way, the stop finally reaches the destination point at step S 35. In this way, the driver can freely travel by setting the program of the operation control microcomputer installed in the unmanned traveling vehicle 40.

【0018】この場合、この超音波距離測定装置は検出
距離が長いので広い走行領域の制御ができ、かつこの超
音波距離測定装置は周囲の物体からの反射超音波の影響
を受けないので、この走行領域内の作業部などからの反
射超音波による誤動作が防止される。また、この応答部
は消費電力が小さいのでバッテリー電源を備えた応答部
として、容易に各地点に配置することができる
In this case, since the ultrasonic distance measuring device has a long detection distance, it can control a wide traveling area, and the ultrasonic distance measuring device is not affected by reflected ultrasonic waves from surrounding objects. Malfunction due to reflected ultrasonic waves from a working unit or the like in the traveling area is prevented. In addition, since this response unit consumes less power, it can be easily arranged at each point as a response unit equipped with a battery power source.

【0019】[0019]

【発明の効果】本発明は呼掛け部と応答部とから構成さ
れ、呼掛け部からの呼掛けに応じて応答部が動作し呼掛
け部と応答部間の距離を測定する超音波距離測定装置に
おいて、検出距離が長く、かつ周囲の物体からの反射超
音波による誤動作が防止されるとともに応答部の消費電
力を低減したので、例えばバッテリー給電として被検体
に容易に取付けが可能になる。また、この超音波距離測
定装置を用いた無人走行台車の制御装置では、広い走行
距離の制御ができ、かつこの走行領域内の作業部などか
らの反射超音波による誤動作が防止されるとともに、走
行領域の周辺および領域内に設ける複数個の応答部は、
同様バッテリー給電として容易に設けることができる。
The present invention is composed of an interrogation unit and a response unit, and the response unit operates according to an interrogation from the interrogation unit to measure the distance between the interrogation unit and the response unit. In the device, the detection distance is long, malfunctions due to reflected ultrasonic waves from surrounding objects are prevented, and the power consumption of the response unit is reduced. Therefore, for example, battery power supply can be easily attached to the subject. Further, in the control device for the unmanned traveling vehicle using this ultrasonic distance measuring device, it is possible to control a wide traveling distance, and prevent malfunction due to reflected ultrasonic waves from the working unit in this traveling area, while traveling. A plurality of response parts provided around the area and in the area are
Similarly, it can be easily provided as battery power supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超音波距離測定装置の一実施例を示す
回路図
FIG. 1 is a circuit diagram showing an embodiment of an ultrasonic distance measuring device of the present invention.

【図2】図1に示す本発明の超音波距離測定装置の動作
を示すタイムチャート
FIG. 2 is a time chart showing the operation of the ultrasonic distance measuring apparatus of the present invention shown in FIG.

【図3】図1に示す超音波距離測定装置を用いた本発明
の無人走行台車の走行制御装置の一実施例を示す平面図
FIG. 3 is a plan view showing an embodiment of a traveling control device for an unmanned traveling vehicle according to the present invention, which uses the ultrasonic distance measuring device shown in FIG.

【図4】図3に示す本発明の無人走行台車の走行制御装
置の動作を示すフローチャート
FIG. 4 is a flowchart showing the operation of the traveling control device for the unmanned traveling vehicle of the present invention shown in FIG.

【図5】従来の超音波距離測定装置の一例を示す回路図FIG. 5 is a circuit diagram showing an example of a conventional ultrasonic distance measuring device.

【図6】従来の超音波距離測定装置の異なる例を示す回
路図
FIG. 6 is a circuit diagram showing a different example of a conventional ultrasonic distance measuring device.

【符号の説明】[Explanation of symbols]

