JPH07293565A - Slide bearing device - Google Patents

Slide bearing device

Info

Publication number
JPH07293565A
JPH07293565A JP11410994A JP11410994A JPH07293565A JP H07293565 A JPH07293565 A JP H07293565A JP 11410994 A JP11410994 A JP 11410994A JP 11410994 A JP11410994 A JP 11410994A JP H07293565 A JPH07293565 A JP H07293565A
Authority
JP
Japan
Prior art keywords
sleeve
bearing
shaft member
bearing member
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11410994A
Other languages
Japanese (ja)
Other versions
JP3640685B2 (en
Inventor
Kazuhiro Suzuki
和博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Cable System Inc
Original Assignee
Nippon Cable System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Cable System Inc filed Critical Nippon Cable System Inc
Priority to JP11410994A priority Critical patent/JP3640685B2/en
Publication of JPH07293565A publication Critical patent/JPH07293565A/en
Application granted granted Critical
Publication of JP3640685B2 publication Critical patent/JP3640685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To provide the slide bearing device which can maintain smooth rotation even in an environment in use where there exists great fluctuation in surrounding temperature. CONSTITUTION:The bearing device A is so constituted that it is made up of a bearing member 3 made of synthetic resin the inner circumferential surface 7 of which is a slide surface, a shaft member 1 made of synthetic resin the outer circumferential surface 4 of which is a slide surface, and of a sleeve 2 made of a copper alloy interposed between the aforesaid bearing member and the aforesaid shaft member where both the inner circumferential surface 5 and the outer circumferential surface of the sleeve are also slide surfaces, the sleeve 2 is fixed onto the shaft member 1 at the time of high temperature, and the sleeve 2 is fixed onto the bearing member 3 so as to be rotated at the time of low temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は滑り軸受装置に関する。
さらに詳しくは、建設機械、とくにパワーショベルのエ
ンジンコントロール装置のように、大きい温度差がある
使用環境において用いる滑り軸受装置に関する。
FIELD OF THE INVENTION The present invention relates to a plain bearing device.
More specifically, the present invention relates to a sliding bearing device used in a use environment where there is a large temperature difference, such as an engine control device for a construction machine, especially a power shovel.

【0002】[0002]

【従来の技術】一般的な滑り軸受装置においては、「か
じり」が生じないように軸部材よりも軸受側の方を軟質
材料で形成するか、あるいは軸受側に銅合金製などの比
較的軟質の材料からなるブッシュを冷やし嵌めなどで固
定することが多い。しかし使用環境の温度差が大きい場
合、低温時または高温時に軸と軸受ないしブッシュとの
隙間が小さくなり、かじりを生ずることがある。
2. Description of the Related Art In general plain bearing devices, the bearing side is made of a soft material rather than the shaft member so that "galling" does not occur, or the bearing side is made of a relatively soft material such as copper alloy. Bush made of material is often fixed by cold fitting. However, when the temperature difference in the operating environment is large, the gap between the shaft and the bearing or the bush becomes small at low temperature or high temperature, which may cause galling.

【0003】そのため従来は、精度の低いものではあら
かじめ軸と軸受間のクリアランスを大きくとっておく。
また少ないクリアランスないし高い軸受精度が要求され
る場合は、軸および軸受側の材質として、熱膨張率が等
しいもの、あるいは近いものを採用し、隙間をほぼ一定
に維持するように設計している。さらに熱膨張率の異な
る軸側とブッシュとを鋳込みなどで固く結合し、その中
間の熱膨張率を得るようにして軸受との隙間を少なくす
ることも提案されている(特開昭48−99539号公
報参照)。またころがり軸受の外輪を固定する支持構造
に関しても、熱膨張に伴う軸方向のズレや半径方向のガ
タつきを抑制する機構が種々提案されている(特開昭4
8−99539号公報、実開平2−146213号公
報、実開平2−146214号公報など参照)。
Therefore, conventionally, in the case of low precision, the clearance between the shaft and the bearing is set large in advance.
When a small clearance or high bearing accuracy is required, the material of the shaft and the bearing has the same or similar coefficient of thermal expansion, and is designed to keep the gap almost constant. Further, it has been proposed that the shaft side having a different coefficient of thermal expansion and the bush are firmly coupled by casting or the like to obtain an intermediate coefficient of thermal expansion to reduce the gap with the bearing (Japanese Patent Laid-Open No. 48-99539). (See the official gazette). Also, regarding the support structure for fixing the outer ring of the rolling bearing, various mechanisms have been proposed for suppressing axial displacement and radial backlash due to thermal expansion (Japanese Patent Laid-Open No. 4-496).
No. 8-99539, Japanese Utility Model Laid-Open No. 2-146213, Japanese Utility Model Laid-Open No. 2-146214, etc.).

