JPH07294618A - Method for measuring direction of signal - Google Patents
Method for measuring direction of signalInfo
- Publication number
- JPH07294618A JPH07294618A JP8900494A JP8900494A JPH07294618A JP H07294618 A JPH07294618 A JP H07294618A JP 8900494 A JP8900494 A JP 8900494A JP 8900494 A JP8900494 A JP 8900494A JP H07294618 A JPH07294618 A JP H07294618A
- Authority
- JP
- Japan
- Prior art keywords
- target
- signal
- azimuth
- dome
- propagation time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ソーナシステム等にお
いて、音響ドーム等のドームに収容された受波器アレイ
を用いて目標の信号方位を測定する信号方位測定方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal azimuth measuring method for measuring a target signal azimuth in a sonar system or the like using a receiver array housed in a dome such as an acoustic dome.
【0002】[0002]
【従来の技術】従来、このような分野の技術としては、
例えば、次のような文献に記載されるものがあった。 文献;ロバート ジェイ ユーリック(Robert J.Uric
k) 「プリンシプルズオブ アンダーウオーター サウ
ンド(Principles of Underwater Sound)」(198
0)、マグロウヒル ブック カンパニー(McGraw-Hil
l Book Company) (米) 図2は、信号方位測定方法を実施するための信号方位測
定装置の機能ブロック図である。この従来の信号方位測
定装置では、音響ドーム内に収容された目標からの信号
を受信する複数個の受波器1−i(i=1〜N)からな
る受波器アレイ1を有している。各受波器1−iの出力
側には、予測する目標の複数個の方位θk (k=1〜
m)に対応する整相面と受波器1−iとの間を目標から
の信号が伝搬する伝搬時間を求め、該伝搬時間に基づい
て方位θk 毎にビームを作成する整相器2が接続されて
いる。整相器2の出力側には、方位θk のビームのなか
でビームの出力強度が最大となるビームの方位θを算出
する方位測定器3が接続されている。方位測定器3から
は、目標の信号方位θが出力される。2. Description of the Related Art Conventionally, as a technique in such a field,
For example, some documents were described in the following documents. Literature; Robert J. Uric
k) "Principles of Underwater Sound" (198
0), McGraw-Hill Book Company (McGraw-Hil
Book Company) (US) FIG. 2 is a functional block diagram of a signal bearing measuring device for carrying out the signal bearing measuring method. This conventional signal azimuth measuring device has a receiver array 1 including a plurality of receivers 1-i (i = 1 to N) for receiving signals from a target housed in an acoustic dome. There is. On the output side of each wave receiver 1-i, a plurality of target azimuths θ k (k = 1 to 1) to be predicted are provided.
m), a phase shifter 2 for obtaining a propagation time for a signal from the target to propagate between the phase matching surface corresponding to m) and the receiver 1-i, and forming a beam for each azimuth θ k based on the propagation time. Are connected. An azimuth measuring device 3 is connected to the output side of the phase adjuster 2 for calculating the azimuth θ of the beam having the maximum output intensity among the beams of the azimuth θ k . The target signal bearing θ is output from the bearing measuring device 3.
【0003】図3は、前記文献に記載された従来の信号
方位を測定する原理を説明するための図である。図3に
おいて、点X1 と点X2 との中心に位置する点Oで受信
する目標からの信号の受波面を整相面9として、整相面
9と点X1 との間を目標からの信号が伝搬する伝搬時間
τ1 は次式(1)で、整相面9と点X2 との間を目標か
らの信号が伝搬する伝搬時間τ2 は次式(2)で、それ
ぞれ表すことができる。 τ1 =d1 ・cosθ/c ・・・(1) τ2 =d2 ・cosθ/c ・・・(2) ここで、d1 は点Oと点X1 との間の距離、d2 は点O
と点X2 との間の距離であり、θは目標の方位であり、
cは音速である。τ1 、またはτ2 の伝搬時間だけ点X
1 、またはX2 で受信した信号S1 、またはS2 を補正
すると、この補正した信号と点Oで受信した信号の位相
が揃い、点Oで受信した信号、及び補正した信号の和
(以下、方位θのビームと呼ぶ)が最大となる。従っ
て、あらかじめ予測する複数の信号の方位θk のビーム
を作成し、これらのビームの出力が最大となるビームの
方位を目標の方位として測定する。FIG. 3 is a diagram for explaining the principle of measuring the conventional signal direction described in the above document. In FIG. 3, the wave-receiving surface of the signal received from the target received at the point O located at the center of the points X 1 and X 2 is the phase-matching surface 9, and the space between the phase-matching surface 9 and the point X 1 is the target. The propagation time τ 1 of the signal of is propagated by the following equation (1), and the propagation time τ 2 of the signal of the target traveling between the phase matching surface 9 and the point X 2 is represented by the following equation (2). be able to. τ 1 = d 1 · cos θ / c (1) τ 2 = d 2 · cos θ / c (2) where d 1 is the distance between the point O and the point X 1, and d 2 Is point O
Is the distance between the point and the point X 2 , θ is the target azimuth,
c is the speed of sound. Point X for the propagation time of τ 1 or τ 2
When the signal S 1 or S 2 received at 1 or X 2 is corrected, the phase of this corrected signal and the signal received at point O are aligned, and the sum of the signal received at point O and the corrected signal (hereinafter , Which is called a beam with an azimuth θ). Therefore, a beam having a plurality of predicted signal azimuths θ k is created in advance, and the azimuth of the beam with the maximum output of these beams is measured as the target azimuth.