5 マイクロコンピュータ 20 送波回路 21 超音波振動子 22 受信回路 24 超音波振動子 25 受波回路 28 送信回路 30 呼掛け部 31 応答部 40 無人走行台車 41 走行領域 5 Microcomputer 20 Wave Transmitting Circuit 21 Ultrasonic Transducer 22 Receiving Circuit 24 Ultrasonic Transducer 25 Wave Receiving Circuit 28 Transmitting Circuit 30 Interrogation Section 31 Response Section 40 Unmanned Traveling Vehicle 41 Traveling Area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】呼掛け部と応答部とから構成され、前記呼
掛け部は超音波信号を投射する送波回路と、前記応答部
から投射された電磁波信号を受信する受信回路と、前記
送波回路から超音波信号を投射してから前記受信回路が
応答部からの電磁波信号を受信するまでの時間を計測
し、この時間から前記呼掛け部と応答部との間の距離を
演算する距離演算手段とからなり、前記応答部は前記呼
掛け部の超音波信号を受信する受波回路と、この受波回
路で前記呼掛け部から投射された超音波信号を受波した
とき電磁波信号を投射する送信回路とからなることを特
徴とする超音波距離測定装置。
1. An interrogation unit and a response unit, wherein the interrogation unit projects a ultrasonic wave signal, a reception circuit receives the electromagnetic wave signal projected from the response unit, and the transmission unit. A distance for measuring the time from the projection of the ultrasonic wave signal from the wave circuit to the reception circuit receiving the electromagnetic wave signal from the response section, and calculating the distance between the interrogation section and the response section from this time. Comprising an arithmetic means, the response unit receives an ultrasonic wave signal of the interrogation unit, and a wave receiving circuit that receives an ultrasonic wave signal projected from the interrogation unit in the wave reception circuit to generate an electromagnetic wave signal. An ultrasonic distance measuring device comprising a transmitting circuit for projecting.
【請求項2】請求項1に記載のものにおいて、電磁波信
号は光信号あるいは電波信号からなることを特徴とする
超音波距離測定装置。
2. The ultrasonic distance measuring device according to claim 1, wherein the electromagnetic wave signal is an optical signal or a radio wave signal.
【請求項3】呼掛け部と応答部とから構成され、前記呼
掛け部は超音波信号を投射する送波回路と、前記応答部
から投射された電磁波信号を受信する受信回路と、前記
送波回路から超音波信号を投射してから前記受信回路が
応答部からの電磁波信号を受信するまでの時間を計測
し、この時間から前記呼掛け部と応答部との間の距離を
演算する距離演算手段とからなり、前記応答部は前記呼
掛け部の超音波信号を受信する受波回路と、この受波回
路で前記呼掛け部から投射された超音波信号を受波した
とき電磁波信号を投射する送信回路とからなり、無人走
行台車に呼掛け部を、この無人走行台車の走行領域の周
辺および領域内に応答部を複数個設け、無人走行台車
は、この無人走行台車に設けられた運転制御装置のプロ
グラムに基づき、この呼掛け部と前記各応答部間の距離
を順次測定することにより走行方向および走行距離を定
めて走行することを特徴とする無人走行台車の走行制御
装置。
3. An interrogation unit and a response unit, wherein the interrogation unit projects a ultrasonic wave signal, a reception circuit receives the electromagnetic wave signal projected from the response unit, and the transmission unit. A distance for measuring the time from the projection of the ultrasonic wave signal from the wave circuit to the reception circuit receiving the electromagnetic wave signal from the response section, and calculating the distance between the interrogation section and the response section from this time. Comprising an arithmetic means, the response unit receives an ultrasonic wave signal of the interrogation unit, and a wave receiving circuit that receives an ultrasonic wave signal projected from the interrogation unit in the wave reception circuit to generate an electromagnetic wave signal. A transmission circuit for projecting, an interrogator for the unmanned traveling vehicle, and a plurality of response units around and within the traveling area of the unmanned traveling vehicle. The unmanned traveling vehicle was provided on this unmanned traveling vehicle. Based on the program of the operation controller, Running controller for the unmanned carriage, characterized by traveling defining a travel direction and travel distance by sequentially measuring a hanging portion the distance between the respective response unit.
JP6082139A 1994-04-21 1994-04-21 Supersonic distance measuring instrument and running controller of unmanned vehicle Pending JPH07294639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6082139A JPH07294639A (en) 1994-04-21 1994-04-21 Supersonic distance measuring instrument and running controller of unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6082139A JPH07294639A (en) 1994-04-21 1994-04-21 Supersonic distance measuring instrument and running controller of unmanned vehicle

Publications (1)

Publication Number Publication Date
JPH07294639A true JPH07294639A (en) 1995-11-10

Family

ID=13766097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6082139A Pending JPH07294639A (en) 1994-04-21 1994-04-21 Supersonic distance measuring instrument and running controller of unmanned vehicle

Country Status (1)

Country Link
JP (1) JPH07294639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491512B1 (en) * 2014-03-21 2015-02-11 한국산업기술대학교산학협력단 Methode and apparatus for measuring the length of a multi-section telescopic boom by using ultrasound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491512B1 (en) * 2014-03-21 2015-02-11 한국산업기술대학교산학협력단 Methode and apparatus for measuring the length of a multi-section telescopic boom by using ultrasound

Similar Documents

Publication Publication Date Title
US9507023B2 (en) Obstacle detection device for vehicle and obstacle detection system for vehicle
US6431001B1 (en) Obstacle detecting system having snow detecting function
JPH041314B2 (en)
JPH07198828A (en) Method and device for operating ultrasonic sensor
US5223680A (en) Measuring elevator car position using ultrasound
JPH01136087A (en) Monitor for retraction safety device of automobile
JPH11295419A (en) Ultrasonic distance measurement method and apparatus of transmission reception separation type reflecting system
JP2004085214A (en) Apparatus for detecting parking space
JPH07294639A (en) Supersonic distance measuring instrument and running controller of unmanned vehicle
JP2000304860A (en) Ultrasonic detector for mounting on vehicle
JP2000266849A (en) Distance-detecting apparatus
JPH0357738A (en) Obstruction article monitoring device for vehicle
JP3054798B2 (en) Ultrasonic sensor
JPH0396890A (en) Distance measuring device for running body
JPS6217738Y2 (en)
KR100242775B1 (en) A rear sensing installation of car using the car-lan
JPS60233579A (en) Position measuring method and its device
Fan et al. Application of ultrasonic sensors in the vehicle collision avoidance and early warning system
JPH09133560A (en) Ultrasonic flowmeter
JPH0540179A (en) Vehicle borne ultrasonic sensor
JPS6217739Y2 (en)
JP2834850B2 (en) Acoustic positioning device
JPH0449076B2 (en)
JPH07191140A (en) Obstacle detecting device for vehicle
JP3047878U (en) Vehicle object detection device