JPH0729371U - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPH0729371U
JPH0729371U JP6552893U JP6552893U JPH0729371U JP H0729371 U JPH0729371 U JP H0729371U JP 6552893 U JP6552893 U JP 6552893U JP 6552893 U JP6552893 U JP 6552893U JP H0729371 U JPH0729371 U JP H0729371U
Authority
JP
Japan
Prior art keywords
valve seat
passage hole
valve
elastic membrane
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6552893U
Other languages
Japanese (ja)
Other versions
JP2600913Y2 (en
Inventor
英夫 稲垣
友久 石黒
国義 北川
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP1993065528U priority Critical patent/JP2600913Y2/en
Publication of JPH0729371U publication Critical patent/JPH0729371U/en
Application granted granted Critical
Publication of JP2600913Y2 publication Critical patent/JP2600913Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Abstract

(57)【要約】 【目的】流路中に設置出来て、小型で単純構造の水量制
御弁を提供する。 【構成】流路を仕切ると共に中央に一次通過孔15が形
成された弾性膜3と、その下流側流路を仕切ると共に二
次通過孔14のある仕切壁7を備え、一次通過孔15周
縁部と離隔を有する弁座4を仕切壁7に設け、弾性膜3
の変位により弁座4との離隔を変化させて流量を制御す
る。
(57) [Summary] [Purpose] To provide a small and simple water control valve that can be installed in a flow path. [Structure] An elastic membrane 3 which partitions a flow path and has a primary passage hole 15 formed in the center, and a partition wall 7 which partitions a flow passage on the downstream side and has a secondary passage hole 14 are provided. The partition wall 7 is provided with a valve seat 4 having a distance from the elastic membrane 3
The flow rate is controlled by changing the distance from the valve seat 4 by the displacement of.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、供給圧力の変動に対して流体の流量を、一定量に制御する流量弁に 関する。 The present invention relates to a flow valve that controls a fluid flow rate to a constant amount with respect to fluctuations in supply pressure.

【0002】[0002]

【従来の技術】[Prior art]

一般にガス器具等には、ガスの流量を一定量に制御する流量制御弁(以下、制 御弁と呼ぶ)が組込まれる。この制御弁は、ガスの供給圧変動があっても安定し た燃焼ガス量を確保する役目を担っている。 その一例として実開平2−47330号公報に開示されている定流量弁を図4 に挙げて説明する。 Generally, gas appliances and the like incorporate a flow rate control valve (hereinafter referred to as a control valve) that controls the gas flow rate to a constant amount. This control valve plays the role of ensuring a stable combustion gas amount even if the supply pressure of the gas fluctuates. As an example, the constant flow valve disclosed in Japanese Utility Model Laid-Open No. 2-47330 will be described with reference to FIG.

【0003】 制御弁40は、ガス流入部を有する略円筒状の蓋43と、ガス流出部を有する 略円筒状の本体45とをそれらのフランジ面44、45で向い合わせ、その間に ダイアフラム弁54を挟んで固定される。 従って、ダイアフラム弁54を挟んで上流側となる蓋43側には一次室42が 、本体45側には二次室46が形成される。本体45の中央には、ダイアフラム 弁54と向いあって隙間を有する弁座51が設けられ、その中心にはガスを出口 へと導く連通孔50が形成されている。連通孔50は、制御されたガスを出口へ 導く流路となるので充分大きく開けられている。弁座51を取囲む外周にはバネ 47が設けられ、ダイアフラム弁54を開弁方向に付勢している。ダイアフラム 弁54には、バネ47当接部の外側に位置して通孔53が開けられ、一次室42 のガスは通孔53を通過して二次室46に流入する。The control valve 40 has a substantially cylindrical lid 43 having a gas inflow portion and a substantially cylindrical main body 45 having a gas outflow portion faced by their flange surfaces 44, 45, and a diaphragm valve 54 therebetween. It is fixed by sandwiching. Therefore, the primary chamber 42 is formed on the upstream side of the diaphragm valve 54, and the secondary chamber 46 is formed on the main body 45 side. A valve seat 51 facing the diaphragm valve 54 and having a gap is provided in the center of the main body 45, and a communication hole 50 for guiding gas to the outlet is formed in the center of the valve seat 51. The communication hole 50 serves as a flow path for guiding the controlled gas to the outlet, and is therefore sufficiently large. A spring 47 is provided on the outer periphery surrounding the valve seat 51 and urges the diaphragm valve 54 in the valve opening direction. The diaphragm valve 54 has a through hole 53 located outside the abutting portion of the spring 47, and the gas in the primary chamber 42 flows into the secondary chamber 46 through the through hole 53.

