JP2600913Y2 - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JP2600913Y2
JP2600913Y2 JP1993065528U JP6552893U JP2600913Y2 JP 2600913 Y2 JP2600913 Y2 JP 2600913Y2 JP 1993065528 U JP1993065528 U JP 1993065528U JP 6552893 U JP6552893 U JP 6552893U JP 2600913 Y2 JP2600913 Y2 JP 2600913Y2
Authority
JP
Japan
Prior art keywords
valve seat
valve
passage hole
elastic film
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1993065528U
Other languages
Japanese (ja)
Other versions
JPH0729371U (en
Inventor
英夫 稲垣
友久 石黒
国義 北川
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP1993065528U priority Critical patent/JP2600913Y2/en
Publication of JPH0729371U publication Critical patent/JPH0729371U/en
Application granted granted Critical
Publication of JP2600913Y2 publication Critical patent/JP2600913Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、供給圧力の変動に対し
て流体の流量を、一定量に制御する流量弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow valve for controlling a flow rate of a fluid to a constant amount in response to a change in supply pressure.

【0002】[0002]

【従来の技術】一般にガス器具等には、ガスの流量を一
定量に制御する流量制御弁(以下、制御弁と呼ぶ)が組
込まれる。この制御弁は、ガスの供給圧変動があっても
安定した燃焼ガス量を確保する役目を担っている。その
一例としての定流量弁を図4に挙げて説明する。
2. Description of the Related Art Generally, a gas appliance or the like incorporates a flow control valve (hereinafter, referred to as a control valve) for controlling a gas flow rate to a constant amount. This control valve has a role of ensuring a stable combustion gas amount even when the gas supply pressure fluctuates. The constant flow valve as its one example is given in Figure 4 will be described.

【0003】制御弁40は、ガス流入部を有する略円筒
状の蓋43と、ガス流出部を有する略円筒状の本体45
とをそれらのフランジ面44、45で向い合わせ、その
間にダイアフラム弁54を挟んで固定される。従って、
ダイアフラム弁54を挟んで上流側となる蓋43側には
一次室42が、本体45側には二次室46が形成され
る。本体45の中央には、ダイアフラム弁54と向いあ
って隙間を有する弁座51が設けられ、その中心にはガ
スを出口へと導く連通孔50が形成されている。連通孔
50は、制御されたガスを出口へ導く流路となるので充
分大きく開けられている。弁座51を取囲む外周にはバ
ネ47が設けられ、ダイアフラム弁54を開弁方向に付
勢している。ダイアフラム弁54には、バネ47当接部
の外側に位置して通孔53が開けられ、一次室42のガ
スは通孔53を通過して二次室46に流入する。
The control valve 40 has a substantially cylindrical lid 43 having a gas inlet and a substantially cylindrical body 45 having a gas outlet.
Face each other at their flange surfaces 44 and 45, and are fixed with a diaphragm valve 54 therebetween. Therefore,
The primary chamber 42 is formed on the lid 43 side, which is on the upstream side of the diaphragm valve 54, and the secondary chamber 46 is formed on the main body 45 side. A valve seat 51 having a gap facing the diaphragm valve 54 is provided at the center of the main body 45, and a communication hole 50 for guiding gas to an outlet is formed at the center thereof. The communication hole 50 is sufficiently large because it serves as a flow path for guiding the controlled gas to the outlet. A spring 47 is provided on the outer periphery surrounding the valve seat 51 and urges the diaphragm valve 54 in the valve opening direction. The diaphragm valve 54 has a through hole 53 located outside the portion where the spring 47 abuts, and the gas in the primary chamber 42 flows through the through hole 53 into the secondary chamber 46.

【0004】一次室42にガス圧力P0が加わると、ガ
スは通孔53を通過して二次室46に流入し圧力P1と
なり、次にダイアフラム弁54と弁座51との隙間を通
過して圧力P2となる。ダイアフラム弁54はP0とP
1との差圧を受圧面で受けて閉弁方向(図の下方向)に
作用する。他方、ダイアフラム弁54はバネ47によっ
て開弁方向に作用している。
When the gas pressure P0 is applied to the primary chamber 42, the gas passes through the through hole 53 and flows into the secondary chamber 46 to reach the pressure P1, and then passes through the gap between the diaphragm valve 54 and the valve seat 51. The pressure becomes P2. The diaphragm valve 54 has P0 and P
1, and acts on the pressure receiving surface to act in the valve closing direction (downward in the figure). On the other hand, the diaphragm valve 54 is acted on by a spring 47 in the valve opening direction.