【0004】[0004]

【発明が解決しようとする課題】前記従来の方法のう
ち、あらかじめクリアランスを大きくとっておく方法で
は、高温時のかじりなどを防止することを目的とする場
合、すなわち軸の熱膨張率が軸受のそれより大きい場合
は、低温時のクリアランスがきわめて大きくなり、逆に
低温時の問題を解消しようとすれば高温時のクリアラン
スが大きくなり、いずれの場合も軸受精度がわるくな
る。また軸と軸受の熱膨張率をほぼ同じにする場合にお
いても、構成要素の材質上の特性から、熱膨張率に等方
性がないことがある。たとえば合成樹脂製の軸、軸受の
場合には分子配向の問題で、等方性が得られない。さら
に軸受にはラジアル荷重がかかるため、局部的に発熱し
て等方的でなくなり、隙間が均等でなくなる場合があ
る。
Among the above-mentioned conventional methods, the method of preliminarily increasing the clearance is intended to prevent galling at high temperatures, that is, the coefficient of thermal expansion of the shaft is If it is larger than that, the clearance at low temperature becomes extremely large, and conversely, if trying to solve the problem at low temperature, the clearance at high temperature becomes large, and in either case, the bearing accuracy becomes poor. Even when the coefficients of thermal expansion of the shaft and the bearing are made approximately the same, the coefficient of thermal expansion may not be isotropic due to the characteristics of the materials of the constituent elements. For example, in the case of shafts and bearings made of synthetic resin, isotropy cannot be obtained due to the problem of molecular orientation. Furthermore, since a radial load is applied to the bearing, the bearing may locally generate heat so that the bearing is not isotropic and the gaps are not uniform.

【0005】本発明は上記のような使用環境の温度差が
大きい場合の滑り軸受において、周囲温度の高低に関わ
らずクリアランスをできるだけ均等にし、ガタやかじり
の発生を防止することを技術課題とするものである。
SUMMARY OF THE INVENTION It is a technical object of the present invention to make the clearance as uniform as possible in the sliding bearing in the case where the temperature difference in the use environment is large and to prevent the occurrence of backlash and galling regardless of the ambient temperature. It is a thing.

【0006】[0006]

【課題を解決するための手段】本発明の軸受装置は、内
周面が円筒状の回転摺動面となっている軸受部材と、そ
の軸受部材の内周に配設され、外周面および内周面の両
方がそれぞれ円筒状の回転摺動面となっているスリーブ
と、そのスリーブの内周に配設され、外周面が円筒状の
回転摺動面となっている軸部材とからなり、前記スリー
ブが、熱伝導率が高く、しかも軸部材および軸受本体よ
りも熱膨張率が低い材料から構成されていることを特徴
としている。
A bearing device according to the present invention includes a bearing member having an inner peripheral surface that is a cylindrical rotary sliding surface, and a bearing member disposed on the inner periphery of the bearing member. A sleeve having both cylindrical rotating sliding surfaces, and a shaft member having an outer peripheral surface having a cylindrical rotating sliding surface. The sleeve is characterized by being made of a material having a high thermal conductivity and a thermal expansion coefficient lower than those of the shaft member and the bearing body.

【0007】そのような軸受装置においては、前記軸受
部材と軸部材の熱膨張率が、スリーブの熱膨張率との差
と比較して、ほぼ等しいものが好ましく、とくに前記軸
受部材および軸部材が合成樹脂製であり、スリーブが銅
合金などの金属製であるものが好ましい。また前記回転
摺動面が、それぞれ軸方向の長さに比して3倍以上の大
きい径を備えているものにおいても好適に採用されう
る。またそのような軸受装置においては、前記軸受部材
を固定して軸部材側を回転させる通常の使用方法のほか
に、軸部材側を固定して軸受部材側を回転させるような
逆の使用方法を採用してもよく、さらに軸部材および軸
受部材の双方をそれぞれ同心状に回転自在としてもよ
い。
In such a bearing device, it is preferable that the coefficient of thermal expansion of the bearing member and the shaft member are substantially equal to the difference between the coefficient of thermal expansion of the sleeve and the coefficient of thermal expansion of the sleeve. It is preferably made of synthetic resin and the sleeve is made of metal such as copper alloy. Further, it can be suitably adopted also in the case where each of the rotary sliding surfaces has a diameter three times or more larger than the axial length thereof. Further, in such a bearing device, in addition to the normal use method in which the bearing member is fixed and the shaft member side is rotated, a reverse use method in which the shaft member side is fixed and the bearing member side is rotated is also used. Alternatively, both the shaft member and the bearing member may be concentrically rotatable.