【0004】 一次室42にガス圧力P0が加わると、ガスは通孔53を通過して二次室46 に流入し圧力P1となり、次にダイアフラム弁54と弁座51との隙間を通過し て圧力P2となる。 ダイアフラム弁54はP0とP1との差圧を受圧面で受けて閉弁方向(図の下 方向)に作用する。他方、ダイアフラム弁54はバネ47によって開弁方向に作 用している。When the gas pressure P0 is applied to the primary chamber 42, the gas passes through the through hole 53, flows into the secondary chamber 46, becomes the pressure P1, and then passes through the gap between the diaphragm valve 54 and the valve seat 51. The pressure becomes P2. The diaphragm valve 54 receives the pressure difference between P0 and P1 on the pressure receiving surface and acts in the valve closing direction (downward direction in the drawing). On the other hand, the diaphragm valve 54 is operated by the spring 47 in the valve opening direction.

【0005】 供給圧P0が大きくなりP1の圧力も大きくなって流量が増えると、通孔53 は固定流路なのでP0とP1との差圧も大きくなる。よって、差圧による力がバ ネ47力に勝ってダイアフラム弁54と弁座51との隙間を狭める。又、供給圧 P0が小さくなりP2の圧力が小さくなって流量が減ると、通孔53は固定流路 なのでP0とP1との差圧も小さくなる。よって、差圧による力がバネ47力に 負けてダイアフラム弁54と弁座51との隙間を広げる。When the supply pressure P0 increases and the pressure of P1 also increases and the flow rate increases, the differential pressure between P0 and P1 also increases because the through hole 53 is a fixed flow path. Therefore, the force due to the differential pressure overcomes the force of the vane 47 and narrows the gap between the diaphragm valve 54 and the valve seat 51. Further, when the supply pressure P0 decreases and the pressure P2 decreases and the flow rate decreases, the pressure difference between P0 and P1 also decreases because the through hole 53 is a fixed flow path. Therefore, the force due to the differential pressure loses the force of the spring 47 and widens the gap between the diaphragm valve 54 and the valve seat 51.

【0006】 又、弁座51の連通孔50以後の通過抵抗が小さくなり流量が増えた場合には 、P2の圧力が小さくなるとともに、P0とP1との差圧が大きくなる。よって 、差圧による力がバネ47力に勝ってダイアフラム弁54と弁座51との隙間を 狭める。When the passage resistance of the valve seat 51 after the communication hole 50 decreases and the flow rate increases, the pressure of P2 decreases and the differential pressure between P0 and P1 increases. Therefore, the force due to the differential pressure overcomes the force of the spring 47 and narrows the gap between the diaphragm valve 54 and the valve seat 51.

【0007】 又、弁座51の連通孔50以後の通過抵抗が大きくなり流量が減った場合には 、P2の圧力が大きくなるとともに、P0とP1との差圧が小さくなる。よって 、差圧による力がバネ47力に負けてダイアフラム弁54と弁座51との隙間を 広げる。 上記より、ダイアフラム弁54はP0とP1との差圧を受圧面で受け閉弁方向 に作用する力と、バネ47によりダイアフラム弁54を開弁方向に作用する力と 釣り合うように働く。よって、バネ47荷重が一定であればP0とP1との差圧 も一定になり、通孔53を通過する流量は一定になる。When the passage resistance of the valve seat 51 after the communication hole 50 increases and the flow rate decreases, the pressure of P2 increases and the pressure difference between P0 and P1 decreases. Therefore, the force due to the differential pressure loses the force of the spring 47 and widens the gap between the diaphragm valve 54 and the valve seat 51. From the above, the diaphragm valve 54 acts so as to balance the force acting on the pressure receiving surface in the valve closing direction with the pressure difference between P0 and P1 and the force acting on the diaphragm valve 54 in the valve opening direction by the spring 47. Therefore, if the load of the spring 47 is constant, the pressure difference between P0 and P1 is also constant, and the flow rate through the through hole 53 is constant.

【0008】[0008]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、上記の制御弁をそのまま用いて流量制御しようとしても、実際 には色々な不都合を生じる。例えば、ダイアフラム弁へバネ荷重を均等に負荷さ せる為にバネ受けが必要であり、通孔の変形を防ぐ為のガイド、及び、ダイアフ ラム弁の弁座当接部の変形を防ぐ為の部材が必要になる。又、通孔はダイアフラ ム弁の弁座当接部の外側に偏芯して開けられる為に、ダイアフラム弁は傾き易く 不安定で、安定した性能が得られ難い問題があった。 又、ダイアフラムを挟んで気密保持している為に、フランジ面でのシール不良 によって、外部への流体漏れを起こす心配があった。 本考案の制御弁は上記課題を解決し、安価で、小型で、単純構造の制御弁を提 供することを目的とする。 However, even if the above control valve is used as it is to control the flow rate, various inconveniences actually occur. For example, a spring receiver is required to evenly apply a spring load to the diaphragm valve, a guide for preventing deformation of the through hole, and a member for preventing deformation of the valve seat abutting portion of the diaphragm valve. Will be required. Also, since the through hole is eccentrically opened outside the valve seat abutting portion of the diaphragm valve, the diaphragm valve is prone to tilting and is unstable, and there is a problem that stable performance is difficult to obtain. In addition, since the diaphragm is sandwiched to maintain airtightness, there is a risk of fluid leakage to the outside due to poor sealing at the flange surface. It is an object of the control valve of the present invention to solve the above problems and provide an inexpensive, small-sized, simple-structured control valve.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決する為に、本考案の流量弁は、流路を仕切ると共に中央に一次 通過孔が形成された弾性膜と、該弾性膜と向い合ってその下流側流路を仕切ると 共に二次通過孔が形成された仕切壁とを備え、上記弾性膜の一次通過孔に向い合 って一次通過孔周縁部と隙間を有する弁座を仕切壁に設け、上記弾性膜の変位に より上記一次通過孔周縁部と上記弁座との隙間を変化させることを要旨とする。 In order to solve the above-mentioned problems, the flow valve of the present invention divides the flow passage and also has an elastic membrane having a primary passage hole formed in the center and a downstream passage that faces the elastic membrane and divides the flow passage. A partition wall having a secondary passage hole formed therein, and a valve seat having a gap between the primary passage hole peripheral portion and the primary passage hole facing the primary passage hole of the elastic membrane is provided on the partition wall, and the displacement of the elastic membrane causes the valve seat to move. The gist is to change the gap between the peripheral portion of the primary passage hole and the valve seat.

【0010】 又、第2の考案の流量弁は、上記第1の考案において、上記弁座の中央部には 、一次通過孔より小さい径の連通孔が上記弾性膜の一次通過孔と向い合って形成 されていることを要旨とする。The flow valve of the second invention is the flow valve of the first invention, wherein a communication hole having a diameter smaller than the primary passage hole faces the primary passage hole of the elastic membrane in the central portion of the valve seat. The main point is that they are formed.

【0011】 第3の考案の流量弁は、上記第1または第2の考案において、上記弁座は、上 記仕切壁にねじ込み装着され、そのねじ込み位置調節により上記一次通過孔周縁 部と弁座との隙間が微調節されることを要旨とする。According to a third aspect of the present invention, in the flow valve according to the first or second aspect, the valve seat is screwed into the partition wall, and the screwing position adjustment adjusts the peripheral position of the primary passage hole and the valve seat. The point is that the gap between and is finely adjusted.

【0012】[0012]

【作用】[Action]

上記構成を有する本考案の制御弁は、弾性膜の弾性力を利用して作動する。流 体は弾性膜の中央の一次通過孔を通過し、弁座との隙間を通過して、仕切壁に設 けた二次通過孔を通って制御弁下流側に送り出される。 このとき、流体が弾性膜の中央の一次通過孔を通過すると弾性膜の前後に圧力 差が出来て、弾性膜は圧力差の程度により下流方向に変形を起こす。圧力差が大 きくなれば弾性膜は向い合う弁座との隙間を小さくし、圧力差が小さくなると弾 性膜は弁座との隙間を大きくする。従って、供給圧の変動があると弾性膜と弁座 との開口度が変化して流量が所定量に制御される。 The control valve of the present invention having the above structure operates by utilizing the elastic force of the elastic film. The fluid passes through the primary passage hole in the center of the elastic membrane, passes through the gap with the valve seat, and is discharged to the downstream side of the control valve through the secondary passage hole provided in the partition wall. At this time, when the fluid passes through the primary passage hole in the center of the elastic film, a pressure difference is generated before and after the elastic film, and the elastic film is deformed in the downstream direction depending on the degree of the pressure difference. The larger the pressure difference, the smaller the gap between the elastic membrane and the facing valve seat, and the smaller the pressure difference, the larger the gap between the elastic membrane and the valve seat. Therefore, if the supply pressure changes, the opening degree between the elastic membrane and the valve seat changes, and the flow rate is controlled to a predetermined amount.