【0005】供給圧P0が大きくなりP1の圧力も大き
くなって流量が増えると、通孔53は固定流路なのでP
0とP1との差圧も大きくなる。よって、差圧による力
がバネ47力に勝ってダイアフラム弁54と弁座51と
の隙間を狭める。又、供給圧P0が小さくなりP2の圧
力が小さくなって流量が減ると、通孔53は固定流路な
のでP0とP1との差圧も小さくなる。よって、差圧に
よる力がバネ47力に負けてダイアフラム弁54と弁座
51との隙間を広げる。
When the supply pressure P0 increases and the pressure of P1 increases and the flow rate increases, the through-hole 53 is a fixed flow path, so that P
The differential pressure between 0 and P1 also increases. Therefore, the force due to the differential pressure exceeds the force of the spring 47 and narrows the gap between the diaphragm valve 54 and the valve seat 51. When the supply pressure P0 decreases and the pressure of P2 decreases, and the flow rate decreases, the differential pressure between P0 and P1 also decreases because the through hole 53 is a fixed flow path. Therefore, the force due to the differential pressure is defeated by the force of the spring 47, and the gap between the diaphragm valve 54 and the valve seat 51 is widened.

【0006】又、弁座51の連通孔50以後の通過抵抗
が小さくなり流量が増えた場合には、P2の圧力が小さ
くなるとともに、P0とP1との差圧が大きくなる。よ
って、差圧による力がバネ47力に勝ってダイアフラム
弁54と弁座51との隙間を狭める。
When the flow resistance after the communication hole 50 of the valve seat 51 decreases and the flow rate increases, the pressure at P2 decreases and the differential pressure between P0 and P1 increases. Therefore, the force due to the differential pressure exceeds the force of the spring 47 and narrows the gap between the diaphragm valve 54 and the valve seat 51.

【0007】又、弁座51の連通孔50以後の通過抵抗
が大きくなり流量が減った場合には、P2の圧力が大き
くなるとともに、P0とP1との差圧が小さくなる。よ
って、差圧による力がバネ47力に負けてダイアフラム
弁54と弁座51との隙間を広げる。上記より、ダイア
フラム弁54はP0とP1との差圧を受圧面で受け閉弁
方向に作用する力と、バネ47によりダイアフラム弁5
4を開弁方向に作用する力と釣り合うように働く。よっ
て、バネ47荷重が一定であればP0とP1との差圧も
一定になり、通孔53を通過する流量は一定になる。
On the other hand, when the flow resistance after the communication hole 50 of the valve seat 51 increases and the flow rate decreases, the pressure of P2 increases and the differential pressure between P0 and P1 decreases. Therefore, the force due to the differential pressure is defeated by the force of the spring 47, and the gap between the diaphragm valve 54 and the valve seat 51 is widened. As described above, the diaphragm valve 54 receives the differential pressure between P0 and P1 on the pressure receiving surface and acts on the diaphragm valve 5 by the force acting in the valve closing direction.
4 acts to balance the force acting in the valve opening direction. Therefore, if the load of the spring 47 is constant, the differential pressure between P0 and P1 is also constant, and the flow rate passing through the through hole 53 is constant.

【0008】[0008]

【考案が解決しようとする課題】しかしながら、上記の
制御弁をそのまま用いて流量制御しようとしても、実際
には色々な不都合を生じる。例えば、ダイアフラム弁へ
バネ荷重を均等に負荷させる為にバネ受けが必要であ
り、通孔の変形を防ぐ為のガイド、及び、ダイアフラム
弁の弁座当接部の変形を防ぐ為の部材が必要になる。
又、通孔はダイアフラム弁の弁座当接部の外側に偏芯し
て開けられる為に、ダイアフラム弁は傾き易く不安定
で、安定した性能が得られ難い問題があった。又、ダイ
アフラムを挟んで気密保持している為に、フランジ面で
のシール不良によって、外部への流体漏れを起こす心配
があった。本考案の制御弁は上記課題を解決し、安価
で、小型で、単純構造の制御弁を提供することを目的と
する。
However, even if an attempt is made to control the flow rate using the above-mentioned control valve as it is, various problems actually occur. For example, a spring receiver is required to evenly apply the spring load to the diaphragm valve, a guide to prevent deformation of the through hole, and a member to prevent deformation of the valve seat contact portion of the diaphragm valve are required. become.
In addition, since the through hole is eccentrically opened outside the valve seat abutting portion of the diaphragm valve, the diaphragm valve is liable to be inclined and unstable, so that there is a problem that it is difficult to obtain stable performance. Also, since the diaphragm is held airtight, there is a fear that fluid leakage to the outside may occur due to poor sealing at the flange surface. An object of the present invention is to solve the above-mentioned problems and to provide an inexpensive, small, and simple control valve.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する為
に、本考案の流量制御弁は、流路を仕切ると共に中央に
一次通過孔が形成された弾性膜と、該弾性膜と向い合っ
てその下流側流路を仕切る仕切壁とを備え、上記弾性膜
の一次通過孔に向い合って一次通過孔周縁部と隙間を有
するテーパ状のシート部が形成された弁座と、上記弁座
を取り囲む複数の二次通過孔とを上記仕切壁に設け、上
記弾性膜の変位により上記一次通過孔周縁部と上記弁座
との隙間を変化させることを要旨とする。
In order to solve the above-mentioned problems, a flow control valve according to the present invention comprises an elastic film having a primary passage hole formed in the center while partitioning a flow path. the downstream-passage and a Setsukabe specifications Ru partition, the elasticity and valve seat tapered seat portion is formed with a primary passage hole periphery and gaps face to face in the first pass the pores of the membrane, the valve seat
A plurality of secondary passage holes surrounding the first passage hole are provided in the partition wall, and the gap between the peripheral portion of the primary passage hole and the valve seat is changed by the displacement of the elastic film.