【0004】次に、図2を用いて信号方位測定方法を説
明する。目標から音響媒質中を伝搬してきた信号は、各
受波器1−i(i=1〜N)で受信され、各受波器1−
iにより電気信号に変換され整相器2に出力される。整
相器2では、受波器1−iのなかで中心に位置する受波
器が受信する目標からの受波面を整相面として、予測す
る複数の方位θk (k=1〜m)に対してあらかじめ求
められた各受波器と整相面との間を目標からの信号が伝
搬する伝搬時間で各受波器1−iにより出力された電気
信号の補正を行い、方位θk のビームを作成し、方位測
定器3に出力する。方位測定器3では、これら方位θk
のビームのうち最大出力のビームを求め、該ビームの方
位θを信号方位とて出力する。Next, a signal bearing measuring method will be described with reference to FIG. The signal propagating through the acoustic medium from the target is received by each receiver 1-i (i = 1 to N), and each receiver 1-i is received.
It is converted into an electric signal by i and output to the phase adjuster 2. In the phase phasing device 2, a plurality of predicted azimuths θ k (k = 1 to m) are set with the wave receiving surface from the target received by the wave receiving device located in the center among the wave receiving devices 1-i as a phase phasing surface. corrects the electric signal output by the receiving transducer 1-i between the receivers and the phasing surface previously obtained by the propagation time for a signal from the target is propagated relative, orientation theta k Beam is generated and output to the azimuth measuring device 3. In the azimuth measuring device 3, these azimuths θ k
The beam with the maximum output is obtained and the azimuth θ of the beam is output as the signal azimuth.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
信号方位測定方法においては、次のような課題があっ
た。受波器アレイをドーム内に収納しているソーナシス
テムにおいて、ドームの外側と内側では音響媒質が異な
り音速に差がある場合には、以下の(a)、(b)の理
由から方位測定に誤差が生じるという問題点があった。 (a)ドーム内に侵入してくる信号はドームの境界面で
屈折する。 (b)各受波器に到来する信号の伝搬時間が、ドームが
無い場合と有る場合とでは異なるために、整相器2で算
出する伝搬時間に誤差が含まれる。 図4は、音響ドームに収納された受波器アレイを用いた
従来の信号方位測定方法の問題点を説明するための図で
ある。図4に示すように、円形の音響ドーム10内の直
線上の点X1 、X2 、Oに受波器が配列されている。こ
こで点Oは音響ドーム10、及び点X1 、X2 、Oの中
心である。点Oを整相の中心として方位θに整相する場
合、点X1 、及び点X2 に到達する信号S1 、及びS2
では、目標からの信号が点X1 、及びX2 に到達するま
での音響ドーム10内での距離l1 、l2 で示される部
分において、音速が音響ドーム10外と違うので、距離
l1 、l2 の部分の伝搬時間が音響ドーム10が無い場
合とでは異なる。However, the conventional signal azimuth measuring method has the following problems. In the sonar system in which the receiver array is housed in the dome, if the acoustic medium is different between the outside and inside of the dome and the sound velocity is different, the direction measurement is performed for the following reasons (a) and (b). There was a problem that an error occurred. (A) The signal entering the dome is refracted at the boundary surface of the dome. (B) Since the propagation time of the signal arriving at each receiver is different between the case where there is no dome and the case where there is a dome, the propagation time calculated by the phase shifter 2 includes an error. FIG. 4 is a diagram for explaining a problem of the conventional signal azimuth measuring method using the receiver array housed in the acoustic dome. As shown in FIG. 4, the wave receivers are arranged at points X 1 , X 2 , O on a straight line in the circular acoustic dome 10. Here, the point O is the center of the acoustic dome 10 and the points X 1 , X 2 , O. When phasing in the direction θ with the point O as the center of phasing, the signals S 1 and S 2 reaching the points X 1 and X 2 are obtained.
Then, in the portions indicated by the distances l 1 and l 2 within the acoustic dome 10 until the signal from the target reaches the points X 1 and X 2 , the speed of sound is different from that outside the acoustic dome 10, so the distance l 1 , L 2 is different from the case where the acoustic dome 10 does not exist.
【0006】すなわち、音響ドーム10が無い場合に信
号S1 が距離l1 を通過する時間t1 は、 t1 =l1 /c ・・・(3) であり、音響ドーム10が有る場合に信号S1 が距離l
1 を通過する時間t1 ´は、 t1 ´=l1 /c´ ・・・(4) である。ここで、cはドーム外の媒質の音速であり、c
´はドーム内の媒質の音速である。このために、信号S
1 では、距離l1 の部分の伝搬時間に Δt1 =t1 ´−t1 ・・・(5) の差が生じる。同様に、信号S2 では、距離l2 の部分
の伝搬時間に Δt2 =t2 ´−t2 ・・・(6) の差が生じる。従って、点Oを整相の中心として方位θ
に整相する場合、点X1 、X2 に到来した信号S1 、S
2 に対して、τ1 +Δt1 、τ2 +Δt2 に伝搬時間を
補正しなければいけない。ところが、従来の信号方位測
定方法では、このΔt1 、またはΔt2 の補正を行って
いないので、方位測定結果θに誤差が生じるのである。That is, the time t 1 during which the signal S 1 passes the distance l 1 without the acoustic dome 10 is t 1 = l 1 / c (3), and when the acoustic dome 10 is present, Signal S 1 is distance l
The time t 1 ′ for passing 1 is t 1 ′ = l 1 / c ′ (4). Where c is the speed of sound of the medium outside the dome, and c
′ Is the speed of sound of the medium in the dome. For this purpose, the signal S
In the case of 1 , a difference of Δt 1 = t 1 ′ −t 1 (5) occurs in the propagation time of the portion at the distance l 1 . Similarly, in the signal S 2 , there is a difference of Δt 2 = t 2 ′ −t 2 (6) in the propagation time of the portion at the distance l 2 . Therefore, with the point O as the center of phasing, the azimuth θ
In the case of phasing to the signals S 1 and S arriving at the points X 1 and X 2 ,
For 2 , the propagation time must be corrected to τ 1 + Δt 1 and τ 2 + Δt 2 . However, in the conventional signal azimuth measuring method, since the correction of Δt 1 or Δt 2 is not performed, an error occurs in the azimuth measurement result θ.
【0007】[0007]
【課題を解決するための手段】第1の発明は、前記課題
を解決するために、信号方位測定方法において、ドーム
内に収容された複数の受波器を有する受波器アレイで目
標からの信号を受信し、前記ドームの外側と内側との目
標からの信号の伝搬速度の相違に基づき、目標からの信
号が該目標の方位に対応する整相面と前記受波器との間
を伝搬する伝搬時間を求め、該伝搬時間、及び前記受波
器で受信した受信信号に基づいて該目標の方位に対応す
るビームを作成し、前記ビームの出力に基づき前記目標
の方位を測定するようにしている。第2の発明は、信号
方位測定方法において、ドーム内に収容された複数の受
波器を有する受波器アレイで目標からの信号を受信し、
前記ドームの外側と内側とにおいて前記目標からの信号
の伝搬速度が等しいと仮定し、目標からの信号が該目標
の方位に対応する整相面と前記受波器との間を伝搬する
伝搬時間を求め、該伝搬時間、及び前記受波器で受信し
た受信信号に基づいてに基づいて該目標の方位に対応す
るビームを作成し、前記ビームの出力に基づき前記目標
の補正前の方位を測定し、前記ドームの外側と内側との
前記目標からの信号の伝搬速度の相違に基づいて、前記
目標の補正前の方位を補正し前記目標の方位とするよう
にしている。To solve the above problems, a first aspect of the present invention is a signal azimuth measuring method, wherein a receiver array having a plurality of receivers housed in a dome is provided from a target. A signal is received, and the signal from the target propagates between the phase matching surface corresponding to the azimuth of the target and the receiver based on the difference in the propagation speed of the signal from the target outside and inside the dome. Then, a beam corresponding to the target azimuth is created based on the propagation time and the received signal received by the receiver, and the target azimuth is measured based on the output of the beam. ing. A second invention is a signal azimuth measuring method, wherein a signal from a target is received by a receiver array having a plurality of receivers housed in a dome,
Assuming that the propagation speed of the signal from the target is equal on the outside and inside of the dome, the propagation time of the signal from the target propagating between the phase matching surface corresponding to the azimuth of the target and the receiver. A beam corresponding to the target azimuth based on the propagation time and the received signal received by the receiver, and the azimuth of the target before correction is measured based on the output of the beam. However, the azimuth of the target before correction is corrected to be the target azimuth based on the difference in the propagation velocity of the signal from the target between the outside and the inside of the dome.
【0008】[0008]
【作用】第1の発明によれば、以上のように信号方位測
定方法を構成したので、ドーム内に収容された複数の受
波器を有する受波器アレイで目標からの信号を受信す
る。ドームの外側と内側との目標からの信号の伝搬速度
が相違しているので、目標からの信号が予測する複数の
方位毎に、各方位に対応する整相面と受波器との間を伝
搬する伝搬時間を求め、該伝搬時間に基づいて受波器ア
レイの出力を補正し、予測する方位に対応するビームを
作成する。これらの複数のビームの出力のうち最大出力
のビームを目標からの方位とする。第2の発明によれ
ば、ドームの外側と内側とにおいて前記目標からの信号
の伝搬速度が等しいと仮定し、予測する複数の方位に対
応する整相面と受波器との間を伝搬する伝搬時間を求
め、該伝搬時間に基づいて受波器アレイの出力を補正
し、予測する方位に対応するビームを作成する。そし
て、複数のビームの出力のうち最大出力のビームを目標
からの補正前の方位とする。ドームの外側と内側とで
は、目標からの信号の伝搬速度が異なるので、補正前の
方位には、誤差が含まれる。よって、ドームの外側と内
側との前記目標からの信号の伝搬速度の相違に基づい
て、目標の補正前の方位を補正する。従って、前記課題
を解決できるのである。According to the first aspect of the present invention, the signal azimuth measuring method is configured as described above, so that the receiver array having a plurality of receivers housed in the dome receives the signal from the target. Since the propagation velocity of the signal from the target is different between the outside and the inside of the dome, for each of the multiple azimuths predicted by the signal from the target, the phasing surface corresponding to each azimuth and the wave receiver are The propagation time for propagation is determined, the output of the receiver array is corrected based on the propagation time, and a beam corresponding to the predicted azimuth is created. The beam having the maximum output among the outputs of the plurality of beams is set as the azimuth from the target. According to the second aspect of the invention, it is assumed that the propagation speed of the signal from the target is the same on the outer side and the inner side of the dome, and propagates between the phase matching surface and the wave receiver corresponding to a plurality of predicted azimuths. The propagation time is obtained, the output of the receiver array is corrected based on the propagation time, and the beam corresponding to the predicted azimuth is created. Then, the beam with the maximum output among the outputs of the plurality of beams is set as the azimuth before correction from the target. Since the propagation speed of the signal from the target is different between the outside and the inside of the dome, the azimuth before correction includes an error. Therefore, the azimuth of the target before correction is corrected based on the difference in the propagation speed of the signal from the target between the outside and the inside of the dome. Therefore, the above problem can be solved.
【0009】[0009]
【実施例】第1の実施例 図1は、本発明の第1の実施例の信号方位測定方法を実
施するための信号方位測定装置の機能ブロック図であ
り、従来の信号方位測定装置を示す図2中の要素と共通
の要素には共通の符号が付されている。この信号方位測
定装置では、音響ドームの内外の音速の違いに基づいて
予測する信号方位θk (k=1〜m)、及び各受波器1
−i(i=1〜N)毎に式(5)または式(6)と同様
にして求められた伝搬時間補正値Δtikを記憶する伝搬
時間補正値テーブル11を設け、整相器12が伝搬時間
補正値テーブル11に記憶された伝搬時間補正値Δtik
に基づいて音響ドームの内外の音速が等しいとして求め
られた伝搬時間を補正し、該補正した伝搬時間に基づい
て各方位θk のビームを作成するようにしたことであ
る。図1に示すように、この信号方位測定装置は、図示
しない音響ドーム内に配置され、目標からの信号を受信
する複数個の受波器1−i(i=1〜N)を有してい
る。伝搬時間補正値テーブル11が設けられている。各
受波器1−i、及び伝搬時間補正値テーブル11の出力
側には、整相器12が接続されている。整相器12の出
力側には、信号方位を測定する方位測定器3が接続され
ている。方位測定器3からは、音響ドーム内外の音速の
違いによる伝搬時間が補正された信号方位(θ+Δθ)
が出力される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 is a functional block diagram of a signal bearing measuring apparatus for carrying out the signal bearing measuring method of the first embodiment of the present invention, showing a conventional signal bearing measuring apparatus. Elements common to those in FIG. 2 are designated by common reference numerals. In this signal azimuth measuring device, the signal azimuth θ k (k = 1 to m) predicted based on the difference in sound velocity inside and outside the acoustic dome, and each wave receiver 1 are used.
A propagation time correction value table 11 for storing the propagation time correction value Δt ik obtained in the same manner as the expression (5) or the expression (6) is provided for each −i (i = 1 to N), and the phase adjuster 12 Propagation time correction value Δt ik stored in the propagation time correction value table 11
Based on the above, the propagation time obtained by assuming that the sound velocities inside and outside the acoustic dome are equal is corrected, and the beam of each azimuth θ k is created based on the corrected propagation time. As shown in FIG. 1, this signal azimuth measuring device has a plurality of wave receivers 1-i (i = 1 to N) arranged in an acoustic dome (not shown) and receiving signals from a target. There is. A propagation time correction value table 11 is provided. A phaser 12 is connected to each of the wave receivers 1-i and the output side of the propagation time correction value table 11. An azimuth measuring device 3 for measuring a signal azimuth is connected to the output side of the phase adjuster 12. From the azimuth measuring device 3, the signal azimuth (θ + Δθ) in which the propagation time is corrected due to the difference in sound velocity inside and outside the acoustic dome
Is output.
【0010】以下、信号方位測定方法を図1を参照しつ
つ説明する。音響媒質中を伝搬してきた信号は、各受波
器1−i(i=1〜N)で受信される。各受波器1−i
では、受信信号を電気信号に変換し整相器12に出力す
る。整相器12では、受波器1−iのなかで中心に位置
する受波器が受信する目標からの受波面を整相面とし
て、予測する複数の方位θk (k=1〜m)に対して、
音響ドーム内外の目標の伝搬速度が等しいとした場合の
各受波器1−iと方位θk に対する整相面との間の目標
からの信号の伝搬時間τikと伝搬時間補正値テーブル1
1に記憶された伝搬時間補正値Δtikとの和(τik+Δ
tik)を求め、時間(τik+Δtik)だけ各受波器1−
iにより出力された電気信号の補正を行う。そして、整
相器12では、補正された電気信号のN個の和をとり、
これを方位θk のビームとして方位測定器3に出力す
る。方位測定器3では、方位θk の受信ビームの出力の
うち、最大のパワーとなる方位を求め、この方位を目標
の方位として出力する。以上説明したように、本第1の
実施例では、整相面と各受波器1−iとの間を伝搬する
伝搬時間を音響ドーム内外の目標の伝搬速度のによる伝
搬時間補正値を伝搬時間補正値テーブル11に記憶し、
整相器12では伝搬時間補正値をもとに伝搬時間を補正
して各方位θk のビームを作成して、方位測定器3によ
り目標の方位を測定するので、正確な目標の方位を測定
することができるという利点がある。The signal direction measuring method will be described below with reference to FIG. The signal propagating through the acoustic medium is received by each of the wave receivers 1-i (i = 1 to N). Each wave receiver 1-i
Then, the received signal is converted into an electric signal and output to the phase adjuster 12. In the phase phasing device 12, a plurality of predicted azimuths θ k (k = 1 to m) are predicted with the wave receiving surface from the target received by the wave receiving device located at the center among the wave receiving devices 1-i as the phasing surface. Against
When the propagation velocities of the target inside and outside the acoustic dome are equal, the propagation time τ ik of the signal from the target between each receiver 1-i and the phasing plane for the direction θ k and the propagation time correction value table 1
The sum of the propagation time correction value Δt ik stored in 1 (τ ik + Δ
t ik ), and each wave receiver 1− for a time (τ ik + Δt ik ).
The electric signal output by i is corrected. Then, in the phase adjuster 12, the N sums of the corrected electric signals are taken,
This is output to the azimuth measuring device 3 as a beam of azimuth θ k . The azimuth measuring device 3 obtains the azimuth having the maximum power among the outputs of the reception beams of the azimuth θ k , and outputs this azimuth as the target azimuth. As described above, in the first embodiment, the propagation time propagating between the phase matching surface and each of the wave receivers 1-i is propagated as the propagation time correction value based on the target propagation velocity inside and outside the acoustic dome. Stored in the time correction value table 11,
The phase adjuster 12 corrects the propagation time based on the propagation time correction value to create a beam of each azimuth θ k , and the azimuth measuring device 3 measures the target azimuth. Therefore, the accurate target azimuth is measured. There is an advantage that can be done.
【0011】第2の実施例 図5は、本発明の第2の実施例の信号方位測定方法を実
施するための信号方位測定装置の機能ブロック図であ
り、従来の信号方位測定装置を示す図2中の要素と共通
の要素には共通の符号が付されている。この信号方位測
定装置では、従来の信号方位測定装置に、方位測定器3
により算出された方位θに対して誤差Δθを補正するた
めに予測される複数の方位θk(k=1〜m)毎に補正
値Δθk を記憶する方位測定誤差補正値テーブル21、
及び加算器22を設けたことである。この信号方位測定
装置は、図示しない音響ドーム内に収容された目標から
の信号を受信する複数個の受波器1−i(i=1〜N)
からなる受波器アレイ1を有している。各受波器1−i
の出力側には、予測する目標の複数個の方位θk に対応
する整相面と受波器1−iとの間を目標からの信号が伝
搬する速度が音響ドームの内外で等しいとして、目標か
らの信号が伝搬する伝搬時間を求め、該伝搬時間、及び
受波器1−iで受信した受信信号に基づいて該方位に対
応するビームを作成する整相器2が接続されている。整
相器2の出力側には、各方位のビームに対してビームの
出力強度が最大となるビームの方位θを算出する方位測
定器3が接続されている。音響ドームの内側と外側との
目標からの信号の伝搬速度の相違に基づいて、計算によ
り予め求められた信号方位の補正値を記憶する方位測定
誤差補正値テーブル21は、方位θに対応する方位の補
正値Δθを出力するために方位測定器3に接続されてい
る。方位測定器3、及び方位測定誤差補正値テーブル2
1の出力側には、加算器22が接続されている。加算器
22からは、補正された目標の方位(θ+Δθ)が出力
される。 Second Embodiment FIG. 5 is a functional block diagram of a signal bearing measuring apparatus for carrying out the signal bearing measuring method of the second embodiment of the present invention, showing a conventional signal bearing measuring apparatus. Elements common to the elements in 2 are assigned common reference numerals. In this signal bearing measuring device, the bearing measuring device 3 is added to the conventional signal bearing measuring device.
An azimuth measurement error correction value table 21 that stores a correction value Δθ k for each of a plurality of azimuths θ k (k = 1 to m) predicted for correcting the error Δθ with respect to the azimuth θ calculated by
And the adder 22 is provided. This signal bearing measuring device includes a plurality of wave receivers 1-i (i = 1 to N) for receiving signals from a target housed in an acoustic dome (not shown).
1 has a receiver array 1. Each wave receiver 1-i
On the output side of, the velocity at which the signal from the target propagates between the phase matching surface corresponding to the plurality of predicted target azimuths θ k and the receiver 1-i is equal inside and outside the acoustic dome, A phase adjuster 2 is connected to obtain a propagation time of a signal from a target and create a beam corresponding to the azimuth based on the propagation time and the received signal received by the receiver 1-i. An azimuth measuring device 3 is connected to the output side of the phase adjuster 2 for calculating the azimuth θ of the beam that maximizes the output intensity of the beam for each azimuth. The azimuth measurement error correction value table 21 that stores the correction value of the signal azimuth calculated in advance based on the difference in the propagation velocity of the signal from the target inside and outside the acoustic dome is the azimuth corresponding to the azimuth θ. It is connected to the azimuth measuring device 3 in order to output the correction value Δθ. Azimuth measuring device 3 and azimuth measurement error correction value table 2
An adder 22 is connected to the output side of 1. The corrected target azimuth (θ + Δθ) is output from the adder 22.
【0012】以下、信号方位測定方法を図5を参照しつ
つ説明する。目標から音響媒質中を伝搬してきた信号
は、各受波器1−i(i=1〜N)で受信され、各受波
器1−iにより電気信号に変換されて整相器2に出力さ
れる。整相器2では、受波器1−iのなかで中心に位置
する受波器が受信する目標からの受波面を整相面とし
て、音響ドーム内外の目標の伝搬速度が等しいとした場
合の各受波器1−iと方位θk に対する整相面との間の
目標からの信号の伝搬時間τikを求め、該伝搬時間τik
で各受波器1−iから出力された電気信号の補正を行
い、方位θk のビームを作成し、方位測定器3に出力す
る。方位測定器3では、これら方位θk のビームのうち
最大出力のビームを求め、該ビームの信号方位θを加算
器22に出力するとともに、方位測定誤差補正値テーブ
ル21から該信号方位θに対応する補正値Δθを検索し
該補正値Δθを加算器22に出力する。加算器22で
は、方位測定器3より出力された方位θにΔθを加算し
て、該加算値(θ+Δθ)を目標の信号方位として出力
する。以上説明したように、本第2の実施例では、方位
測定器3より出力される方位θを方位測定誤差補正値テ
ーブル21に記憶された補正値Δθで補正するので、正
確な目標の方位を測定することができるという利点があ
る。なお、本発明は、上記実施例に限定されず種々の変
形が可能である。その変形例としては、例えば次のよう
なものがある。方位測定誤差補正値テーブル21には、
実測によって補正値を求めてもよい。The signal direction measuring method will be described below with reference to FIG. The signal propagating in the acoustic medium from the target is received by each wave receiver 1-i (i = 1 to N), converted into an electric signal by each wave receiver 1-i, and output to the phaser 2. To be done. In the phase adjuster 2, when the wave receiving surface from the target received by the wave receiver located in the center of the wave receivers 1-i is used as the phase adjusting surface, the propagation speeds of the target inside and outside the acoustic dome are equal. The propagation time τ ik of the signal from the target between each of the receivers 1-i and the phasing plane for the direction θ k is determined, and the propagation time τ ik
Then, the electric signal output from each of the wave receivers 1-i is corrected to form a beam having an azimuth θ k , and the beam is output to the azimuth measuring device 3. The azimuth measuring device 3 obtains the beam with the maximum output among the beams of these azimuths θ k , outputs the signal azimuth θ of the beam to the adder 22, and corresponds to the signal azimuth θ from the azimuth measurement error correction value table 21. The correction value Δθ is searched for and the correction value Δθ is output to the adder 22. The adder 22 adds Δθ to the azimuth θ output from the azimuth measuring device 3 and outputs the added value (θ + Δθ) as the target signal azimuth. As described above, in the second embodiment, the azimuth θ output from the azimuth measuring device 3 is corrected by the correction value Δθ stored in the azimuth measurement error correction value table 21, so that an accurate target azimuth can be obtained. It has the advantage that it can be measured. The present invention is not limited to the above embodiment, and various modifications can be made. The following are examples of such modifications. In the azimuth measurement error correction value table 21,
The correction value may be obtained by actual measurement.
【0013】[0013]
【発明の効果】以上詳細に説明したように、第1の発明
によれば、ドーム内に収容された複数の受波器を有する
受波器アレイで目標からの信号を受信し、ドームの外側
と内側との目標からの信号の伝搬速度の相違に基づき、
目標からの信号が該目標の方位に対応する整相面と前記
受波器との間を伝搬する伝搬時間を求め、該伝搬時間、
及び前記受波器で受信した受信信号に基づいて該目標の
方位に対応するビームを作成し、ビームの出力に基づき
目標の方位を測定するので、正確な目標の方位を測定す
ることができる。第2発明によれば、ドームの外側と内
側との前記目標からの信号の伝搬速度の相違に基づい
て、目標の補正前の方位を補正するので、正確な目標の
方位を測定することができる。As described in detail above, according to the first aspect of the invention, the receiver array having a plurality of receivers housed in the dome receives the signal from the target, and the outside of the dome is received. Based on the difference in the propagation velocity of the signal from the target between the inside and the inside,
A signal from a target determines a propagation time for propagating between a phase matching surface corresponding to the azimuth of the target and the receiver, and the propagation time,
Also, a beam corresponding to the target azimuth is created based on the received signal received by the wave receiver, and the target azimuth is measured based on the output of the beam, so that the accurate target azimuth can be measured. According to the second aspect of the invention, the azimuth of the target before the correction is corrected based on the difference in the propagation speed of the signal from the target between the outside and the inside of the dome, so that the accurate azimuth of the target can be measured. .
【図1】本発明の第1の実施例の信号方位測定方法を実
施するための信号方位測定装置の機能ブロック図であ
る。FIG. 1 is a functional block diagram of a signal bearing measuring apparatus for carrying out a signal bearing measuring method according to a first embodiment of the present invention.
【図2】従来の信号方位測定方法を実施するための信号
方位測定装置の機能ブロック図である。FIG. 2 is a functional block diagram of a signal bearing measuring device for implementing a conventional signal bearing measuring method.
【図3】従来の信号方位測定方法の原理図である。FIG. 3 is a principle diagram of a conventional signal azimuth measuring method.
【図4】従来の信号方位測定方法の問題点を説明するた
めの図である。FIG. 4 is a diagram for explaining a problem of a conventional signal azimuth measuring method.
【図5】本発明の第2の実施例の信号方位測定方法を実
施するための信号方位測定装置の機能ブロック図であ
る。FIG. 5 is a functional block diagram of a signal bearing measuring apparatus for carrying out the signal bearing measuring method according to the second embodiment of the present invention.
1 受波器アレイ 1−1,1−2,…,1〜N 受波器 2,12 整相器 3 方位角測定器 9 整相面 10 音響ドーム 11 伝搬時間補正値テーブ
ル 21 方位測定誤差補正値テ
ーブル 22 加算器DESCRIPTION OF SYMBOLS 1 Wave receiver array 1-1, 1-2, ..., 1-N Wave receiver 2,12 Phase adjuster 3 Azimuth angle measuring device 9 Phase adjusting surface 10 Acoustic dome 11 Propagation time correction value table 21 Direction measuring error correction Value table 22 Adder
Claims (2)
する受波器アレイで目標からの信号を受信し、 前記ドームの外側と内側との目標からの信号の伝搬速度
の相違に基づき、目標からの信号が該目標の方位に対応
する整相面と前記受波器との間を伝搬する伝搬時間を求
め、該伝搬時間、及び前記受波器で受信した受信信号に
基づいて該目標の方位に対応するビームを作成し、 前記ビームの出力に基づき前記目標の方位を測定するこ
とを特徴とする信号方位測定方法。1. A receiver array having a plurality of receivers housed in a dome receives a signal from a target, and based on a difference in propagation velocity of the signal from the target outside and inside the dome. A signal from the target propagates between the phase matching surface corresponding to the target azimuth and the wave receiver, and calculates the propagation time based on the propagation time and the received signal received by the wave receiver. A signal azimuth measuring method comprising: forming a beam corresponding to a target azimuth and measuring the target azimuth based on an output of the beam.
する受波器アレイで目標からの信号を受信し、 前記ドームの外側と内側とにおいて目標からの信号の伝
搬速度が等しいと仮定し、目標からの信号が該目標の方
位に対応する整相面と前記受波器との間を伝搬する伝搬
時間を求め、該伝搬時間、及び前記受波器で受信した受
信信号に基づいて該目標の方位に対応するビームを作成
し、 前記ビームの出力に基づき前記目標の補正前の方位を測
定し、 前記ドームの外側と内側との前記目標からの信号の伝搬
速度の相違に基づいて、前記目標の補正前の方位を補正
し前記目標の方位とすることを特徴とする信号方位測定
方法。2. A receiver array having a plurality of receivers housed in a dome receives a signal from a target, and it is assumed that the propagation speed of the signal from the target is equal to the outside and inside of the dome. Then, the propagation time that the signal from the target propagates between the phase matching surface corresponding to the target azimuth and the wave receiver is obtained, and based on the propagation time and the received signal received by the wave receiver. A beam corresponding to the direction of the target is created, the direction before correction of the target is measured based on the output of the beam, and based on the difference in the propagation velocity of the signal from the target inside and outside the dome, A signal azimuth measuring method, wherein the azimuth of the target before correction is corrected to be the target azimuth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8900494A JPH07294618A (en) | 1994-04-27 | 1994-04-27 | Method for measuring direction of signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8900494A JPH07294618A (en) | 1994-04-27 | 1994-04-27 | Method for measuring direction of signal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07294618A true JPH07294618A (en) | 1995-11-10 |
Family
ID=13958691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8900494A Pending JPH07294618A (en) | 1994-04-27 | 1994-04-27 | Method for measuring direction of signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07294618A (en) |
-
1994
- 1994-04-27 JP JP8900494A patent/JPH07294618A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2008250691B2 (en) | Method for locating a sound-projecting target | |
JP2533287B2 (en) | Linear array lateral motion compensation method | |
JPS601554A (en) | Ultrasonic inspection apparatus | |
JP4266669B2 (en) | Bistatic orientation detection system and detection method | |
JPH07294618A (en) | Method for measuring direction of signal | |
US3531764A (en) | Wind compensated acoustic direction finder | |
RU2308054C2 (en) | Hydroacoustic synchronous long-range navigation system | |
JPH08201501A (en) | Electric wave source locating device | |
JPH08220127A (en) | Ultrasonic wind vane anemometer | |
JP2886330B2 (en) | Signal direction measurement device | |
JPS6348319B2 (en) | ||
JPH04204075A (en) | Sonar angle measuring apparatus | |
JP2006162328A (en) | Ultrasonic range finder and ultrasonic clinometer | |
JPH0815429A (en) | Receiving method of active sonar | |
JP2765317B2 (en) | Sonar device | |
JPH10186029A (en) | Underwater position detecting device | |
JPH06118169A (en) | Acoustic position measuring device | |
JP2002350541A (en) | Active sonar apparatus | |
JPH0257994A (en) | Speed detecting apparatus | |
JP2004301737A (en) | Simple substance echo detection method with hull vibration compensation, simple substance echo sensing device, and echo-tracking method | |
JP2573473B2 (en) | Passive ranging equipment | |
JPH10206541A (en) | Active sonar device | |
JPH0843421A (en) | Ultrasonic type anemometer | |
JPH06308212A (en) | Incoming radio wave direction measuring method using multiple antennas | |
JPH06118171A (en) | Acoustic position measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020108 |