【0013】 又、第2の考案の制御弁では、弾性膜の一次通過孔を通過して流体は、二次通 過孔だけでなく、弁座の中央部に設けた連通孔を通過する。従って、万が一、流 体の供給圧が過大となり弾性膜と弁座との隙間を閉じることになっても、連通孔 による流路は必ず確保されるので流体の流れは停止しない。Further, in the control valve of the second invention, the fluid passing through the primary passage hole of the elastic membrane passes through not only the secondary passage hole but also the communication hole provided in the central portion of the valve seat. Therefore, even if the fluid supply pressure becomes too large and the gap between the elastic membrane and the valve seat is closed, the flow path of the communication hole is always ensured and the fluid flow does not stop.

【0014】 又、第3の考案の制御弁では、弁座を仕切壁にねじ込み式としたので、弾性膜 の一次通過孔周縁部と弁座との隙間を微調節出来て、量産する上で、個々の性能 上のばらつきを吸収し目標性能に合致した制御弁とすることが出来る。Further, in the control valve of the third invention, since the valve seat is screwed into the partition wall, the clearance between the peripheral edge portion of the primary passage hole of the elastic membrane and the valve seat can be finely adjusted for mass production. It is possible to make the control valve that matches the target performance by absorbing the variation in individual performance.

【0015】[0015]

【実施例】【Example】

以上説明した本考案の構成・作用を一層明らかにするために、以下本考案の流 量制御弁の好適な実施例について説明する。 図1は一実施例としてのガス流量制御弁を表わす。ガス流量制御弁1(以下、 単に制御弁と呼ぶ)は、ガス管路GPの途中に配設されるもので、ケース2、弾 性膜3、弁座4、シート押え5、リング6から構成される。 In order to further clarify the structure and operation of the present invention described above, a preferred embodiment of the flow rate control valve of the present invention will be described below. FIG. 1 shows a gas flow rate control valve as an example. The gas flow rate control valve 1 (hereinafter, simply referred to as a control valve) is arranged in the middle of the gas pipeline GP, and includes a case 2, an elastic membrane 3, a valve seat 4, a seat retainer 5, and a ring 6. To be done.

【0016】 ケース2は、ガス流路に嵌合される略円筒体で下流側(図面下側)に流路を仕 切る仕切壁7が形成されている。仕切壁中央部には、ねじ孔8が形成され、この ねじ孔8に弁座4がねじこまれて取付けられている。又、ケース2の内側円筒壁 面10には、この肉厚を変えることで段部11が形成されている。段部11には 弾性膜3が載置され、弾性膜3はシート押え5を介してリング6で固定されてい る。The case 2 is a substantially cylindrical body that fits into the gas flow passage, and has a partition wall 7 that divides the flow passage on the downstream side (lower side in the drawing). A screw hole 8 is formed in the center of the partition wall, and the valve seat 4 is screwed into the screw hole 8 to be mounted. A step portion 11 is formed on the inner cylindrical wall surface 10 of the case 2 by changing the wall thickness. The elastic film 3 is placed on the step portion 11, and the elastic film 3 is fixed by the ring 6 via the sheet retainer 5.

【0017】 弾性膜3は、ゴム等の弾性体の材質で円板状に形成され、その中央にガスの通 過する孔15(以下、一次通過孔と呼ぶ)が設けられている。The elastic film 3 is made of an elastic material such as rubber and is formed into a disc shape, and a hole 15 (hereinafter, referred to as a primary passage hole) through which a gas passes is provided in the center thereof.

【0018】 弁座4は、弾性膜3に対向してシート部12をもち、弾性膜3の一次通過孔1 5に近接して隙間がある。弁座4のシート部12の中央には下流に通じる連通孔 13が開けられている。ねじ込み式の弁座4はドライバー等により進退移動可能 であり、弾性膜3との隙間を微調節出来るようになっている。The valve seat 4 has a seat portion 12 facing the elastic film 3 and has a gap close to the primary passage hole 15 of the elastic film 3. A communication hole 13 is formed in the center of the seat portion 12 of the valve seat 4 so as to communicate downstream. The screw-in type valve seat 4 can be moved back and forth by a screwdriver or the like, and the clearance between the valve seat 4 and the elastic film 3 can be finely adjusted.