【0010】又、第2の考案の流量弁は、上記第1の考
案において、上記弁座の中央部には、一次通過孔より小
さい径の連通孔が上記弾性膜の一次通過孔と向い合って
形成されていることを要旨とする。
Further, in the flow valve according to the second invention, in the first invention, a communication hole having a diameter smaller than that of the primary passage hole is provided at a central portion of the valve seat so as to face the primary passage hole of the elastic membrane. It is the gist that it is formed.

【0011】第3の考案の流量弁は、上記第1または第
2の考案において、上記弁座は、上記仕切壁にねじ込み
装着され、そのねじ込み位置調節により上記一次通過孔
周縁部と弁座との隙間が微調節されることを要旨とす
る。
In a third aspect of the present invention, in the flow valve according to the first or second aspect, the valve seat is screwed and mounted on the partition wall, and the periphery of the primary passage hole and the valve seat are adjusted by adjusting the screwing position. The gist is that the gap of is finely adjusted.

【0012】[0012]

【作用】上記構成を有する本考案の流量制御弁は、弾性
膜の弾性力を利用して作動する。流体は弾性膜の中央の
一次通過孔を通過し、一方は一次通過孔周縁部とテーパ
状のシート部との隙間を通過して、仕切壁に設けた二次
通過孔を通って制御弁下流側に送り出され、他方は弁座
内を通過して下流で合流する。このとき、流体が弾性膜
の中央の一次通過孔を通過すると弾性膜の前後に圧力差
が出来て、弾性膜は圧力差の程度により下流方向に変形
を起こす。弾性膜に働く圧力差が大きくなれば弾性膜は
向い合うテーパ状のシート部との隙間を小さくし、圧力
差が小さくなると弾性膜はテーパ状のシート部との隙間
を大きくする。従って、供給圧の変動があると弾性膜
テーパ状のシート部との開口度が変化して流量を所定量
に制御する。 このように、一次通過孔周縁部と隙間を有
するテーパ状のシート部が形成されているため、弾性膜
の変形量に対して開口度変化を小さく適切にして流量を
精度良く制御する。 また、弁座を取り囲むように二次通
過孔が複数設けられて、流れに偏りが無いため、弾性膜
が傾き難くく、安定して流量を制御する。
The flow control valve of the present invention having the above-mentioned structure operates by utilizing the elastic force of the elastic film. The fluid passes through the primary passage hole in the center of the elastic membrane , and one is tapered with the periphery of the primary passage hole.
Through the gap with the sheet-shaped portion, and through the secondary passage hole provided in the partition wall to the downstream side of the control valve , the other is a valve seat
Pass through and merge downstream. At this time, when the fluid passes through the primary passage hole in the center of the elastic film, a pressure difference is generated before and after the elastic film, and the elastic film is deformed downstream according to the degree of the pressure difference. The greater the pressure difference acting on the elastic film elastic film to reduce the gap between the case Cormorants tapered seat portion facing the elastic film when the pressure difference becomes small to increase the gap between the tapered seat. Therefore, an elastic film when there is a variation in the supply pressure
A predetermined amount of flow rate aperture of the tapered seat portion is changed
To control. Thus, there is a gap with the periphery of the primary passage hole.
The elastic film is formed because the tapered sheet portion
Small change in aperture with respect to the amount of deformation
Control with high accuracy. Also, the secondary passages surround the valve seat.
Since there are multiple holes and there is no bias in the flow, an elastic membrane
Is difficult to tilt and controls the flow rate stably.

【0013】又、第2の考案の制御弁では、弾性膜の一
次通過孔を通過して流体は、二次通過孔だけでなく、弁
座の中央部に設けた連通孔を通過する。従って、万が
一、流体の供給圧が過大となり弾性膜と弁座との隙間を
閉じることになっても、連通孔による流路は必ず確保さ
れるので流体の流れは停止しない。
In the control valve according to the second aspect of the present invention, the fluid passing through the primary passage hole of the elastic membrane passes not only through the secondary passage hole but also through the communication hole provided at the center of the valve seat. Therefore, even if the supply pressure of the fluid becomes excessive and the gap between the elastic membrane and the valve seat is closed, the flow path by the communication hole is always ensured, and the flow of the fluid does not stop.

【0014】又、第3の考案の制御弁では、弁座を仕切
壁にねじ込み式としたので、弾性膜の一次通過孔周縁部
と弁座との隙間を微調節出来て、量産する上で、個々の
性能上のばらつきを吸収し目標性能に合致した制御弁と
することが出来る。
In the control valve of the third invention, since the valve seat is screwed into the partition wall, the gap between the peripheral edge of the primary passage hole of the elastic membrane and the valve seat can be finely adjusted, so that mass production is possible. Thus, a control valve that absorbs variations in individual performance and matches the target performance can be obtained.

【0015】[0015]

【実施例】以上説明した本考案の構成・作用を一層明ら
かにするために、以下本考案の流量制御弁の好適な実施
例について説明する。図1は一実施例としてのガス流量
制御弁を表わす。ガス流量制御弁1(以下、単に制御弁
と呼ぶ)は、ガス管路GPの途中に配設されるもので、
ケース2、弾性膜3、弁座4、シート押え5、リング6
から構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to further clarify the configuration and operation of the present invention described above, a preferred embodiment of the flow control valve of the present invention will be described below. FIG. 1 shows a gas flow control valve as one embodiment. The gas flow control valve 1 (hereinafter, simply referred to as a control valve) is provided in the middle of the gas pipeline GP.
Case 2, elastic film 3, valve seat 4, seat retainer 5, ring 6
Consists of

【0016】ケース2は、ガス流路に嵌合される略円筒
体で下流側(図面下側)に流路を仕切る仕切壁7が形成
されている。仕切壁中央部には、ねじ孔8が形成され、
このねじ孔8に弁座4がねじこまれて取付けられてい
る。又、ケース2の内側円筒壁面10には、この肉厚を
変えることで段部11が形成されている。段部11には
弾性膜3が載置され、弾性膜3はシート押え5を介して
リング6で固定されている。
The case 2 is a substantially cylindrical body fitted into the gas flow path, and has a partition wall 7 for partitioning the flow path on the downstream side (lower side in the drawing). A screw hole 8 is formed in the center of the partition wall,
The valve seat 4 is screwed into the screw hole 8 and attached. Further, a step portion 11 is formed on the inner cylindrical wall surface 10 of the case 2 by changing the thickness. The elastic film 3 is placed on the step portion 11, and the elastic film 3 is fixed by a ring 6 via a sheet retainer 5.

【0017】[0017]

【考案の効果】以上詳述したように、本考案の請求項1
記載の流量制御弁は、部品点数少なく、小型で安価に流
量制御を行なうことが出来る。又、流路内に組込まれる
ので、組込まれる機器のスペースが制約されず、又、外
気と接する接続部を有し無いので、流体は流路外へ漏れ
ない。更に、弁座を取り囲むように二次通過孔が複数設
けられるため、弾性膜が傾き難く安定した流量性能が得
られる。また、テーパ状のシート部により、弾性膜の変
形量に対して開口度変化を小さく適切にして精度良く流
量が制御される。また、本考案の請求項2記載の流量制
御弁は、流体の供給圧が過大となっても流体の停止状態
が続くという不具合を生じない。また、本考案の請求項
3記載の流量制御弁は、弁座と弾性膜との開度を微調節
できるため、流量特性の精度をより高めることができ
る。
[Effect of the Invention] As described in detail above, claim 1 of the present invention
The described flow control valve has a small number of components, and can perform flow control at a small size and at low cost. Further, since the device is incorporated in the flow channel, the space for the device to be incorporated is not restricted, and since there is no connecting portion in contact with the outside air, the fluid does not leak out of the flow channel. Furthermore, a plurality of secondary passage holes are provided to surround the valve seat.
The elastic membrane is hard to tilt, and stable flow performance is obtained.
Can be In addition, the tapered sheet portion allows the elastic film to change.
Make the change of the opening degree small and appropriate for
The amount is controlled. Also, the flow rate control according to claim 2 of the present invention.
The control valve stops the fluid even if the supply pressure of the fluid becomes excessive.
Does not occur. Claims of the present invention
3. The flow control valve described in (3) finely adjusts the opening between the valve seat and the elastic membrane.
Can improve the accuracy of flow characteristics.
You.