【0008】[0008]

【作用】高温時には、軸部材および軸受部材が熱膨張す
るが、スリーブはそれらに比較すると熱膨張の程度が少
ない。そのためスリーブは軸部材の表面に固定され、ス
リーブと軸受部材との間に隙間があく。そのときスリー
ブは軸部材の熱膨張によりいくらか拡大されるので、ス
リーブと軸受部材との間の隙間はそれほど大きくならな
い。そしてこの状態で、スリーブの外周面と軸受部材の
内周面との間で摺動しながら軸受部材およびスリーブが
回転する。低温時には逆にスリーブは軸受部材側に固定
され、スリーブの内周面と軸部材の外周面との間で摺動
する。この状態でも隙間は少ない。
When the temperature is high, the shaft member and the bearing member are thermally expanded, but the sleeve is less thermally expanded than those. Therefore, the sleeve is fixed to the surface of the shaft member, and there is a gap between the sleeve and the bearing member. The sleeve then expands somewhat due to the thermal expansion of the shaft member, so that the gap between the sleeve and the bearing member is not very large. In this state, the bearing member and the sleeve rotate while sliding between the outer peripheral surface of the sleeve and the inner peripheral surface of the bearing member. On the contrary, when the temperature is low, the sleeve is fixed to the bearing member side and slides between the inner peripheral surface of the sleeve and the outer peripheral surface of the shaft member. Even in this state, there are few gaps.

【0009】本発明の滑り軸受装置においては、軸受部
材および軸部材の熱膨張率をスリーブの熱膨張率との差
と比較してほぼ等しくしておくのが好ましく、それによ
り高温時および低温時の隙間の変化が一層少なくなる。
また軸受部材および軸部材を合成樹脂製とし、スリーブ
を金属製、とくに真鍮などの銅合金製とするときは、か
じり防止効果が大きい。さらに本発明の滑り軸受装置
は、その隙間を小さくしているので、摺動面の直径が軸
方向の長さに比して3倍以上と大きい場合には、とくに
軸心の傾きを抑制する効果が大きい。
In the plain bearing device of the present invention, it is preferable that the coefficient of thermal expansion of the bearing member and the shaft member is substantially equal to the difference between the coefficient of thermal expansion of the sleeve and the coefficient of thermal expansion of the sleeve. The change in the gap is reduced.
Further, when the bearing member and the shaft member are made of synthetic resin and the sleeve is made of metal, particularly copper alloy such as brass, the galling prevention effect is great. Further, the sliding bearing device of the present invention has a small gap, so that the inclination of the shaft center is particularly suppressed when the diameter of the sliding surface is three times or more as large as the axial length. Great effect.

【0010】[0010]

【実施例】つぎに図面を参照しながら本発明の滑り軸受
装置の実施例を説明する。図1は本発明の装置の一実施
例を示す断面図、図2および図3はそれぞれ図1の装置
の高温時および低温時の状態を示す要部拡大断面図、図
4は本発明の装置における温度変化とクリアランスの変
動との関係を示すグラフ、図5は本発明の装置を備えた
アクチュエータの一実施例を示す断面図である。
Embodiments of the sliding bearing device of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the apparatus of the present invention, FIGS. 2 and 3 are enlarged sectional views of essential parts showing the states of the apparatus of FIG. 1 at high temperature and low temperature, respectively, and FIG. 4 is the apparatus of the present invention. FIG. 5 is a graph showing the relationship between the temperature change and the clearance change in FIG. 5, and FIG.

【0011】図1に示す滑り軸受装置Aは、軸心Sのま
わりに回転する円板状の軸部材1と、その軸部材1の外
周に回転自在に設けられるリング状のブッシュないしス
リーブ2と、そのスリーブ2の外周に回転自在に設けら
れるカップ状ないしリング状の軸受部材3とから構成さ
れている。なおここで回転自在というのは、後述するよ
うに所定の温度条件になったときに回転自在になる意味
である。また本実施例では軸受部材3を固定し、軸部材
1側を回転自在としているが、逆にしてもよく、また両
方を共通の軸心Sまわりに回転させるようにしてもよ
い。
A plain bearing device A shown in FIG. 1 includes a disk-shaped shaft member 1 which rotates around an axis S, and a ring-shaped bush or sleeve 2 which is rotatably provided on the outer periphery of the shaft member 1. , A cup-shaped or ring-shaped bearing member 3 rotatably provided on the outer circumference of the sleeve 2. The term "rotatable" as used herein means that it becomes rotatable when a predetermined temperature condition is reached, as described later. In this embodiment, the bearing member 3 is fixed and the shaft member 1 side is rotatable, but it may be reversed, or both may be rotated around the common axis S.

【0012】前記軸部材1の外周面4およびスリーブ2
の内周面5はそれぞれ円筒状の回転摺動面(以下、単に
摺動面という)となっている。またスリーブ2の外周面
6および軸受部材3の内周面7もそれぞれ円筒状の摺動
面となっている。軸部材1の図面上で左側には段部8が
設けられ、軸受部材3の右側にも段部9が設けられてい
る。
The outer peripheral surface 4 of the shaft member 1 and the sleeve 2
The inner peripheral surface 5 of each is a cylindrical rotary sliding surface (hereinafter, simply referred to as a sliding surface). The outer peripheral surface 6 of the sleeve 2 and the inner peripheral surface 7 of the bearing member 3 are also cylindrical sliding surfaces. A step portion 8 is provided on the left side of the shaft member 1 in the drawing, and a step portion 9 is also provided on the right side of the bearing member 3.

【0013】前記軸部材1と軸受部材3とはポリアセタ
ール、ポリカーボネート、ポリアミドなどの強度が高い
エンジニアリングプラスチックから構成されている。そ
れらの熱膨張率α1、α2は通常4〜6×10-5/℃程
度である。なお潤滑油を用いる場合は、それらの合成樹
脂材料として耐油性を備えたものが好ましく、とくに高
温下で用いる場合は耐熱性を有するものが好ましい。他
方、スリーブ2は、真鍮などの銅合金あるいはアルミ合
金などの熱伝導率が高く(22〜71kcal/mh℃程
度)、熱膨張率が16〜20×10-6程度と、前記軸部
材1や軸受部材3の合成樹脂よりも小さい金属から構成
されている。さらに軸部材1とスリーブ2のクリアラン
スC1は、常温では軸部材1の直径D1に対し、+0.
1〜0.2%程度で、いわゆるすべり嵌めにされてお
り、スリーブ2と軸受部材3のクリアランスC2は常温
で同じくスリーブの直径D2に対し、+0.1〜0.2
%程度ですべり嵌めである。
The shaft member 1 and the bearing member 3 are made of a high-strength engineering plastic such as polyacetal, polycarbonate or polyamide. The thermal expansion coefficients α1 and α2 are usually about 4 to 6 × 10 −5 / ° C. When a lubricating oil is used, those synthetic resin materials having oil resistance are preferable, and particularly when used at high temperature, those having heat resistance are preferable. On the other hand, the sleeve 2 has a high thermal conductivity of a copper alloy such as brass or an aluminum alloy (22 to 71 kcal / mh ° C.) and a thermal expansion coefficient of about 16 to 20 × 10 −6. The bearing member 3 is made of a metal smaller than the synthetic resin. Further, the clearance C1 between the shaft member 1 and the sleeve 2 is +0.
The clearance C2 between the sleeve 2 and the bearing member 3 is +0.1 to 0.2 with respect to the diameter D2 of the sleeve at room temperature.
It is a slip fit at about%.

【0014】したがって図1の装置Aは常温では、軸部
材1とスリーブ2の間ですべるか、あるいはスリーブ2
と軸受部材3との間ですべるかは、温度以外に摩擦係
数、潤滑の状態、摺動面に加わる接線方向の力の大小な
どの条件に応じて定まる。この状態が図4において符号
Nで示す中立領域である。なお図4の横軸は温度を、縦
軸は温度による変位を示しており、斜めの線P1、P2
およびP3はそれぞれ軸部材1、スリーブ2、軸受部材
3の温度に基づく変化を模式的に示している。
Therefore, the device A of FIG. 1 slides between the shaft member 1 and the sleeve 2 or the sleeve 2 at normal temperature.
Whether it slides between the bearing member 3 and the bearing member 3 depends on conditions such as the coefficient of friction, the state of lubrication, and the magnitude of the tangential force applied to the sliding surface, in addition to the temperature. This state is the neutral area indicated by the symbol N in FIG. The horizontal axis of FIG. 4 represents the temperature and the vertical axis represents the displacement due to the temperature. The diagonal lines P1 and P2
And P3 schematically show changes of the shaft member 1, the sleeve 2, and the bearing member 3 based on the temperature.

【0015】つぎに上記のごとく構成される軸受装置A
の環境温度が100℃程度に上昇すると、図4の右側に
示すように熱膨張率が高い軸部材1と軸受部材3とは径
がかなり増大し、スリーブ2はそれらほどは増大しな
い。そのため軸受部材3とスリーブ2の間のクリアラン
スC2は増加するが、スリーブ2と軸部材1の間のクリ
アランスC1は零を越えてマイナスになり、いわば締ま
り嵌合になる。これが図4の符号Hで示す高温領域であ
る。そのため図2に示すように、スリーブ2は軸部材1
と一体となり、スリーブ2の外周面と軸受部材3との間
で相対的に回転することになる。なおこの状態で軸部材
1とスリーブ2のクリアランスC1の絶対値が大きくな
ると、スリーブ2がいくらか伸ばされて直径が増大す
る。そのためクリアランスC2は直線的に増大すること
はなく、これより少ない値になる。
Next, the bearing device A constructed as described above.
When the ambient temperature of 100 ° C. rises to about 100 ° C., the diameters of the shaft member 1 and the bearing member 3 having a high coefficient of thermal expansion increase considerably, as shown on the right side of FIG. Therefore, the clearance C2 between the bearing member 3 and the sleeve 2 increases, but the clearance C1 between the sleeve 2 and the shaft member 1 exceeds zero and becomes negative, so to speak, tight fit is achieved. This is the high temperature region indicated by the symbol H in FIG. Therefore, as shown in FIG. 2, the sleeve 2 has a shaft member 1
And the outer peripheral surface of the sleeve 2 and the bearing member 3 rotate relative to each other. In this state, when the absolute value of the clearance C1 between the shaft member 1 and the sleeve 2 increases, the sleeve 2 is stretched to some extent and the diameter increases. Therefore, the clearance C2 does not increase linearly and has a smaller value.

【0016】つぎに環境温度が−20〜40℃程度まで
下がると、すなわち図4において左側の符号Lで示す低
温領域になると、逆に軸部材1と軸受部材3が収縮し、
スリーブ2はそれほど収縮しない。そのため図3に示す
ように、スリーブ2はマイナスのクリアランスC2で軸
受部材3に固定され、軸部材1とスリーブ2との間のク
リアランスC1が大きくなる。そのため軸部材1はスリ
ーブ2との間で相対的に回転する。なお図1の装置では
スリーブ2と軸部材1の段部8との間に隙間C3を設
け、環境温度が低下したときにスリーブ2の端面が両側
の段部8、9で強く挟み込まれないようにしている。
Next, when the environmental temperature drops to about -20 to 40 ° C., that is, in the low temperature region indicated by the reference symbol L on the left side in FIG. 4, the shaft member 1 and the bearing member 3 contract on the contrary,
The sleeve 2 does not shrink so much. Therefore, as shown in FIG. 3, the sleeve 2 is fixed to the bearing member 3 with a negative clearance C2, and the clearance C1 between the shaft member 1 and the sleeve 2 increases. Therefore, the shaft member 1 rotates relative to the sleeve 2. In the apparatus of FIG. 1, a gap C3 is provided between the sleeve 2 and the stepped portion 8 of the shaft member 1 so that the end surface of the sleeve 2 is not strongly pinched by the stepped portions 8 and 9 on both sides when the environmental temperature decreases. I have to.

【0017】つぎに図5を参照して本発明の滑り軸受装
置の実際の適用例を説明する。図5はパワーショベルな
どの建設機械のエンジン出力を電気的に遠隔制御するた
めに用いるアクチュエータBを示している。図5におい
て11はベースであり、ベース11にはL字形のブラケ
ット12が取りつけられている。ブラケット12にはフ
ランジ13が合成樹脂製のハウジング14と共にねじ1
5で取りつけられており、フランジ13にはモータMが
取りつけられている。モータMの軸16にはピニオン1
7が固着され、ハウジング14の図面左側の中空部の内
面に固定したリングギア18およびピニオン17とリン
グギア18との間に介在される遊星ギア19と共に、遊
星ギア式の第1減速機20を構成している。遊星ギア1
9はピン21によって、出力部材となるキャリア22上
に回転自在に支持されている。
Next, an actual application example of the plain bearing device of the present invention will be described with reference to FIG. FIG. 5 shows an actuator B used for electrically and remotely controlling the engine output of a construction machine such as a power shovel. In FIG. 5, reference numeral 11 is a base, and an L-shaped bracket 12 is attached to the base 11. The bracket 12 has a flange 13 together with a synthetic resin housing 14 and screws 1
The motor M is attached to the flange 13. The pinion 1 is attached to the shaft 16 of the motor M.
7, the planetary gear 19 and the ring gear 18 fixed to the inner surface of the hollow portion of the housing 14 on the left side in the drawing and the planetary gear 19 interposed between the pinion 17 and the ring gear 18, and the first reduction gear 20 of the planetary gear type. I am configuring. Planetary gear 1
9 is rotatably supported by a pin 21 on a carrier 22 serving as an output member.

【0018】ハウジング14の図面右側の空所内には、
それぞれカップ状の第1リングギア25および第2リン
グギア26が互いに向き合うように固定されている。そ
れらの一対のリングギア25、26の歯数はいくらか
(たとえば3枚程度)異なっている。さらにそれぞれの
リングギア25、26の中心孔には第1キャリア27お
よび第2キャリア28がそれぞれ回転自在に支持されて
おり、両方のキャリア27、28は遊星ギア29を支持
するピン30および締結用のピン31によって結合され
ている。
In the space on the right side of the housing 14 in the drawing,
A cup-shaped first ring gear 25 and a cup-shaped second ring gear 26 are fixed so as to face each other. The number of teeth of the pair of ring gears 25 and 26 is somewhat different (for example, about three). Further, a first carrier 27 and a second carrier 28 are rotatably supported in the center holes of the ring gears 25 and 26, respectively, and both carriers 27 and 28 support a pin 30 for supporting a planet gear 29 and a fastening member. It is connected by the pin 31 of.

【0019】第1および第2キャリア27、28の中心
孔には太陽ギア32の軸の両端が支持されており、太陽
ギア32の軸の一端33は前記第1減速機20の出力部
材であるキャリア22と共廻りするように結合されてい
る。上記太陽ギア32、遊星ギア29、第1、第2リン
グギア25、26およびキャリア27、28は全体とし
て第2キャリア28を出力部材とするファーガソンズパ
ラドックスタイプの第2減速機34を構成している。
Both ends of the shaft of the sun gear 32 are supported in the center holes of the first and second carriers 27 and 28, and one end 33 of the shaft of the sun gear 32 is an output member of the first speed reducer 20. It is coupled so as to rotate together with the carrier 22. The sun gear 32, the planetary gear 29, the first and second ring gears 25 and 26, and the carriers 27 and 28 constitute a second Ferguson's paradox type speed reducer 34 having the second carrier 28 as an output member as a whole. There is.

【0020】前記ハウジング14の右側にはカップ状の
合成樹脂製のプーリハウジング36が設けられ、そのプ
ーリハウジング36はケーブル引き出し部37によって
ベースに固定されている。そしてハウジング14の開口
端とプーリハウジング36の開口端の内周面38、39
はそれぞれ円筒面状の回転摺動面とされており、それら
の内部に断面矩形のリング状の銅合金製の第1スリーブ
40が嵌合されている。その第1スリーブ40の外周面
および内周面はそれぞれ回転摺動面とされている。
A cup-shaped synthetic resin pulley housing 36 is provided on the right side of the housing 14, and the pulley housing 36 is fixed to the base by a cable pull-out portion 37. The inner peripheral surfaces 38, 39 of the open end of the housing 14 and the open end of the pulley housing 36 are
Are each a cylindrical sliding surface, and a ring-shaped first sleeve 40 made of a copper alloy having a rectangular cross section is fitted therein. The outer peripheral surface and the inner peripheral surface of the first sleeve 40 are rotational sliding surfaces.

【0021】他方、プーリハウジング34の右端の開口
部の内周面41も回転摺動面とされ、その内周面41に
薄肉リング状の銅合金製の第2スリーブ42が回転自在
に嵌合されている。そしてプーリハウジング36の内部
には、第2スリーブ42に回転自在に支持される筒状突
起43をその一端に備え、第1スリーブ40に回転自在
に支持される円板状の突出部44を他方の側面に備えた
ケーブル巻き取り用の合成樹脂製のプーリ45が収容さ
れており、その中心の軸46が前記第2減速機34の出
力部材である第2キャリア28に結合されている。
On the other hand, the inner peripheral surface 41 of the opening at the right end of the pulley housing 34 is also a rotary sliding surface, and the second sleeve 42 made of a thin ring-shaped copper alloy is rotatably fitted to the inner peripheral surface 41. Has been done. Inside the pulley housing 36, a cylindrical protrusion 43 rotatably supported by the second sleeve 42 is provided at one end thereof, and a disc-shaped protrusion 44 rotatably supported by the first sleeve 40 is provided at the other end. A pulley 45 made of a synthetic resin for winding the cable is housed on the side surface of the shaft, and its central shaft 46 is connected to the second carrier 28 which is an output member of the second speed reducer 34.

【0022】本発明の滑り軸受装置は、上記プーリ45
を支持する2個所に採用されている。すなわち軸受部材
となるハウジング14およびプーリハウジング36の開
口端の内周面38、39と、軸部材となるプーリ45の
突出部44と、それらの間に介在される第1スリーブ4
0により第1滑り軸受装置A1が構成される。そして軸
受部材となるプーリハウジング34の先端の開口部と、
軸部材となるプーリ44の筒状突起43と、それらの間
の第2スリーブ42とから第2滑り軸受装置A2が構成
される。なお図5における符号Pは、ベース11に立設
されるブラケット48に固定されたポテンショメータで
あり、ポテンショメータPの検出軸49はプーリ45に
連結固定されている。またプーリ45の外周の溝50に
は、エンジン側に導かれるコントロールケーブルの内索
51が巻きつけられ、その一端はプーリ45に係止され
ている。
The plain bearing device of the present invention is the pulley 45.
It is used in two places to support. That is, the inner peripheral surfaces 38 and 39 at the open ends of the housing 14 and the pulley housing 36 that serve as bearing members, the protruding portion 44 of the pulley 45 that serves as a shaft member, and the first sleeve 4 interposed therebetween.
0 constitutes the first plain bearing device A1. And an opening at the tip of the pulley housing 34 that serves as a bearing member,
A second plain bearing device A2 is composed of the cylindrical protrusion 43 of the pulley 44 that serves as a shaft member and the second sleeve 42 between them. Reference numeral P in FIG. 5 is a potentiometer fixed to a bracket 48 which is erected on the base 11, and a detection shaft 49 of the potentiometer P is fixedly connected to a pulley 45. An inner cable 51 of a control cable guided to the engine side is wound around the groove 50 on the outer periphery of the pulley 45, and one end of the inner cable 51 is locked to the pulley 45.

【0023】上記のごとく構成されるアクチュエータB
の作用は従来のものと同じであり、外部よりモータMに
対して正転、停止、逆転の駆動電流が流され、それに応
じて第1減速機20および第2減速機34で減速された
回転駆動力により、プーリ45が正転、停止、逆転の作
用を行い、その上に内索51を巻き取ったり送り出した
りしてエンジンのガバナないしスロットルなどの燃料調
整装置を制御する。そして第1滑り軸受装置A1および
第2軸受装置2では、図1の場合と同様に、外部環境の
温度変化に応じて第1スリーブ40および第2スリーブ
42が軸部材側または軸受部材側に固定された状態で軸
部材を回転自在に支持する。したがって高温または低温
時のいずれの場合においても、軸部材である突出部44
および筒状突起44と第1スリーブ40および第2スリ
ーブ42の内面とのクリアランス、さらに軸受部材であ
るハウジング14、プーリハウジング36の内周面と第
1および第2スリーブ40、42の外周面との間のクリ
アランスが、それぞれ適正に維持され、芯ずれやかじり
を防止しながら適切な回転作用を維持することができ
る。
Actuator B constructed as described above
Is the same as the conventional one, and a drive current for forward rotation, stop, and reverse rotation is applied to the motor M from the outside, and the rotation speed is reduced by the first speed reducer 20 and the second speed reducer 34 accordingly. The driving force causes the pulley 45 to perform normal rotation, stoppage, and reverse rotation, and the inner cable 51 is wound on and fed out from the pulley 45 to control a fuel adjusting device such as a governor or throttle of the engine. In the first plain bearing device A1 and the second bearing device 2, the first sleeve 40 and the second sleeve 42 are fixed to the shaft member side or the bearing member side according to the temperature change of the external environment, as in the case of FIG. In this state, the shaft member is rotatably supported. Therefore, in both cases of high temperature and low temperature, the protrusion 44 which is the shaft member
And the clearance between the cylindrical protrusion 44 and the inner surfaces of the first sleeve 40 and the second sleeve 42, and the inner peripheral surfaces of the housing 14 and the pulley housing 36, which are bearing members, and the outer peripheral surfaces of the first and second sleeves 40 and 42. The clearances between them are properly maintained, and proper rotation can be maintained while preventing misalignment and galling.

【0024】[0024]

【発明の効果】環境温度が100℃の高温または−40
℃の低温になっても、軸受部材、スリーブおよび軸部材
の間のクリアランスが適切に維持され、すべり回転が正
常に維持される。
EFFECTS OF THE INVENTION The ambient temperature is 100 ° C. or −40.
Even at a low temperature of ℃, the clearance between the bearing member, the sleeve and the shaft member is appropriately maintained, and the sliding rotation is normally maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の滑り軸受装置の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of a plain bearing device of the present invention.

【図2】図1の装置の高温時の状態を示す要部拡大断面
図である。
FIG. 2 is an enlarged cross-sectional view of essential parts showing a state of the apparatus of FIG. 1 at a high temperature.

【図3】図1の装置の低温時の状態を示す要部拡大断面
図である。
FIG. 3 is an enlarged cross-sectional view of an essential part showing a state of the apparatus of FIG. 1 at a low temperature.

【図4】本発明の装置における温度変化とクリアランス
の変動の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between temperature changes and clearance changes in the device of the present invention.

【図5】本発明の装置を備えたアクチュエータの一実施
例を示す断面図である。
FIG. 5 is a sectional view showing an embodiment of an actuator equipped with the device of the present invention.

【符号の説明】 1 軸部材 2 スリーブ 3 軸受部材 A 滑り軸受装置 B アクチュエータ 20 第1減速機 34 第2減速機 38 内周面 39 内周面 40 第1スリーブ 42 第2スリーブ 43 筒状突起 44 突出部 45 プーリ A1 第1滑り軸受装置 A2 第2滑り軸受装置[Description of Reference Signs] 1 shaft member 2 sleeve 3 bearing member A sliding bearing device B actuator 20 first speed reducer 34 second speed reducer 38 inner peripheral surface 39 inner peripheral surface 40 first sleeve 42 second sleeve 43 cylindrical protrusion 44 Protruding portion 45 Pulley A1 First sliding bearing device A2 Second sliding bearing device

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内周面が円筒状の回転摺動面となってい
る軸受部材と、その軸受部材の内周に配設され、外周面
および内周面の両方がそれぞれ円筒状の回転摺動面とな
っているスリーブと、そのスリーブの内周に配設され、
外周面が円筒状の回転摺動面となっている軸部材とから
なり、前記スリーブが、熱伝導率が高く、しかも軸部材
および軸受部材よりも熱膨張率が低い材料から構成され
ている滑り軸受装置。
1. A bearing member, the inner peripheral surface of which is a cylindrical rotary sliding surface, and a rotary roller which is disposed on the inner periphery of the bearing member and has both an outer peripheral surface and an inner peripheral surface. The sleeve that is the moving surface and the inner circumference of the sleeve,
A sliding member made of a shaft member having an outer peripheral surface which is a cylindrical rotary sliding surface, the sleeve having a high thermal conductivity and a thermal expansion coefficient lower than those of the shaft member and the bearing member. Bearing device.
【請求項2】 前記軸受部材と軸部材の熱膨張率が、前
記スリーブの熱膨張率との差に比較して、たがいにほぼ
等しい請求項1記載の装置。
2. The apparatus of claim 1, wherein the coefficient of thermal expansion of the bearing member and the shaft member are approximately equal to each other as compared to the difference in coefficient of thermal expansion of the sleeve.
【請求項3】 前記軸受部材および軸部材が合成樹脂製
であり、スリーブが金属製である請求項2記載の装置。
3. The device according to claim 2, wherein the bearing member and the shaft member are made of synthetic resin, and the sleeve is made of metal.
【請求項4】 前記スリーブが銅合金製である請求項3
記載の装置。
4. The sleeve is made of a copper alloy.
The described device.
【請求項5】 前記回転摺動面が、それぞれ軸方向の長
さに比して3倍以上の大きい径を備えている請求項1記
載の装置。
5. The device according to claim 1, wherein each of the rotary sliding surfaces has a diameter three times or more larger than the axial length thereof.
【請求項6】 前記軸受部材が固定されており、軸部材
が回転自在である請求項1記載の装置。
6. The apparatus according to claim 1, wherein the bearing member is fixed and the shaft member is rotatable.
【請求項7】 前記軸部材が固定されており、軸受部材
が回転自在である請求項1記載の装置。
7. The apparatus according to claim 1, wherein the shaft member is fixed and the bearing member is rotatable.
【請求項8】 前記軸部材および軸受部材の双方がそれ
ぞれ回転自在である請求項1記載の装置。
8. The apparatus of claim 1, wherein both the shaft member and the bearing member are each rotatable.
JP11410994A 1994-04-27 1994-04-27 Plain bearing device Expired - Lifetime JP3640685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11410994A JP3640685B2 (en) 1994-04-27 1994-04-27 Plain bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11410994A JP3640685B2 (en) 1994-04-27 1994-04-27 Plain bearing device

Publications (2)

Publication Number Publication Date
JPH07293565A true JPH07293565A (en) 1995-11-07
JP3640685B2 JP3640685B2 (en) 2005-04-20

Family

ID=14629358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11410994A Expired - Lifetime JP3640685B2 (en) 1994-04-27 1994-04-27 Plain bearing device

Country Status (1)

Country Link
JP (1) JP3640685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042715A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Sliding bearing and image formation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042715A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Sliding bearing and image formation device
CN103814226A (en) * 2011-09-22 2014-05-21 Ntn株式会社 Sliding bearing and image formation device
US9458885B2 (en) 2011-09-22 2016-10-04 Ntn Corporation Sliding bearing and image forming apparatus

Also Published As

Publication number Publication date
JP3640685B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US4133587A (en) Bearing with an intermediate race
US5223758A (en) Spindle motor
JPH07293565A (en) Slide bearing device
JPH0562729U (en) Full complement roller bearing device for planetary gears
JP2012510029A (en) Bearing arrangement for large marine transmission
US9882450B2 (en) Rotation actuator
JP2002227947A (en) Pulley width adjusting device for continuously variable transmission
JP3800719B2 (en) Electric linear actuator
JP3053796B2 (en) Screw drive
WO2018052092A1 (en) Gear assembly, planetary gear mechanism using gear assembly, and motor with built-in gear mechanism
JP3391705B2 (en) Screw drive
US10077762B2 (en) Power generation device and rotating portion support structure
JP3497239B2 (en) Friction type continuously variable transmission
JP7274079B2 (en) Roller type differential reducer
JPS61180022A (en) Rolling bearing device
JPH02163513A (en) Magnetic thrust bearing
JPH06307437A (en) Dynamical pressure gas bearing device
JPH0329615Y2 (en)
JP2605037Y2 (en) Planetary roller type power transmission
JP2003028250A (en) Pulley width adjuster for continuously variable transmission
JPH05118398A (en) Multistep speed changer
JP2002039285A (en) Planetary gear drive
JPH0596605U (en) Screw drive
JPH09329138A (en) Compound bearing and spindle motor
JP2020070864A (en) Planetary gear drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20010411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term