【0019】 弁座4の取付け面であるケース2の仕切壁7には、ガスの下流への逃し流路と して充分な面積をもった孔14(以下、二次通過孔と呼ぶ)が、弁座4を取囲む ように複数開けられている。The partition wall 7 of the case 2, which is the mounting surface of the valve seat 4, has a hole 14 (hereinafter referred to as a secondary passage hole) having a sufficient area as a flow passage for the gas downstream. , Multiple openings are provided to surround the valve seat 4.

【0020】 このように本実施例の制御弁は、ケース2の内部に上流側よりリング6、シー ト押え5、弾性膜3、弁座4が順に組込まれた単一ユニットとして構成され、ガ ス管路GPに形成された段部に装着されリング20にて固定される。As described above, the control valve of the present embodiment is configured as a single unit in which the ring 6, the sheet retainer 5, the elastic membrane 3, and the valve seat 4 are sequentially installed in the case 2 from the upstream side, It is attached to a step portion formed in the pipe line GP and is fixed by a ring 20.

【0021】 次に制御弁の動作について説明する。図2は制御弁の作動状態を示し、図3は 制御弁の制御特性を示す。 尚、説明の都合上、弾性膜3を挟んで上流側を第1室16、弾性膜3とケース 2の仕切壁7の間の部屋を第2室17、仕切壁7を境に下流側を第3室18と呼 ぶ。 図2の(イ)の状態は図3の流量特性上の区間A上における状態を示し、(ロ )の状態は流量特性上の区間B上における状態にそれぞれ対応している。Next, the operation of the control valve will be described. FIG. 2 shows the operating state of the control valve, and FIG. 3 shows the control characteristics of the control valve. For convenience of explanation, the upstream side with the elastic film 3 interposed is the first chamber 16, the room between the elastic film 3 and the partition wall 7 of the case 2 is the second chamber 17, and the downstream side with the partition wall 7 as the boundary. Call it the third room 18. The state of (a) of FIG. 2 shows the state on the section A on the flow characteristic of FIG. 3, and the state of (b) corresponds to the state on the section B of the flow characteristic.

【0022】 図2の(イ)において第1室16側からの供給圧P0により、ガスは弾性膜3 の一次通過孔15を通過すると第2室17に入り減圧されて圧力P1となる。第 2室17に送られたガスは、その一部が弁座4の連通孔13を通過する固定の流 路として第3室18に入り、残りは弾性膜3と弁座4との隙間を通過し、ケース の二次通過孔14より第3室18に入り合流する。そこでガスの圧力はP2とな り、流量はQ0となる。弾性膜3にかかる力は、第1室16と第2室17との差 圧により左右され、その力は弾性膜3の弾性力より小さい場合には弾性膜3は変 形しない。このため、流量は供給ガス圧に比例して図3流量特性上の区間A上を 推移する。In FIG. 2A, when the gas passes through the primary passage hole 15 of the elastic film 3 due to the supply pressure P0 from the first chamber 16 side, the gas enters the second chamber 17 and is depressurized to the pressure P1. A part of the gas sent to the second chamber 17 enters the third chamber 18 as a fixed flow path that passes through the communication hole 13 of the valve seat 4, and the rest of the gas passes through the gap between the elastic membrane 3 and the valve seat 4. After passing through, it enters the third chamber 18 through the secondary passage hole 14 of the case and merges. Therefore, the gas pressure becomes P2, and the flow rate becomes Q0. The force exerted on the elastic membrane 3 depends on the pressure difference between the first chamber 16 and the second chamber 17, and if the force is smaller than the elastic force of the elastic membrane 3, the elastic membrane 3 does not deform. For this reason, the flow rate changes in proportion to the supply gas pressure over the section A on the flow rate characteristic of FIG.

【0023】 第1室16側からの供給圧P0がさらに上昇すると第1室16と第2室17と の差圧が大きくなり、弾性膜3にかかる力はその弾性力より大きくなる。このた め、弾性膜3は図2(ロ)に示すように静止状態を保てず変形して弁座4との隙 間の開度を狭める。 供給圧P0が下がると第1室16と第2室17との差圧が小さくなり、弾性膜 3の弾性力が上まわり弁座4との隙間の開度を広げる。 よって、供給圧の変動に応じて弾性膜3と弁座4との隙間の開度を変化させる 。この結果、流量は供給圧に関わらず図3流量特性上の区間B上を推移し、下流 の流量Q0を一定値に制御する。When the supply pressure P0 from the first chamber 16 side further rises, the differential pressure between the first chamber 16 and the second chamber 17 increases, and the force applied to the elastic film 3 becomes larger than the elastic force. Therefore, as shown in FIG. 2B, the elastic film 3 is deformed without maintaining a stationary state, and the opening degree between the elastic film 3 and the valve seat 4 is narrowed. When the supply pressure P0 decreases, the pressure difference between the first chamber 16 and the second chamber 17 decreases, and the elastic force of the elastic membrane 3 increases the opening degree of the gap between the upper and the valve seat 4. Therefore, the opening degree of the gap between the elastic membrane 3 and the valve seat 4 is changed according to the fluctuation of the supply pressure. As a result, the flow rate changes over the section B on the flow rate characteristic in FIG. 3 regardless of the supply pressure, and the downstream flow rate Q0 is controlled to a constant value.

【0024】 又、弁座4の連通孔13以後の通過抵抗が小さくなり流量が増えた場合には、 P0とP1との差圧が大きくなり、弾性膜3にかかる力はその弾性力より大きく なる。このため、弾性膜3と弁座4との隙間の開度を狭める。 逆に、弁座4の連通孔13以後の通過抵抗が大きくなり流量が減った場合には 、P0とP1との差圧が小さくなり、弾性力に負けて弾性膜3と弁座4との隙間 の開度を広げ、流量Q0を一定値に制御する。 弾性膜3は、P0とP1との差圧を受圧面で受けて、弾性膜3と弁座4との隙 間の開度を狭める方向に作用する力と、自らの弾性力により隙間を広げる方向に 作用する力と釣り合うように働く。 よって、弾性力が一定であればP0とP1との差圧も一定になり、一次通過孔 15を通過する流量Q0は一定になる。When the passage resistance after the communication hole 13 of the valve seat 4 decreases and the flow rate increases, the differential pressure between P0 and P1 increases, and the force applied to the elastic membrane 3 is larger than the elastic force. Become. Therefore, the opening degree of the gap between the elastic film 3 and the valve seat 4 is narrowed. On the contrary, when the passage resistance after the communication hole 13 of the valve seat 4 increases and the flow rate decreases, the differential pressure between P0 and P1 decreases, and the elastic force between the elastic membrane 3 and the valve seat 4 is lost due to the elastic force. The opening of the gap is widened to control the flow rate Q0 to a constant value. The elastic membrane 3 receives the pressure difference between P0 and P1 on the pressure receiving surface and widens the gap by the force acting in the direction of narrowing the opening degree of the gap between the elastic membrane 3 and the valve seat 4 and its own elastic force. It works to balance the force acting in the direction. Therefore, if the elastic force is constant, the differential pressure between P0 and P1 is also constant, and the flow rate Q0 passing through the primary passage hole 15 is also constant.

【0025】 万が一、ガスの供給圧P0が所望の制御範囲を超えて過大になった場合には、 第1室16と第2室17との差圧により、弾性膜3にかかる力はその弾性力より はるかに大きくなる。この為、弾性膜3は大きく変形して弁座4との隙間の開度 を閉じてしまうが、ガスは弁座4の連通孔13の固定の流路を通過して第3室1 8に流れる為、ガスの流れは停止しない。よって、何等かの理由によりガスの供 給圧P0が一時的にも過大となって停止状態が続くという不具合を生じない。In the unlikely event that the gas supply pressure P0 exceeds the desired control range and becomes excessively large, the force exerted on the elastic film 3 due to the differential pressure between the first chamber 16 and the second chamber 17 is elastic. Much bigger than power. Therefore, the elastic film 3 is largely deformed to close the opening of the gap with the valve seat 4, but the gas passes through the fixed flow passage of the communication hole 13 of the valve seat 4 and enters the third chamber 18. Because it flows, the gas flow does not stop. Therefore, the problem that the gas supply pressure P0 becomes temporarily excessive for some reason and the stopped state continues does not occur.

【0026】 流量特性を理想の特性にする為に弾性膜3の弾性力、弾性膜3の一次通過孔径 、弾性膜3の受圧面積、弾性膜3の厚み、弾性膜3のシート部の形状、弁座4の シート径、弁座4のシート部の形状、弁座4の連通孔径、ケース2の二次通過孔 径、ケース2の二次通過孔位置、弾性膜3と弁座4のシート部との隙間がそれぞ れ最適に選定される。In order to make the flow rate characteristic ideal, the elastic force of the elastic film 3, the primary passage hole diameter of the elastic film 3, the pressure receiving area of the elastic film 3, the thickness of the elastic film 3, the shape of the sheet portion of the elastic film 3, Seat diameter of valve seat 4, seat portion shape of valve seat 4, communication hole diameter of valve seat 4, secondary passage hole diameter of case 2, secondary passage hole position of case 2, elastic membrane 3 and seat of valve seat 4 The gaps between the parts are optimally selected.

【0027】 弁座4はケース2にねじ込まれ、ドライバー等によって弾性膜3との開度を微 調節出来る。よって、量産時の流量特性の精度を、より高めることが出来る。又 、流量の異なる機器にも弁座4の隙間調節、または弁座4の交換のみで他部品を 共通とすることが出来る。又、機器に組込み状態で流路の外部からも調節用口を 設ければいっそう調節が便利である 又、流路内にそのままユニット全体を組込み出来るので、組込まれる機器のス ペースの制約もなく、いかなる流路をも容易に流量制御された流路に変えること が出来る。さらに、コンパクトで取扱いが容易となり汎用性をもたせることが出 来る。 又、流路内にそのまま組み込む為、外気と接した接続部がなく、ガスが外部へ 漏れる恐れは起こり得ない。 以上、本考案の実施例を説明したが、本考案はこうした実施例に何等限定され るものではなく、様々な態様で実施し得ることは勿論である。例えば、弾性膜3 の材質はゴム等に限定されず、合成樹脂等様々の材料で対応できる。 又、ガス流量の制御に限らず、水、油等の液体流量制御に適用してもよい。The valve seat 4 is screwed into the case 2, and the opening degree with the elastic film 3 can be finely adjusted by a driver or the like. Therefore, the accuracy of the flow rate characteristics during mass production can be further improved. Also, even for devices having different flow rates, other parts can be made common by only adjusting the clearance of the valve seat 4 or replacing the valve seat 4. In addition, it is more convenient to adjust by installing an adjustment port from the outside of the flow path in the state where it is built into the equipment. Also, since the entire unit can be built into the flow path as it is, there is no restriction on the space of the built-in equipment. However, any flow path can be easily changed to a flow rate controlled flow path. Furthermore, it will be compact and easy to handle, and will be versatile. In addition, since it is built into the flow channel as it is, there is no connection part in contact with the outside air, and there is no possibility of gas leaking to the outside. Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments and can be implemented in various modes. For example, the material of the elastic film 3 is not limited to rubber or the like, and various materials such as synthetic resin can be used. Further, the invention is not limited to the control of the gas flow rate, and may be applied to the control of the flow rate of liquid such as water and oil.

【0028】[0028]

【考案の効果】[Effect of device]

以上詳述したように、本考案の流量制御弁は、部品点数少なく、小型で安価に 流量制御を行なうことが出来る。 又、流路内に組込まれるので、組込まれる機器のスペースが制約されず、又、 外気と接する接続部を有し無いので、流体は流路外へ漏れない。 As described above in detail, the flow control valve of the present invention has a small number of parts, is small in size, and can perform flow control at low cost. Further, since it is incorporated into the flow path, the space of the equipment to be incorporated is not restricted, and since there is no connecting portion that contacts the outside air, fluid does not leak out of the flow path.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例としての流量制御弁の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a flow rate control valve as one embodiment.

【図2】その動作説明図である。FIG. 2 is an explanatory diagram of the operation.

【図3】流量特性図である。FIG. 3 is a flow rate characteristic diagram.

【図4】従来例としての流量制御弁の概略構成図であ
る。
FIG. 4 is a schematic configuration diagram of a flow control valve as a conventional example.

【符号の説明】[Explanation of symbols]

1 ガス流量制御弁 2 ケース 3 弾性膜 4 弁座 7 仕切壁 1 Gas Flow Control Valve 2 Case 3 Elastic Membrane 4 Valve Seat 7 Partition Wall

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 流路を仕切ると共に中央に一次通過孔が
形成された弾性膜と、該弾性膜と向い合ってその下流側
流路を仕切ると共に二次通過孔が形成された仕切壁とを
備え、上記弾性膜の一次通過孔に向い合って一次通過孔
周縁部と隙間を有する弁座を仕切壁に設け、上記弾性膜
の変位により上記一次通過孔周縁部と上記弁座との隙間
を変化させることを特徴とする流量制御弁。
1. An elastic membrane that divides a flow passage and has a primary passage hole formed in the center, and a partition wall that faces the elastic membrane and divides the downstream passage and also has a secondary passage hole. The partition wall is provided with a valve seat facing the primary passage hole of the elastic membrane and having a gap with the peripheral edge portion of the primary passage hole, and the displacement of the elastic membrane forms a gap between the peripheral edge portion of the primary passage hole and the valve seat. A flow control valve characterized by being changed.
【請求項2】 上記弁座の中央部には、一次通過孔より
小さい径の連通孔が上記弾性膜の一次通過孔と向い合っ
て形成されていることを特徴とする請求項1記載の流量
制御弁。
2. The flow rate according to claim 1, wherein a communication hole having a diameter smaller than that of the primary passage hole is formed in a central portion of the valve seat so as to face the primary passage hole of the elastic film. Control valve.
【請求項3】 上記弁座は、上記仕切壁にねじ込み装着
され、そのねじ込み位置調節により上記一次通過孔周縁
部と弁座との隙間が微調節されることを特徴とする請求
項1又は請求項2記載の流量制御弁。
3. The valve seat according to claim 1, wherein the valve seat is screwed into the partition wall and the clearance between the peripheral edge portion of the primary passage hole and the valve seat is finely adjusted by adjusting the screwing position. Item 2. The flow control valve according to item 2.
JP1993065528U 1993-11-12 1993-11-12 Flow control valve Expired - Fee Related JP2600913Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993065528U JP2600913Y2 (en) 1993-11-12 1993-11-12 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993065528U JP2600913Y2 (en) 1993-11-12 1993-11-12 Flow control valve

Publications (2)

Publication Number Publication Date
JPH0729371U true JPH0729371U (en) 1995-06-02
JP2600913Y2 JP2600913Y2 (en) 1999-11-02

Family

ID=13289609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993065528U Expired - Fee Related JP2600913Y2 (en) 1993-11-12 1993-11-12 Flow control valve

Country Status (1)

Country Link
JP (1) JP2600913Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143960B1 (en) * 2010-03-05 2012-05-09 석진엔지니어링 주식회사 Controlling energy saving valve device
JP2015217187A (en) * 2014-05-20 2015-12-07 ニッタン株式会社 Fire extinguishing agent flow rate regulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064214A1 (en) * 2003-12-25 2005-07-14 Asahi Organic Chemicals Industry Co., Ltd. Constant flow valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143960B1 (en) * 2010-03-05 2012-05-09 석진엔지니어링 주식회사 Controlling energy saving valve device
JP2015217187A (en) * 2014-05-20 2015-12-07 ニッタン株式会社 Fire extinguishing agent flow rate regulator

Also Published As

Publication number Publication date
JP2600913Y2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP3276936B2 (en) Flow control valve
US4054152A (en) Check valve
KR100442786B1 (en) Elastomeric element valve
JP3467438B2 (en) Back pressure control valve
US4428397A (en) Fluid flow control device
US3779274A (en) Pressure regulator
US5983926A (en) Flow control valve
KR20090013239A (en) Fluid pressure regulator
US3978880A (en) Regulator valve diaphragm and valve assembly including the same
US3693651A (en) Valve assembly
AU2002352793B2 (en) Pneumatic pressure regulator assembly
JPH0729371U (en) Flow control valve
WO2001053730A1 (en) Regulating insert to be placed in valves, and valve unit
EP1442242B1 (en) Differential pressure valve
JP2020041643A (en) Relief valve
KR100826044B1 (en) Liquid control valve
EP0081229B1 (en) Pressure regulator
WO2018081111A1 (en) Spring seat vibration damper apparatus for use with pressure regulators
US3289692A (en) Spring adjusting means for a pressure operated valve
JP2002089722A (en) Pressure control valve
GB2060139A (en) Control Valve
JPH09230942A (en) Pressure reducing valve for clean gas
US4246931A (en) Fuel safety valve and regulator
JPH0737134Y2 (en) Pressure reducing valve for water supply device
JP2551381Y2 (en) Pressure reducing valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080827

LAPS Cancellation because of no payment of annual fees