【0018】弁座4は、弾性膜3に対向してシート部1
2をもち、弾性膜3の一次通過孔15に近接して隙間が
ある。弁座4のシート部12の中央には下流に通じる連
通孔13が開けられている。ねじ込み式の弁座4はドラ
イバー等により進退移動可能であり、弾性膜3との隙間
を微調節出来るようになっている。
The valve seat 4 faces the elastic film 3 and the seat portion 1
2 and a gap is provided near the primary passage hole 15 of the elastic film 3. A communication hole 13 is formed in the center of the seat portion 12 of the valve seat 4 and communicates downstream. The screw-in type valve seat 4 can be moved forward and backward by a driver or the like, so that the gap between the valve seat 4 and the elastic film 3 can be finely adjusted.

【0019】弁座4の取付け面であるケース2の仕切壁
7には、ガスの下流への逃し流路として充分な面積をも
った孔14(以下、二次通過孔と呼ぶ)が、弁座4を取
囲むように複数開けられている。
The partition wall 7 of the case 2, which is the mounting surface of the valve seat 4, has a hole 14 (hereinafter referred to as a secondary passage hole) having a sufficient area as an escape flow path for gas downstream. A plurality of seats are opened so as to surround the seat 4.

【0020】このように本実施例の制御弁は、ケース2
の内部に上流側よりリング6、シート押え5、弾性膜
3、弁座4が順に組込まれた単一ユニットとして構成さ
れ、ガス管路GPに形成された段部に装着されリング2
0にて固定される。
As described above, the control valve of the present embodiment
A ring 6, a sheet retainer 5, an elastic film 3, and a valve seat 4 are assembled in this order from the upstream side as a single unit. The ring 2 is mounted on a step formed in the gas pipeline GP.
Fixed at 0.

【0021】次に制御弁の動作について説明する。図2
は制御弁の作動状態を示し、図3は制御弁の制御特性を
示す。尚、説明の都合上、弾性膜3を挟んで上流側を第
1室16、弾性膜3とケース2の仕切壁7の間の部屋を
第2室17、仕切壁7を境に下流側を第3室18と呼
ぶ。図2の(イ)の状態は図3の流量特性上の区間A上
における状態を示し、(ロ)の状態は流量特性上の区間
B上における状態にそれぞれ対応している。
Next, the operation of the control valve will be described. FIG.
Shows the operating state of the control valve, and FIG. 3 shows the control characteristics of the control valve. For convenience of explanation, the first chamber 16 is located on the upstream side of the elastic membrane 3, the second chamber 17 is located between the elastic membrane 3 and the partition 7 of the case 2, and the downstream is located on the boundary of the partition 7. Called third chamber 18. The state (a) in FIG. 2 shows the state on the section A on the flow characteristic in FIG. 3, and the state (b) corresponds to the state on the section B on the flow characteristic, respectively.

【0022】図2の(イ)において第1室16側からの
供給圧P0により、ガスは弾性膜3の一次通過孔15を
通過すると第2室17に入り減圧されて圧力P1とな
る。第2室17に送られたガスは、その一部が弁座4の
連通孔13を通過する固定の流路として第3室18に入
り、残りは弾性膜3と弁座4との隙間を通過し、ケース
の二次通過孔14より第3室18に入り合流する。そこ
でガスの圧力はP2となり、流量はQ0となる。弾性膜
3にかかる力は、第1室16と第2室17との差圧によ
り左右され、その力は弾性膜3の弾性力より小さい場合
には弾性膜3は変形しない。このため、流量は供給ガス
圧に比例して図3流量特性上の区間A上を推移する。
In FIG. 2A, when the gas passes through the primary passage hole 15 of the elastic film 3 due to the supply pressure P0 from the first chamber 16, the gas enters the second chamber 17 and is reduced in pressure to P1. Part of the gas sent to the second chamber 17 enters the third chamber 18 as a fixed flow path passing through the communication hole 13 of the valve seat 4, and the rest passes through the gap between the elastic membrane 3 and the valve seat 4. After passing through, it enters the third chamber 18 through the secondary passage hole 14 of the case and merges. Thus, the gas pressure becomes P2 and the flow rate becomes Q0. The force applied to the elastic film 3 depends on the pressure difference between the first chamber 16 and the second chamber 17. If the force is smaller than the elastic force of the elastic film 3, the elastic film 3 does not deform. Therefore, the flow rate changes in the section A on the flow rate characteristic in FIG. 3 in proportion to the supply gas pressure.

【0023】第1室16側からの供給圧P0がさらに上
昇すると第1室16と第2室17との差圧が大きくな
り、弾性膜3にかかる力はその弾性力より大きくなる。
このため、弾性膜3は図2(ロ)に示すように静止状態
を保てず変形して弁座4との隙間の開度を狭める。供給
圧P0が下がると第1室16と第2室17との差圧が小
さくなり、弾性膜3の弾性力が上まわり弁座4との隙間
の開度を広げる。よって、供給圧の変動に応じて弾性膜
3と弁座4との隙間の開度を変化させる。この結果、流
量は供給圧に関わらず図3流量特性上の区間B上を推移
し、下流の流量Q0を一定値に制御する。
When the supply pressure P0 from the first chamber 16 further increases, the differential pressure between the first chamber 16 and the second chamber 17 increases, and the force applied to the elastic film 3 becomes larger than the elastic force.
For this reason, as shown in FIG. 2B, the elastic film 3 is not kept stationary and is deformed to narrow the opening of the gap with the valve seat 4. When the supply pressure P0 decreases, the pressure difference between the first chamber 16 and the second chamber 17 decreases, and the elastic force of the elastic film 3 increases the degree of opening of the gap with the upward rotation valve seat 4. Therefore, the opening degree of the gap between the elastic film 3 and the valve seat 4 is changed according to the change of the supply pressure. As a result, the flow rate changes on the section B on the flow rate characteristic in FIG. 3 regardless of the supply pressure, and the downstream flow rate Q0 is controlled to a constant value.

【0024】又、弁座4の連通孔13以後の通過抵抗が
小さくなり流量が増えた場合には、P0とP1との差圧
が大きくなり、弾性膜3にかかる力はその弾性力より大
きくなる。このため、弾性膜3と弁座4との隙間の開度
を狭める。逆に、弁座4の連通孔13以後の通過抵抗が
大きくなり流量が減った場合には、P0とP1との差圧
が小さくなり、弾性力に負けて弾性膜3と弁座4との隙
間の開度を広げ、流量Q0を一定値に制御する。弾性膜
3は、P0とP1との差圧を受圧面で受けて、弾性膜3
と弁座4との隙間の開度を狭める方向に作用する力と、
自らの弾性力により隙間を広げる方向に作用する力と釣
り合うように働く。よって、弾性力が一定であればP0
とP1との差圧も一定になり、一次通過孔15を通過す
る流量Q0は一定になる。
When the passage resistance after the communication hole 13 of the valve seat 4 decreases and the flow rate increases, the differential pressure between P0 and P1 increases, and the force applied to the elastic film 3 is larger than the elastic force. Become. Therefore, the opening degree of the gap between the elastic film 3 and the valve seat 4 is reduced. Conversely, when the flow resistance after the communication hole 13 of the valve seat 4 increases and the flow rate decreases, the differential pressure between P0 and P1 decreases, and the elastic force between the elastic membrane 3 and the valve seat 4 is lost due to the elastic force. The opening of the gap is widened, and the flow rate Q0 is controlled to a constant value. The elastic film 3 receives the differential pressure between P0 and P1 on the pressure receiving surface, and
Force acting in a direction to narrow the opening of the gap between the valve seat 4 and
It works to balance with the force acting in the direction to widen the gap by its own elastic force. Therefore, if the elastic force is constant, P0
, P1 also becomes constant, and the flow rate Q0 passing through the primary passage hole 15 becomes constant.

【0025】万が一、ガスの供給圧P0が所望の制御範
囲を超えて過大になった場合には、第1室16と第2室
17との差圧により、弾性膜3にかかる力はその弾性力
よりはるかに大きくなる。この為、弾性膜3は大きく変
形して弁座4との隙間の開度を閉じてしまうが、ガスは
弁座4の連通孔13の固定の流路を通過して第3室18
に流れる為、ガスの流れは停止しない。よって、何等か
の理由によりガスの供給圧P0が一時的にも過大となっ
て停止状態が続くという不具合を生じない。
If the gas supply pressure P0 exceeds the desired control range and becomes excessive, the force applied to the elastic film 3 due to the pressure difference between the first chamber 16 and the second chamber 17 is increased by the elasticity. Much larger than the force. For this reason, the elastic film 3 is greatly deformed and closes the opening of the gap with the valve seat 4, but the gas passes through the fixed flow passage of the communication hole 13 of the valve seat 4 and the third chamber 18.
Gas flow does not stop. Therefore, there is no problem that the supply pressure P0 of the gas temporarily becomes excessively high for some reason and the stop state continues.

【0026】流量特性を理想の特性にする為に弾性膜3
の弾性力、弾性膜3の一次通過孔径、弾性膜3の受圧面
積、弾性膜3の厚み、弾性膜3のシート部の形状、弁座
4のシート径、弁座4のシート部の形状、弁座4の連通
孔径、ケース2の二次通過孔径、ケース2の二次通過孔
位置、弾性膜3と弁座4のシート部との隙間がそれぞれ
最適に選定される。
To make the flow characteristics ideal, the elastic film 3
The elastic force of the elastic membrane 3, the primary passage hole diameter, the pressure receiving area of the elastic membrane 3, the thickness of the elastic membrane 3, the shape of the seat portion of the elastic membrane 3, the seat diameter of the valve seat 4, the shape of the seat portion of the valve seat 4, The diameter of the communication hole of the valve seat 4, the diameter of the secondary passage hole of the case 2, the position of the secondary passage hole of the case 2, and the gap between the elastic film 3 and the seat portion of the valve seat 4 are respectively optimally selected.

【0027】弁座4はケース2にねじ込まれ、ドライバ
ー等によって弾性膜3との開度を微調節出来る。よっ
て、量産時の流量特性の精度を、より高めることが出来
る。又、流量の異なる機器にも弁座4の隙間調節、また
は弁座4の交換のみで他部品を共通とすることが出来
る。又、機器に組込み状態で流路の外部からも調節用口
を設ければいっそう調節が便利である又、流路内にその
ままユニット全体を組込み出来るので、組込まれる機器
のスペースの制約もなく、いかなる流路をも容易に流量
制御された流路に変えることが出来る。さらに、コンパ
クトで取扱いが容易となり汎用性をもたせることが出来
る。又、流路内にそのまま組み込む為、外気と接した接
続部がなく、ガスが外部へ漏れる恐れは起こり得ない。
以上、本考案の実施例を説明したが、本考案はこうした
実施例に何等限定されるものではなく、様々な態様で実
施し得ることは勿論である。例えば、弾性膜3の材質は
ゴム等に限定されず、合成樹脂等様々の材料で対応でき
る。又、ガス流量の制御に限らず、水、油等の液体流量
制御に適用してもよい。
The valve seat 4 is screwed into the case 2, and the degree of opening with the elastic film 3 can be finely adjusted by a screwdriver or the like. Therefore, the accuracy of the flow characteristics during mass production can be further improved. Further, other components can be made common to devices having different flow rates only by adjusting the clearance of the valve seat 4 or replacing the valve seat 4. In addition, it is more convenient to provide an adjustment port from the outside of the flow path in the installed state of the device, and the adjustment is more convenient.Also, since the entire unit can be built in the flow path as it is, there is no restriction on the space of the installed device, Any flow path can be easily changed to a flow rate controlled flow path. Furthermore, it is compact and easy to handle, so that it can have versatility. Further, since it is incorporated in the flow path as it is, there is no connection part in contact with the outside air, and there is no possibility that gas leaks to the outside.
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and it is needless to say that the present invention can be implemented in various modes. For example, the material of the elastic film 3 is not limited to rubber or the like, and various materials such as synthetic resin can be used. Further, the present invention is not limited to the control of the gas flow rate, but may be applied to the control of the flow rate of a liquid such as water or oil.

【0028】[0028]

【考案の効果】以上詳述したように、本考案の流量制御
弁は、部品点数少なく、小型で安価に流量制御を行なう
ことが出来る。又、流路内に組込まれるので、組込まれ
る機器のスペースが制約されず、又、外気と接する接続
部を有し無いので、流体は流路外へ漏れない。
As described in detail above, the flow control valve according to the present invention has a small number of components and can perform flow control at a small size and at low cost. Further, since the device is incorporated in the flow channel, the space for the device to be incorporated is not restricted, and since there is no connecting portion in contact with the outside air, the fluid does not leak out of the flow channel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例としての流量制御弁の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a flow control valve as one embodiment.

【図2】その動作説明図である。FIG. 2 is an explanatory diagram of the operation.

【図3】流量特性図である。FIG. 3 is a flow characteristic diagram.

【図4】従来例としての流量制御弁の概略構成図であ
る。
FIG. 4 is a schematic configuration diagram of a flow control valve as a conventional example.

【符号の説明】[Explanation of symbols]

1 ガス流量制御弁 2 ケース 3 弾性膜 4 弁座 7 仕切壁 DESCRIPTION OF SYMBOLS 1 Gas flow control valve 2 Case 3 Elastic membrane 4 Valve seat 7 Partition wall

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭60−20616(JP,U) 実開 昭55−171761(JP,U) 実開 昭52−54924(JP,U) (58)調査した分野(Int.Cl.6,DB名) F16K 17/26 F16K 7/17 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A 60-20616 (JP, U) JP-A 55-171761 (JP, U) JP-A 52-54924 (JP, U) (58) Field (Int.Cl. 6 , DB name) F16K 17/26 F16K 7/17

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 流路を仕切ると共に中央に一次通過孔が
形成された弾性膜と、該弾性膜と向い合ってその下流側
流路を仕切る仕切壁とを備え、 上記弾性膜の一次通過孔に向い合って一次通過孔周縁部
と隙間を有するテーパ状のシート部が形成された弁座
と、上記弁座を取り囲む複数の二次通過孔とを上記仕切
壁に設け、 上記弾性膜の変位により上記一次通過孔周縁部と上記弁
座との隙間を変化させることを特徴とする流量制御弁。
Comprising an elastic film center primary passage holes are formed with 1. A partitioning the flow path, and a Setsukabe specifications Ru partition the downstream flow path face to face with the elastic film, the primary of the elastic membrane A valve seat having a tapered seat portion facing the passage hole and having a gap with the periphery of the primary passage hole.
And a plurality of secondary passage holes surrounding the valve seat are provided in the partition wall, and a gap between the peripheral portion of the primary passage hole and the valve seat is changed by displacement of the elastic film. valve.
【請求項2】 上記弁座の中央部には、一次通過孔より
小さい径の連通孔が上記弾性膜の一次通過孔と向い合っ
て形成されていることを特徴とする請求項1記載の流量
制御弁。
2. The flow rate according to claim 1, wherein a communication hole having a diameter smaller than that of the primary passage hole is formed in a central portion of the valve seat so as to face the primary passage hole of the elastic membrane. Control valve.
【請求項3】 上記弁座は、上記仕切壁にねじ込み装着
され、そのねじ込み位置調節により上記一次通過孔周縁
部と弁座との隙間が微調節されることを特徴とする請求
項1又は請求項2記載の流量制御弁。
3. The valve seat according to claim 1, wherein the gap between the peripheral edge of the primary passage hole and the valve seat is finely adjusted by adjusting the screwing position of the valve seat. Item 3. A flow control valve according to Item 2.
JP1993065528U 1993-11-12 1993-11-12 Flow control valve Expired - Fee Related JP2600913Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993065528U JP2600913Y2 (en) 1993-11-12 1993-11-12 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993065528U JP2600913Y2 (en) 1993-11-12 1993-11-12 Flow control valve

Publications (2)

Publication Number Publication Date
JPH0729371U JPH0729371U (en) 1995-06-02
JP2600913Y2 true JP2600913Y2 (en) 1999-11-02

Family

ID=13289609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993065528U Expired - Fee Related JP2600913Y2 (en) 1993-11-12 1993-11-12 Flow control valve

Country Status (1)

Country Link
JP (1) JP2600913Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064214A1 (en) * 2003-12-25 2005-07-14 Asahi Organic Chemicals Industry Co., Ltd. Constant flow valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143960B1 (en) * 2010-03-05 2012-05-09 석진엔지니어링 주식회사 Controlling energy saving valve device
JP6292973B2 (en) * 2014-05-20 2018-03-14 ニッタン株式会社 Fire extinguisher flow regulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064214A1 (en) * 2003-12-25 2005-07-14 Asahi Organic Chemicals Industry Co., Ltd. Constant flow valve
CN100396979C (en) * 2003-12-25 2008-06-25 旭有机材工业株式会社 Constant flow valve
US7487792B2 (en) 2003-12-25 2009-02-10 Asahi Organic Chemical Industry Co., Ltd. Constant flow valve

Also Published As

Publication number Publication date
JPH0729371U (en) 1995-06-02

Similar Documents

Publication Publication Date Title
US6199582B1 (en) Flow control valve
US3392749A (en) Pressure regulator with balancing piston
US6758458B2 (en) Butterfly valve
JP3467438B2 (en) Back pressure control valve
US5383646A (en) Diaphragm control valve
US4166476A (en) Vacuum cut-off valve
JPH1185287A (en) Flow control valve
US3762436A (en) Fluid pressure regulator
AU2002352793B2 (en) Pneumatic pressure regulator assembly
JP2600913Y2 (en) Flow control valve
JP3583851B2 (en) Pressure reducing valve for clean gas
JPH11259146A (en) Pressure control valve
JPH0213792A (en) Temperature controller for heat exchanger
JP3844836B2 (en) Constant flow valve with water temperature compensation function
US3391900A (en) Diaphragm flow control device
JP2002071048A (en) Automatic pressure regulating valve
EP0081229A2 (en) Pressure regulator
JPH0339644Y2 (en)
JPH0737134Y2 (en) Pressure reducing valve for water supply device
KR20030083758A (en) Liquid control valve
JPS631101Y2 (en)
JP3527129B2 (en) Constant flow valve for liquid
JPH04315206A (en) Diaphragm type flow rate regulating valve
GB1582644A (en) Regulating valve
JPH06314128A (en) Pressure governor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees