JPH07293856A - Highly-efficient heat exchanger/combustion apparatus - Google Patents

Highly-efficient heat exchanger/combustion apparatus

Info

Publication number
JPH07293856A
JPH07293856A JP7706095A JP7706095A JPH07293856A JP H07293856 A JPH07293856 A JP H07293856A JP 7706095 A JP7706095 A JP 7706095A JP 7706095 A JP7706095 A JP 7706095A JP H07293856 A JPH07293856 A JP H07293856A
Authority
JP
Japan
Prior art keywords
combustion
flame
heat
heat exchange
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7706095A
Other languages
Japanese (ja)
Other versions
JP3030321B2 (en
Inventor
Yaichi Obara
弥一 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBARA YASUNORI
Original Assignee
OBARA YASUNORI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBARA YASUNORI filed Critical OBARA YASUNORI
Priority to JP7077060A priority Critical patent/JP3030321B2/en
Publication of JPH07293856A publication Critical patent/JPH07293856A/en
Application granted granted Critical
Publication of JP3030321B2 publication Critical patent/JP3030321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To enhance heat exchange utilization efficiency by providing a single row or bell-mouthed single-row curtain-type air-injecting means having a forcedly orienting structure provided with injection nozzles and a high pressure blowing means having a required capacity. CONSTITUTION:A suction' fan 8 is operated to produce negative pressure in the interior of a furnace, a burner 13 is started to generate flame and a ring blower 15 is operated after the flame has become stabilized. Natural flame 18 is reddish black, intensive combustion reaction occurs in a high pressure air layer 19 injected at an angle of elevation with respect to a flame source to form a barrier and the flame 18 enclosed by the barrier becomes luminous flame. Because combustion atmosphere is enhanced in a restricted interior of a heat exchanging apparatus to complete the combustion reaction, high temperature thermal radiation thus generated most efficiently improves heat exchange utilization efficiency. The reduction of fuel consumption and purification and volume reduction of exhaust gas can be accomplished in an equivalent sized apparatus.

Description

【発明の詳細な説明】 [産業上の利用分野]本発明は物質の燃焼熱を必要とす
る、例えば暖房施設や煮沸施設または焼却施設等に於け
る燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a combustion apparatus that requires heat of combustion of a substance, for example, in a heating facility, a boiling facility, an incineration facility or the like.

[従来技術]社会生活において物質の燃焼熱を利用する
ことが不可欠なことから、それにかかる技術は競って改
善されて来た。それは燃料を完全にもやすことと、その
熱を高率に利用することの両面から追求する技術の探究
であり、熱利用の立場からどの様な燃やし方をする施設
が良いのかの試行でもある。加えて昨今人類の生存をか
けて地球環境保全と限りある資源の節約等の観点から、
前項技術の尚一層の改善が求められている。
[Prior Art] Since it is indispensable to utilize the heat of combustion of substances in social life, such techniques have been competitively improved. It is an exploration of technology that pursues both the ease of burning fuel and the high utilization of its heat, and is also a trial of what kind of facility to burn from the standpoint of heat utilization. . In addition, from the viewpoint of the survival of humanity these days, the preservation of the global environment and the conservation of limited resources,
Further improvement of the technology of the preceding paragraph is required.

[発明が解決しようとする問題点]本発明は燃焼熱を必
要とする立場から燃焼装置の改善を模索し、限定された
燃焼熱交換装置内で物質の熱転換率を高めると同時に、
その熱利用交換効率を高める一体的改善方法を目指し
た。即ち完全燃焼反応は充分な空気の補給のもとで炎を
とじこめて燃焼雰囲気を高め、燃料と空気酸素との結合
を完結させることが必要であり、一方熱交換効率を高め
るため熱交換面積(照射面積)を広くすることは熱をう
ばう面積が大きくなることになり燃焼雰囲気を低下させ
ることが多く、限られた容積装置の中で両現象を高率に
達成することが困難であった。特に燃料が、重質油、高
分子燃料又は固形物燃料等の場合には乾溜→ガス化→酸
素結合反応と続く燃焼過程が長く、炉内温度が高温にな
らないと完全に燃焼し難いことから、燃焼室容積に対す
る燃料は、その自燃炎の充満する量が設定されているこ
とが多く、燃料の熱転換が高率に行われたとは云えなか
った。本発明の目標は、いかなる燃料にあっても燃焼室
に接する熱受照交換面積を出来る丈広くし乍らも、尚か
つ燃焼雰囲気を高温に保持して燃料の熱転換率を高める
手段を講じて、その熱交換利用効率を高める技術の確立
にある。
[Problems to be Solved by the Invention] The present invention seeks to improve a combustion device from the standpoint of requiring heat of combustion, and enhances the heat conversion rate of a substance in a limited combustion heat exchange device.
We aimed for an integrated improvement method to improve the heat utilization exchange efficiency. That is, in the complete combustion reaction, it is necessary to confine the flame under a sufficient supply of air to enhance the combustion atmosphere and complete the bond between the fuel and air oxygen, while the heat exchange area ( When the irradiation area) is widened, the area to which heat is applied becomes large and the combustion atmosphere is often lowered, and it is difficult to achieve both phenomena at a high rate in a limited volume apparatus. Especially when the fuel is heavy oil, polymer fuel, solid fuel, etc., the combustion process of dry distillation → gasification → oxygen bonding reaction is long, and it is difficult to completely burn unless the temperature in the furnace reaches a high temperature. As for the fuel with respect to the volume of the combustion chamber, the amount of self-combustion flame is often set, and it cannot be said that the heat conversion of the fuel was performed at a high rate. The object of the present invention is to provide a means for increasing the heat conversion rate of fuel by keeping the combustion atmosphere at a high temperature while increasing the heat irradiation exchange area in contact with the combustion chamber for any fuel. The establishment of technology to improve the efficiency of heat exchange utilization.

[問題点を解決する為の手段及び作用]そこで発明者は
前項の解決に近づく技術解明の糸口をローソクの炎に表
現される心炎と中炎と外炎の現象のもつ意味に求めた。
即ち光の発生源は心炎(燃料のガス化→着火段階)であ
るが、最も高温となる外炎(完全結合段階)と云う燃焼
反応(雰囲気)バリヤにつつまれて光が強くなる。前項
に述べた自燃炎が充満する状態とは、中炎の段階で不燃
ガスが尚多く残る。そして外炎の周りでは激しい空気の
流れがあり、内部を包みこみながらガスが膨張し完全に
燃焼反応が終る過程が非常に長い(可視炎と最高温度点
が大きく離れている現象)。ところでそれぞれの燃料に
は固有の熱カロリーが表示されて居り、その燃焼に要す
る空気量の目安も提示されているのは、燃料に空気の必
要量をさまざまな方法で充分に供給混合させる、従来行
われている方法に基くもので、実際にボイラー等でさま
ざまな改良法を加えても、計算上の量をはるかに超える
空気が供給され、限られた熱交換装置内で燃焼結合反応
は完了せず、煙突まで行っても尚不燃ガスが排出されて
いる(熱管理士の話)とも云われ、環境悪化と資源浪費
の一因ともなっている。一方ステファン・ボルッマンの
燃焼法則は表1に示す{(燃焼温度+273℃)=放
射エネルギー}通りであるが、その燃焼物体から出され
る放射(輻射)熱線は直進性の電磁波であるとも教えて
いる。そして、前記熱利用の観点から燃料の固有熱量と
云う概念は一定ではなく、燃焼の仕方(雰囲気の保持)
によっては、物質の熱転換利用を大巾に向上出来る可能
性のあることを、法則は教示しているのではあるまい
か。
[Means and Actions for Solving Problems] Therefore, the inventor sought a clue to the technical solution approaching the solution in the preceding paragraph to the meaning of the phenomena of heart flame, middle flame, and external flame expressed in the flame of a candle.
That is, the source of light is the heart flame (gasification of fuel → ignition stage), but the light becomes strong by being surrounded by the combustion reaction (atmosphere) barrier called the outer flame (complete coupling stage) that has the highest temperature. The state in which the self-combustion flame is filled as described in the previous section still contains a large amount of noncombustible gas in the middle flame stage. There is a strong air flow around the outer flame, and the process of wrapping the inside of the gas and expanding the gas to complete the combustion reaction is very long (a phenomenon in which the maximum temperature point is far apart from the visible flame). By the way, each fuel has its own heat calorie displayed, and a guideline for the amount of air required to burn it is also presented. The conventional method is to supply and mix the required amount of air to the fuel in various ways. It is based on the method being performed, and even if various improvements such as boilers are actually added, air exceeding the calculated amount is supplied, and the combustion coupling reaction is completed within the limited heat exchange device. It is said that non-combustible gas is still emitted even after going to the chimney (the story of a heat manager), which is one of the causes of environmental degradation and waste of resources. On the other hand, Stefan Bolman's combustion law is as shown in Table 1 {(combustion temperature + 273 ℃) 4 = radiant energy}, but teach that radiant heat rays emitted from the burning object are straight traveling electromagnetic waves. There is. From the viewpoint of heat utilization, the concept of the specific heat quantity of the fuel is not constant, and the way of combustion (maintaining the atmosphere)
Maybe the law teaches that, depending on the situation, there is a possibility that the heat conversion utilization of substances can be greatly improved.

発明者がこの方法にたどりつくきっかけは、暖房施設に
粗悪な木材燃料を燃やす過程で、焚口側から従前のさま
ざまな方法を試みても熱転換率が非常に低く、思いあま
って燃焼ガス排出口下ののぞき穴から火吹竹で空気を吹
き付けた際、燃焼部位に外れた方向に吹かれた空気に反
応して、燃えると云う概念を超える激しい現象にふれた
ことからである。本発明の燃焼手段は通常の燃料及びガ
スに直接空気を供給混合し続ける方法に止まらず、燃焼
部位(物体)と燃焼ガス排出口との間(通常の大ゼキ位
置)から、燃焼ガスの進行方向に対向しガスを斜に横断
して燃焼部位をつつみこむ(とじこめる)様にカーテン
状の高圧空気を噴射する、噴射ノズルを備え強制指向構
造の空気噴出手段と所要能力の高圧送風手段が設けられ
るが、前述の外炎層と云う電磁波バリヤを形成させ、限
られた燃焼炉装置内でほぼ燃料の完全な熱転換を実現
し、その高放射熱線の照射により高率の熱交換を可能と
するものである。燃焼反応の強さは、ガス化された燃料
物体と空気の衝突スピードに比例するので、本発明装置
による燃焼ガスの進行方向と斜に対向して、中炎段階の
ガスに高圧空気が衝突し反転する過程の長く激しい燃焼
反応層では、効率の良い電磁波バリヤが形成され、それ
に包みこまれた燃料物体(発光体)は高温となって輝炎
化し、相乗的に高温の放射(輻射)熱線が発生し最も効
率の高い熱交換が進む。熱交換において放射熱線の直接
照射によるか又は伝導熱によるかによってその効率を大
きく左右する実例がある。出願者が既に特願昭59−1
60636号にて出願(燃焼装置)した図による装置
{炉の容積180cm×45cm×45cm、バー
ナー4l/h、送風桟リングブロワー(冨士)0.2
kw、噴出穴3mm×10直列}でもバーナー熱源に
よる燃焼熱交換において炉内温度が700℃であった。
それに対して燃焼室の上部も耐火レンガで囲い、熱交換
部をその上に乗せて伝導熱のみによる熱交換を比較した
時の炉内温度は1200℃になったが、鑵体に供給され
た水に対する標準燃料カロリーの熱交換率は、前者が4
5%なのに後者は20%であまりに大きい逆落差があっ
た。又同装置における粗悪な木材燃料による燃焼と熱交
換において、高圧送風装置をとめると炉内は赤黒い炎が
たちこめる状態になり炉内温度は400℃であったが、
高圧送風装置を作動させると燃料は木炭が燃えている状
態となり、炎は輝炎となって炉内は奥まで見通せる様に
なって、炉内温度は600℃となった。(輝炎は放射熱
効率が高いことが知られている)表1にある放射熱線エ
ネルギーの発熱体温度による差異比較からみても、燃焼
熱を利用する為の、燃焼熱交換装置における燃焼部位の
高温化と放射熱線の直接照射の効果が、格段に大きいこ
とを知らされた。そのことは、又前述推察された燃焼法
則のかくされた教示の様に、燃料の固有熱量と云う概念
は、必ずしも固定されたものでもないことが確認された
ことにもなる。上述の様に本発明装置によると、燃焼と
熱交換において燃焼物体を高温に保持し乍らその放射熱
線を直接受照する熱交換面積(炉内容積)を可能な限り
大きくする(従来方法によると前記装置の炉の容積に対
するバーナーは10〜12l/hが必要)と云う二律背
反要因を効率よく同居併立させ、限られた装置内で前述
した燃料の固有熱量と云う概念をはるかに超える熱転換
と、そして高率熱交換利用へと大きな前進を果たしたこ
とになる。
The reason why the inventor arrived at this method was that the heat conversion rate was very low even if various conventional methods were tried from the firing side in the process of burning poor wood fuel in the heating facility, and I thought about it This is because when the air was blown from the peephole with firebamboo, it responded to the air blown in a direction away from the combustion site, causing a violent phenomenon beyond the concept of burning. The combustion means of the present invention is not limited to the ordinary method of continuously supplying and mixing air to fuel and gas, and the progress of combustion gas from between the combustion site (object) and the combustion gas discharge port (normal large exhaust position). Injects high-pressure air in a curtain shape so as to envelop (compress) the combustion site across the gas diagonally across from each other, and is provided with an air-injection means of a forced orientation structure equipped with an injection nozzle and a high-pressure blower of the required capacity. However, by forming an electromagnetic barrier called the above-mentioned outer flame layer, almost complete heat conversion of the fuel is realized in the limited combustion furnace device, and high-rate heat exchange is possible by irradiation of the high radiation heat ray. It is a thing. Since the strength of the combustion reaction is proportional to the collision speed between the gasified fuel object and the air, the high-pressure air collides with the gas in the middle flame stage opposite to the traveling direction of the combustion gas according to the device of the present invention. In the combustion reaction layer where the process of reversing is long and intense, an efficient electromagnetic wave barrier is formed, and the fuel object (emitter) enclosed in it becomes a high temperature and becomes a bright flame, and synergistically high temperature radiation (radiation) heat rays. Occurs and the most efficient heat exchange proceeds. There is a practical example in which the efficiency greatly depends on whether the heat is directly radiated or the heat is conducted in the heat exchange. The applicant has already filed Japanese Patent Application No. 59-1
A device according to the drawing filed (combustion device) in No. 60636 {furnace volume 180 cm x 45 cm x 45 cm, burner 4 l / h, blower ring ring blower (Fuji) 0.2
kw, ejection holes 3 mm × 10 in series}, the furnace temperature was 700 ° C. in the combustion heat exchange by the burner heat source.
On the other hand, when the upper part of the combustion chamber was also surrounded by refractory bricks and the heat exchange part was placed on top of it and the heat exchange only by conduction heat was compared, the furnace temperature was 1200 ° C, but it was supplied to the iron body. The heat exchange rate of standard fuel calories to water is 4 for the former.
The latter had an excessively large head difference of 20% even though it was 5%. Also, in the combustion and heat exchange with the poor wood fuel in the same equipment, when the high-pressure blower was stopped, a reddish black flame was generated in the furnace and the furnace temperature was 400 ° C.
When the high-pressure blower was operated, the charcoal was burning as the fuel, the flame became a bright flame, and the interior of the furnace could be seen all the way to the interior temperature of 600 ° C. (It is known that the luminous flame has high radiant heat efficiency.) From the comparison of the difference in the radiant heat ray energy depending on the temperature of the heating element shown in Table 1, the high temperature of the combustion part in the combustion heat exchange device for utilizing the combustion heat. It was informed that the effect of direct irradiation with radiation and radiant heat rays was remarkably large. It is also confirmed that the concept of the intrinsic heat quantity of the fuel is not necessarily fixed, as in the teaching of the combustion law inferred above. As described above, according to the device of the present invention, the combustion object is kept at a high temperature in combustion and heat exchange, and the heat exchange area (internal volume) for directly radiating the radiant heat rays is made as large as possible (according to the conventional method). And 10 to 12 l / h are required for the burner with respect to the furnace volume of the above device), the two trade-off factors are efficiently co-located, and heat conversion far exceeding the concept of the intrinsic heat quantity of the fuel in a limited device. And, it means that we have made a great progress toward high-rate heat exchange utilization.

[実施例]以下、図面を参照して本発明の一実施例を説
明する。第1図は実施例に係わる装置の側面断面図で、
第2図はその正面断面図である。第3図(イ)は送風装
置の平面図で第3図(ロ)は送風装置の空気噴射部分の
縦断拡大図である。第1図において1はボイラー鑵体
で、2はその内部の燃焼室で、3は焚口である耐火扉で
4の空気取入口と5のバーナー口を備えている。6は燃
焼ガス排出口で7の煙突とガスの吸引ファン8が接続さ
れている。燃焼室外壁9はボイラー鑵体の内部熱交換部
に当り、10,11は燃焼ガスの通路管で6に連なって
おり、鑵体内部12には水が満たされている。13はバ
ーナーで14は送風管の支台、15の送風桟リングブロ
ワーから16の送風管で17の空気噴射部に連なってい
る。そして、本装置機能上の現象位置としてバーナー炎
或は固形燃料炎の発生する位置を18の燃焼部位。又、
17より噴射される高圧空気によって引き起こされる燃
焼反応層を19とし、18と19より発生し炉外壁9に
照射される放射熱線を20とする。上記の様な構成の燃
焼装置において、一実施例に係る動作を説明する。先
ず、8の吸引ファンを作動させて炉内を負圧とし、13
のバーナーを始動させて炎を発生させる。炎が安定した
ら15のリングブロワーを作動させる。18の自燃炎は
赤黒いが、17から火元に対して仰角度で噴射される高
圧空気膜層19では激しい燃焼反応が起こってバリヤ化
し、それに包み込まれた18の炎は見る見る輝炎化す
る。(放射熱線はバリヤを容易に通過する)木質等の固
形燃料を使用した燃焼においてもその方法順序は同様で
炎の輝炎化するにも短い時間で到達するし木灰としての
残る量も少ない。輝炎より出る放射熱線は炉外壁9で熱
交換し内部の水12を温める。10位置から煙管11を
通り6で鑵外に出るまで伝導熱交換でそれぞれの位置で
12の水を温める。いずれの燃料を用いた場合でも、速
やかに輝炎化する状態は、極めて限られた炉容積内でほ
ぼ燃料の熱転換が完了したものと推測され、6より排出
する気体温度もほぼ炉内温度の20%以下であることは
熱交換も高率に行われたことを示している。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view of a device according to an embodiment,
FIG. 2 is a front sectional view thereof. FIG. 3 (A) is a plan view of the blower, and FIG. 3 (B) is a vertical enlarged view of an air injection portion of the blower. In FIG. 1, reference numeral 1 is a boiler iron body, 2 is a combustion chamber inside the boiler body, 3 is a fireproof door which is a fire port, and has 4 air intake ports and 5 burner ports. Reference numeral 6 denotes a combustion gas outlet, to which the chimney 7 and a gas suction fan 8 are connected. The outer wall 9 of the combustion chamber corresponds to the internal heat exchange part of the boiler body, and 10 and 11 are connected to 6 by a passage tube for combustion gas, and the interior 12 of the body is filled with water. Reference numeral 13 is a burner, 14 is an abutment for a blower pipe, and 15 blower ring ring blowers are connected to 16 air blowers by 17 blower pipes. And, as a phenomenon position in the function of this apparatus, the position where the burner flame or the solid fuel flame is generated is the combustion site of 18. or,
The combustion reaction layer caused by the high pressure air injected from 17 is 19, and the radiant heat ray generated from 18 and 19 and applied to the outer wall 9 of the furnace is 20. The operation of the combustion apparatus having the above-described configuration according to the embodiment will be described. First, the suction fan of 8 is operated to make the inside of the furnace a negative pressure, and
Start the burner of and generate a flame. When the flame stabilizes, turn on the ring blower 15. The self-combustion flame of 18 is reddish black, but in the high-pressure air film layer 19 that is injected from 17 at an elevation angle with respect to the fire source, a vigorous combustion reaction occurs and becomes a barrier. . (The radiant heat ray easily passes through the barrier.) In the case of combustion using solid fuel such as wood, the method sequence is the same, and it takes a short time to make the flame ignite, and the amount of wood ash remaining is small. Radiant heat rays emitted from the bright flame exchange heat with the outer wall 9 of the furnace to warm the water 12 inside. Heat 12 water at each position by conduction heat exchange from position 10 through smoke pipe 11 and out of the malleer at 6. Regardless of which fuel is used, it is assumed that the state of rapidly igniting the flame was almost the completion of heat conversion of the fuel within the extremely limited furnace volume, and the gas temperature discharged from 6 was almost the furnace temperature. 20% or less indicates that heat exchange was also performed at a high rate.

[発明上の効果]以上詳述した様に本発明は、従来行わ
れている燃料粒子を微細化して空気との混合反応を高率
化するとか、空気の供給を数次の段階で行って完全に燃
焼反応させる等の方法から一歩進め、熱を交換利用する
立場から、物資の熱転換としての燃焼を見つめ直した。
熱交換の最も効率の良いのは、発光体(燃料)から温度
に累進比例して発生する特性ある放射熱線(エネルギ
ー)の直射熱であることから、その直射熱線を受照する
面積を出来るだけ広くしながらも、発光体(燃焼部位)
を高温に保持させる手段を開発したものである。そのこ
とによって、地球環境保全と健康維持、更に有限の資源
を節約すると云う時代の求める課題を、改善前進させる
ものである。以下利用面からその分野と効果を列記す
る。
[Effects of the Invention] As described in detail above, according to the present invention, the fuel particles that are conventionally used are made finer to increase the mixing reaction with air, or the air is supplied in several stages. From the standpoint of exchanging and utilizing heat, we reconsidered combustion as a heat conversion of materials, taking a step forward from the method of completely reacting combustion.
The most efficient heat exchange is the direct heat of the radiant heat ray (energy), which is generated from the light emitter (fuel) in a progressive proportion to the temperature, so the area that radiates the direct heat ray should be as small as possible. Even though it is wide, the luminous body (burning part)
We have developed a means to keep the high temperature. By doing so, we will improve the issues required in the age of global environment conservation, health maintenance, and the saving of limited resources. The fields and effects are listed below in terms of usage.

前述の様に限られた熱交換装置内で、燃焼雰囲気を
高めて燃焼反応を完結させることから、その発生する高
温の放射熱線は、最も効率よく熱交換利用率を高める。
それによって同一規模装置における燃料の大巾な低減と
共に、排気ガスのクリーン化と減少をもたらす。
As described above, since the combustion atmosphere is raised and the combustion reaction is completed within the limited heat exchange device, the high-temperature radiant heat rays generated thereby most efficiently increase the heat exchange utilization rate.
This results in a greater reduction in fuel in the same scale system as well as a cleaner and less exhaust gas.

本発明装置の機構は、例えば比較水分の多い生ごみ
的物質の焼却に当っても、その高温燃焼効率を維持する
ことが出来る。
The mechanism of the device of the present invention can maintain the high-temperature combustion efficiency even when incinerating a garbage-like substance having a relatively high moisture content.

前例に関連して、最近問題となっている大型焼却施
設における炉壁保護のための、比較的低温燃焼によるダ
イオキシンの発生現象についても、本発明の機構による
と、大型水管室内でも高温燃焼を維持することが出来る
ので、当該危険物質の発生する温度帯を超える高温で焼
却可能となり、環境に安全な効率向上と、施設保全を両
立させ、熱の吸収交換で得られた温湯利用の効果も生み
出すことが出来る。
In relation to the previous example, the dioxin generation phenomenon due to relatively low temperature combustion for the protection of the furnace wall in a large-scale incinerator, which has recently become a problem, is maintained by the mechanism of the present invention even at a large water pipe chamber while maintaining high-temperature combustion. Since it is possible to incinerate at a high temperature exceeding the temperature range in which the hazardous substance is generated, both environmentally safe efficiency improvement and facility maintenance can be achieved, and the effect of using hot water obtained by absorbing and exchanging heat is also created. You can

特に本機構が、重質油、石炭、高分子燃料の固有視
されていた熱カロリーをはるかに超える放射熱を発生さ
せ、その熱を高率交換する特徴と、燃料に供給する空気
量を適正必要範囲に止め得ることは、燃焼煤塵の発生を
抑制すること大きく、資源の節約と産業の活性化並に環
境保全に貢献すること大である。
In particular, this mechanism generates radiant heat that far exceeds the thermal calories that have been regarded as inherent in heavy oil, coal, and polymer fuels, and exchanges that heat at a high rate, and the amount of air supplied to the fuel is appropriate. What can be kept within the required range is to greatly suppress the generation of combustion dust, and to contribute to resource conservation, revitalization of industry, and environmental protection.

本発明の現象を引出す方法は極めて簡単、その施設
備も低廉で済むことから、生活、産業上の利用効果は大
きい。
The method of extracting the phenomenon of the present invention is extremely simple, and the equipment required for the method is inexpensive.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る燃焼装置の構成を示す
側面断面図、第2図は1図に対する正面断面図、第3図
の(イ)は2つの形体の送風装置の平面図、第3図の
(ロ)は2つの形体の空気噴射部分の縦断拡大図であ
る。 1…ボイラー鑵体 2…燃燃焼室 4…
空気取入口 5…バーナー口 8…吸引ファン 9.
10…燃焼ガス出口 13…バーナー 15〜16〜17…送風装地 18…燃焼部位 19…強烈反応層
FIG. 1 is a side sectional view showing a structure of a combustion apparatus according to an embodiment of the present invention, FIG. 2 is a front sectional view of FIG. 1, and FIG. 3 (a) is a plan view of a blower having two configurations. FIG. 3 (b) is an enlarged vertical cross-sectional view of the air injection portions of the two configurations. 1 ... Boiler body 2 ... Fuel combustion chamber 4 ...
Air intake port 5 ... Burner port 8 ... Suction fan 9.
10 ... Combustion gas outlet 13 ... Burner 15-16-17 ... Blasting ground 18 ... Combustion site 19 ... Strong reaction layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱交換部に囲まれるか、熱交換部に接し、
一方に室気取入口とバーナー口をもつ焚口扉を備え、他
方に燃焼ガス排出口を有する燃焼室と、この燃焼室内で
発熱させる燃焼手段において、バーナー炎又は固形燃料
炎の発生する燃焼部位と、燃焼ガス排出口との間の燃焼
ガス排出口側より、燃焼ガスの進行に対向し燃焼ガスを
斜に横断して燃焼部位をつつみ込む位置方向に、直単列
或いははラッパ状単列のカーテン状高圧空気を噴射し
て、強烈な燃焼反応に因る電磁波バリヤを形成させる、
噴射ノズルを備えた強制指向構造の直単列或いははラッ
パ型単列のカーテン状空気噴射手段と、所要能力をもつ
高圧送風手段を具備することを特徴とする高能率熱交換
燃焼装置。
1. Surrounding or contacting the heat exchange section,
A combustion chamber having a combustion inlet having a chamber air intake port and a burner port on one side, and a combustion gas discharge port on the other side, and a combustion part for generating heat in the combustion chamber, a combustion site where a burner flame or a solid fuel flame is generated. From the side of the combustion gas outlet between the combustion gas outlet, in the direction of the position facing the progress of the combustion gas and diagonally traversing the combustion gas and enclosing the combustion site, in a straight single row or a trumpet single row. Injects curtain-shaped high-pressure air to form an electromagnetic wave barrier due to a strong combustion reaction.
A high-efficiency heat-exchange combustion device comprising a direct single-row or trumpet-type single-row curtain-shaped air injection means having an injection nozzle and a high-pressure air blowing means having a required capacity.
【請求項2】 前項高圧空気噴出桟構は、高圧送風桟
と、それに接続された送風管の先端に火元に対して直角
に接着された直管又はラッパ型円形管に、火元に向けて
仰角度に設定してあけられた所要数の通気穴の上に、手
元が太く、先端がしぼり込まれて所定の太さの噴射口と
なる椎形状通気路形状のノズルがそれぞれ装着された、
構造であることを特徴とする特許請求の範囲第1項記載
の高能率熱交換燃焼装置。
2. The high-pressure air jetting frame is directed to the high-pressure blower and a straight pipe or a trumpet-shaped circular pipe that is bonded to the tip of the blower pipe connected to the high-pressure blower at a right angle to the fire. The vertebral air passage-shaped nozzles with a thick hand and a narrowed tip to form a jet with a predetermined thickness were mounted on the required number of ventilation holes that were set at an elevation angle. ,
The high-efficiency heat exchange combustion device according to claim 1, which has a structure.
JP7077060A 1994-03-04 1995-02-24 High efficiency heat exchange combustion device Expired - Fee Related JP3030321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7077060A JP3030321B2 (en) 1994-03-04 1995-02-24 High efficiency heat exchange combustion device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7242294 1994-03-04
JP6-72422 1994-03-04
JP7077060A JP3030321B2 (en) 1994-03-04 1995-02-24 High efficiency heat exchange combustion device

Publications (2)

Publication Number Publication Date
JPH07293856A true JPH07293856A (en) 1995-11-10
JP3030321B2 JP3030321B2 (en) 2000-04-10

Family

ID=26413557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7077060A Expired - Fee Related JP3030321B2 (en) 1994-03-04 1995-02-24 High efficiency heat exchange combustion device

Country Status (1)

Country Link
JP (1) JP3030321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369594A (en) * 2015-07-22 2017-02-01 郭成利 Boiler using alcohol-based liquid fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369594A (en) * 2015-07-22 2017-02-01 郭成利 Boiler using alcohol-based liquid fuel

Also Published As

Publication number Publication date
JP3030321B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
CN106958938A (en) A kind of energy-saving, environmental protection boiler of thermal protection
CN209013184U (en) A kind of powdered biomass controlled turbulent premixed combustion boiler
CN201897223U (en) Burner for burning gas with low heat value
CN207762933U (en) A kind of waste gas combustion furnace being recycled to exhaust gas
JPH07293856A (en) Highly-efficient heat exchanger/combustion apparatus
CN107013916A (en) A kind of dustless and smokeless unregulated power automatic cycle carbonization combustion furnace
CN206831510U (en) A kind of dustless and smokeless unregulated power automatic cycle carbonization combustion furnace
RU2201553C2 (en) Burner for liquid-fuel combustion apparatuses
CN202938363U (en) Combined type coal-to-gas combustion heating furnace
CN2539060Y (en) Vortex circulation burner
CN2257915Y (en) Smoke removing energy saving appts.
CN2198502Y (en) Energy saving self dust removing pressure-free boiler
CN2416428Y (en) Horizontal coal heating water boiler
CN212377951U (en) Boiler
CN201787574U (en) Combustion engine for hot blast stove
CN2168174Y (en) High frequency sound-wave smoke-eliminating dust-removing and energy-saving device for backburning of boiler
CN2514231Y (en) Burner utilizing ozone to supporting combustion
CN2524110Y (en) Combustion-accelerating stove devices
CN108916861A (en) A kind of powdered biomass controlled turbulent premixed combustion boiler and its application method
CN2466519Y (en) Direct combustion coal gas boiler
CN2286295Y (en) Internal abating smoke dust-removing heat synergic boiler
CN2487963Y (en) Negative pressure gas producer
CN205424893U (en) Camber gasification environmental protection energy -saving pot stove of hydrolysising
CN2296504Y (en) Smoke prevention and dust control system for kiln and furnace
CN2314242Y (en) Smokeless dust collecting combusting apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees