JPH0329615Y2 - - Google Patents

Info

Publication number
JPH0329615Y2
JPH0329615Y2 JP1985127452U JP12745285U JPH0329615Y2 JP H0329615 Y2 JPH0329615 Y2 JP H0329615Y2 JP 1985127452 U JP1985127452 U JP 1985127452U JP 12745285 U JP12745285 U JP 12745285U JP H0329615 Y2 JPH0329615 Y2 JP H0329615Y2
Authority
JP
Japan
Prior art keywords
shaft member
bearing
spacer
inner ring
ceramic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985127452U
Other languages
Japanese (ja)
Other versions
JPS6235115U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985127452U priority Critical patent/JPH0329615Y2/ja
Publication of JPS6235115U publication Critical patent/JPS6235115U/ja
Application granted granted Critical
Publication of JPH0329615Y2 publication Critical patent/JPH0329615Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • F16C2226/16Force connections, e.g. clamping by wedge action, e.g. by tapered or conical parts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、自動車及び航空機、一般産業用機
械、真空機器等に利用される軸受装置、詳しくは
セラミツクスよりなる軸受と金属材よりなる軸部
材とを組合せてなる軸受装置に関するものであ
る。
[Detailed description of the invention] Industrial field of application This invention is a bearing device used in automobiles and aircraft, general industrial machinery, vacuum equipment, etc. Specifically, the invention is a bearing device that is used in automobiles and aircraft, general industrial machinery, vacuum equipment, etc. This invention relates to a bearing device formed by a combination.

従来の技術 通常、相対的に回転可能な2つの機械部材の間
に配される軸受では、潤滑剤を用いて摩擦を減少
させたり、焼付き防止を図り、良好な回転特性を
維持させているが、高速回転する場合や高温状態
で使用する場合は安定な回転状況を長く維持させ
ることは非常に困難であつた。
Conventional technology Normally, in bearings placed between two relatively rotatable mechanical members, lubricants are used to reduce friction and prevent seizing to maintain good rotational characteristics. However, when rotating at high speeds or using at high temperatures, it is extremely difficult to maintain stable rotation for a long period of time.

その為、摩擦係数が小さく、高温特性の優れた
炭化けい素、窒化けい素、等のセラミツクスより
なるころがり軸受が注目されつつある。
For this reason, rolling bearings made of ceramics such as silicon carbide and silicon nitride, which have a small coefficient of friction and excellent high-temperature properties, are attracting attention.

考案が解決しようとする問題点 セラミツク軸受は、摩擦係数が小さく、しか
も、耐摩耗性が大きく、高温度に耐える等の優れ
た特徴をもつている。ところが、セラミツク軸受
と金属材よりなる軸部材とを組合せてなる軸受装
置に於いては、セラミツクス軸受が組込まれる機
器雰囲気等の温度が高温に上昇すると、例えば熱
膨張係数が3×10-6/℃のセラミツクスよりなる
ころがり軸受と熱膨張係数が11×10-6/℃の鋼よ
りなる軸部材とを組合せた場合、熱膨張の差によ
り、セラミツク軸受(例えば、常温でしめしろ零
で取付けられた内輪)には、軸受と軸部材の膨張
が大きいため、フープテンシヨンが作用してセラ
ミツク軸受を破損する恐れが大きかつた。
Problems to be solved by the invention Ceramic bearings have excellent features such as a low coefficient of friction, high wear resistance, and resistance to high temperatures. However, in a bearing device that combines a ceramic bearing and a shaft member made of a metal material, when the temperature of the equipment atmosphere in which the ceramic bearing is installed rises to a high temperature, the coefficient of thermal expansion decreases, for example, to 3×10 -6 / When a rolling bearing made of ceramics with a thermal expansion coefficient of 11×10 -6 /℃ is combined with a shaft member made of steel with a thermal expansion coefficient of 11 Since the expansion of the bearing and shaft member was large, there was a high risk that the hoop tension would act on the ceramic bearing and damage the ceramic bearing.

しかも、セラミツク軸受と該セラミツク軸受を
軸部材に一体に係合するロツクナツトとの間に隙
間ができ、高速回転時にセラミツク軸受はもちろ
んのこと装置全体を破損させることもある。
Moreover, a gap is formed between the ceramic bearing and the lock nut that integrally engages the ceramic bearing with the shaft member, which may damage not only the ceramic bearing but also the entire device during high-speed rotation.

また、運転時の温度条件が変動する場合、及び
変動しない場合でもその過渡期には、初期条件に
よつて、しめしろ過大又はすきま過大の状態を経
験することは避けられない。この場合、しめしろ
過大は内輪の破壊を、すきま過大は、心ずれ、従
つて振動を誘発し高速運転時には事故の原因とな
りうる。
Further, when the temperature conditions during operation fluctuate, and even when they do not fluctuate, during the transition period, it is inevitable that the system will experience a state of large filtration or excessive clearance depending on the initial conditions. In this case, large interference filtration may cause damage to the inner ring, and excessive clearance may cause misalignment and vibration, which may cause an accident during high-speed operation.

問題点を解決するための手段 上記の如き問題点に鑑み、この考案はセラミツ
ク軸受を金属材よりなる軸部材上に嵌合し、軸部
材の端部に設けたネジ部に螺着したロツクナツト
で上記セラミツク軸受を上記軸部材に一体に結合
する軸受装置に於いて、上記セラミツク軸受の内
輪と上記ロツクナツトとの間に上記軸部材より熱
膨張が大きな材料、例えば金属よりなる間座を介
在し、上記軸受内輪と上記間座の内径面を円錐面
に形成し、上記軸部材と上記軸受内輪及び上記間
座との間に外形面が上記軸受内輪及び上記間座の
内径面と略合致する断面算盤殊形状の合成樹脂よ
りなる摺動部材を所定の圧接状態でもつて嵌入し
たものである。
Means for Solving the Problems In view of the above-mentioned problems, this invention consists of a ceramic bearing fitted onto a shaft member made of a metal material, and a lock nut screwed into a threaded portion provided at the end of the shaft member. In a bearing device that integrally couples the ceramic bearing to the shaft member, a spacer made of a material having a larger thermal expansion than the shaft member, such as metal, is interposed between the inner ring of the ceramic bearing and the lock nut, The inner diameter surface of the bearing inner ring and the spacer is formed into a conical surface, and the outer surface of the shaft member and the bearing inner ring and the spacer has a cross section that substantially matches the inner diameter surface of the bearing inner ring and the spacer. A sliding member made of a synthetic resin having a special abacus shape is fitted into the shaft with a predetermined pressure applied thereto.

作 用 軸受雰囲気温度が上昇した場合、セラミツク軸
受の内輪と軸部材との径方向隙間が熱膨張差によ
り減少し、かつ、間座と軸部材との径方向隙間が
熱膨張差により増大することによつて摺動部材が
軸部材上を間座側に移動する。また、セラミツク
軸受とロツクナツトとの軸方向の間隔がセラミツ
ク軸受と軸部材の熱膨張差により拡大されるが、
この拡大分を間座の熱膨張により相殺する。
Effect When the bearing ambient temperature rises, the radial clearance between the inner ring of the ceramic bearing and the shaft member decreases due to the difference in thermal expansion, and the radial clearance between the spacer and the shaft member increases due to the difference in thermal expansion. As a result, the sliding member moves on the shaft member toward the spacer. Additionally, the axial distance between the ceramic bearing and the lock nut is expanded due to the difference in thermal expansion between the ceramic bearing and the shaft member.
This expansion is offset by the thermal expansion of the spacer.

実施例 第1図はの考案に係る軸受装置の一実施例を示
す要部縦断面図である。図面に於いて、1は炭化
けい素、窒化けい素等のセラミツクスよりなるこ
ろがり軸受で、内径面2aが円錐面に形成された
内輪2、外輪3、複数個の転動体4及び保持器5
で構成されており、軸部材6上に嵌合されてい
る。軸部材6は金属材、例えば鋼よりなり、セラ
ミツク軸受1を位置決めする為の肩部6aを有す
ると共に、端部にネジ部6bを有する。7は鋼製
の軸部材6より熱膨張が大きな金属材、例えばア
ルミニウム合金よりなる間座で、その内径面7a
が内輪2の内径面2aと対称な円錐面に形成され
ており、軸部材6上に内輪2と突き合せ状態で嵌
合されている。8はルーロン(商標名、洋ベアル
ーロン工業株式会社製造の充填剤入りふつ素樹
脂)、メルデイン(商標名、洋ベアルーロン工業
株式会社製造の充填剤入りポリイミド樹脂)等の
自己潤滑性を有する合成樹脂よりなる摺動部材
で、外径面が内輪2及び間座7の内径面2a,7
aに略合致する断面算盤珠形状に形成されてお
り、内輪2並びに間座7と軸部材6との間に所定
に圧接状態で嵌入されている。9は鋼製のロツク
ナツトで、軸部材6のネジ部6bに螺挿して締付
けることによりセラミツク軸受1、間座7及び摺
動部材8を軸部材6に一体結合する。尚、内径面
2a,7a及び摺動部材8の外径面の円錐角はそ
れぞれ両者間の摩擦係数の大小によつて適宜決定
されるものである。
Embodiment FIG. 1 is a longitudinal sectional view of a main part showing an embodiment of a bearing device according to the invention. In the drawings, reference numeral 1 denotes a rolling bearing made of ceramics such as silicon carbide or silicon nitride, and includes an inner ring 2 whose inner diameter surface 2a is formed into a conical surface, an outer ring 3, a plurality of rolling elements 4, and a cage 5.
and is fitted onto the shaft member 6. The shaft member 6 is made of a metal material, for example steel, and has a shoulder portion 6a for positioning the ceramic bearing 1, and a threaded portion 6b at the end. Reference numeral 7 denotes a spacer made of a metal material having a larger thermal expansion than the steel shaft member 6, for example, an aluminum alloy, and its inner diameter surface 7a
is formed into a conical surface symmetrical to the inner diameter surface 2a of the inner ring 2, and is fitted onto the shaft member 6 so as to butt against the inner ring 2. 8 is made from synthetic resins with self-lubricating properties such as Rulon (trade name, filler-containing fluorine resin manufactured by Yo-Bear Rulon Industries Co., Ltd.) and Merdein (trade name, filler-containing polyimide resin manufactured by Yo-Bear Rulon Industries Co., Ltd.). It is a sliding member whose outer diameter surface is the inner diameter surface 2a, 7 of the inner ring 2 and the spacer 7.
It is formed into an abacus bead shape in cross section that substantially matches the shape of the arrow a, and is fitted between the inner ring 2, the spacer 7, and the shaft member 6 in a predetermined press-contact state. A steel lock nut 9 is screwed into the threaded portion 6b of the shaft member 6 and tightened to integrally connect the ceramic bearing 1, the spacer 7, and the sliding member 8 to the shaft member 6. Note that the conical angles of the inner diameter surfaces 2a, 7a and the outer diameter surface of the sliding member 8 are determined as appropriate depending on the magnitude of the friction coefficient between them.

上記構造の軸受装置では、例えば、雰囲気温度
が上昇した場合でも、セラミツクス製のセラミツ
ク軸受1より鋼製の軸部材6の熱膨張が大きい
為、内輪2と軸部材6との径方向隙間が減少して
セラミツク軸受1は摺動部材8を介して大きなフ
ープテンシヨンを受けるようになるが、この時、
軸部材6に内輪2と突き合せ状態で嵌合したアル
ミニウム合金製の間座7の熱膨張が軸部材6より
大きな為、間座7と軸部材6との径方向隙間が増
大することによつて摺動部材8が内輪2に対する
フープテンシヨンの反力により第2図に示すよう
に軸部材6上を間座7側に移動してしまうので、
セラミツク軸受1は大きなフープテンシヨンを受
けることなく、常に所定の圧接状態に保たれる構
造となつている。
In the bearing device with the above structure, for example, even when the ambient temperature rises, the thermal expansion of the steel shaft member 6 is greater than that of the ceramic bearing 1, so the radial clearance between the inner ring 2 and the shaft member 6 is reduced. The ceramic bearing 1 then receives a large hoop tension via the sliding member 8, but at this time,
Since the thermal expansion of the aluminum alloy spacer 7 fitted into the shaft member 6 in a butt state with the inner ring 2 is larger than that of the shaft member 6, the radial clearance between the spacer 7 and the shaft member 6 increases. Since the sliding member 8 moves on the shaft member 6 toward the spacer 7 as shown in FIG. 2 due to the reaction force of the hoop tension against the inner ring 2,
The ceramic bearing 1 is constructed so that it is always maintained in a predetermined pressure contact state without being subjected to large hoop tensions.

しかも、セラミツク軸受1とロツクナツト8と
の軸方向の間隔が、セラミツク軸受1と軸部材6
との熱膨張差により拡大されて軸方向に隙間が形
成されるようになるが、この時、セラミツク軸受
1とロツクナツト8との間に間座7を介在してい
る為、軸部材6がセラミツク軸受1の内輪2より
熱膨張する伸長分を間座7が軸部材6より熱膨張
して伸びることによつて吸収してしまい、セラミ
ツク軸受1と間座7及び間座7とロツクナツト8
との間には隙間が形成されるようなことはなく、
常に所定の圧接状態に保たれる構造となつてい
る。
Moreover, the axial distance between the ceramic bearing 1 and the lock nut 8 is the same as that between the ceramic bearing 1 and the shaft member 6.
A gap is formed in the axial direction due to the difference in thermal expansion between the ceramic bearing 1 and the lock nut 8. At this time, since the spacer 7 is interposed between the ceramic bearing 1 and the lock nut 8, the shaft member 6 The spacer 7 absorbs the thermal expansion from the inner ring 2 of the bearing 1 by thermally expanding and elongating from the shaft member 6, and the ceramic bearing 1 and the spacer 7 and the spacer 7 and the lock nut 8
There is no gap formed between the
It has a structure that always maintains a predetermined pressure contact state.

次に、温度ががつた場合には、間座7と軸部材
6との径方向隙間が減少し、かつ、セラミツク軸
受1の内輪2と軸部材6との径方向隙間が増大す
ることによつて摺動部材8が軸部材6上を内輪2
側に移動してしまうので、セラミツク軸受1は常
に所定の圧接状態に保たれることになる。
Next, when the temperature rises, the radial clearance between the spacer 7 and the shaft member 6 decreases, and the radial clearance between the inner ring 2 of the ceramic bearing 1 and the shaft member 6 increases. The sliding member 8 slides over the shaft member 6 into the inner ring 2.
Since the ceramic bearing 1 is moved to the side, the ceramic bearing 1 is always kept in a predetermined pressure contact state.

ここで、セラミツク軸受1、間座7、軸部材6
を各々セラミツクス、アルミニウム合金、鋼とす
ると、熱膨張係数は下記のような値となり、 セラミツクス 3×10-6/℃ アルミニウム合金 17×10-6/℃ 鋼 11×10-6/℃ また、各部材1,7,6の軸方向寸法を図示の
如くl1,l2,l3とし、装置全体の温度変化をΔt℃
とすると、 l1=l2+l3 ……(1) l1×11×10-6×Δt=l2×3×10-6×Δt+l3×17
×10-6×Δt ……(2) 11l1=3l2+17l3 ……(3) となり、(1)式と3式より l2/l3=3/4 の関係が成立する。従つて、l2:l3の比を3:4
に設計すれば、装置の温度が変化しても締付力は
変化しないことになる。
Here, a ceramic bearing 1, a spacer 7, a shaft member 6
For ceramics, aluminum alloy, and steel respectively, the thermal expansion coefficients are as follows: Ceramics: 3×10 -6 /℃ Aluminum alloy: 17×10 -6 /℃ Steel: 11×10 -6 /℃ The axial dimensions of members 1, 7, and 6 are l 1 , l 2 , and l 3 as shown in the figure, and the temperature change of the entire device is Δt℃.
Then, l 1 = l 2 + l 3 ...(1) l 1 ×11×10 -6 ×Δt=l 2 ×3×10 -6 ×Δt+l 3 ×17
×10 -6 ×Δt ...(2) 11l 1 =3l 2 +17l 3 ...(3), and from equations (1) and 3, the relationship l 2 /l 3 = 3/4 holds true. Therefore, the ratio of l 2 :l 3 is 3:4.
If the design is such that the tightening force will not change even if the temperature of the device changes.

考案の効果 この考案によれば、セラミツクスよりなるセラ
ミツク軸受と金属材よりなる軸部材の熱膨張の差
により生じるフープテンシヨンや軸方向隙間を、
上記軸部材の金属材より熱膨張が大きな金属材よ
りなる間座の熱膨張でもつて許容吸収するように
したものであるから、セラミツク軸受は単に所定
の圧接状態に保たれ、高速回転時や高温状態での
使用が可能となり、高速回転、高温度雰囲気中で
使用される機械装置にも適用できる等の極めて優
れた軸受装置を提供することができる。
Effects of the invention According to this invention, the hoop tension and axial clearance caused by the difference in thermal expansion between the ceramic bearing and the metal shaft member can be reduced.
Since the spacer is made of a metal material whose thermal expansion is larger than that of the metal material of the shaft member, it is designed to absorb the thermal expansion to an acceptable extent, so the ceramic bearing simply maintains a predetermined pressure-welding state, and when rotating at high speeds or at high temperatures. It is possible to provide an extremely excellent bearing device that can be used in various conditions, and can be applied to mechanical devices that rotate at high speeds and are used in high-temperature environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案に係る軸受装置の一実施例を
示す要部縦断面図、第2図は動作状態を示す要部
拡大図である。 1……セラミツク軸受、2……内輪、2a……
内径面、3……外輪、4……転動体、5……保持
器、6……軸部材、7……間座、7a……内径
面、8……摺動部材。
FIG. 1 is a vertical cross-sectional view of a main part showing an embodiment of a bearing device according to this invention, and FIG. 2 is an enlarged view of a main part showing an operating state. 1... Ceramic bearing, 2... Inner ring, 2a...
Inner diameter surface, 3... Outer ring, 4... Rolling element, 5... Cage, 6... Shaft member, 7... Spacer, 7a... Inner diameter surface, 8... Sliding member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] セラミツク軸受を金属材よりなる軸部材上に嵌
合し、軸部材の端部に設けたネジ部に螺着したロ
ツクナツトで上記セラミツク軸受を上記軸部材に
一体に結合する軸受装置に於いて、上記セラミツ
ク軸受の内輪と上記ロツクナツトとの間に上記軸
部材より熱膨張が大きな材料よりなる間座を介在
し、上記軸受内輪と上記間座の内径面を円錐面に
形成し、上記軸部材と上記軸受内輪及び上記間座
との間に外形面が上記軸受内輪及び上記間座の内
径面と略合致する断面算盤珠形状の合成樹脂より
なる摺動部材を所定の圧接状態でもつて嵌入した
ことを特徴とする軸受装置。
In a bearing device in which a ceramic bearing is fitted onto a shaft member made of a metal material, and the ceramic bearing is integrally coupled to the shaft member with a lock nut screwed into a threaded portion provided at an end of the shaft member, the above-mentioned A spacer made of a material having a larger thermal expansion than the shaft member is interposed between the inner ring of the ceramic bearing and the lock nut, and the inner diameter surfaces of the bearing inner ring and the spacer are formed into conical surfaces, so that the shaft member and the A sliding member made of synthetic resin having an abacus-shaped cross section whose outer surface substantially matches the inner diameter surface of the bearing inner ring and the spacer is inserted between the bearing inner ring and the spacer with a predetermined pressure contact state. Characteristic bearing device.
JP1985127452U 1985-08-20 1985-08-20 Expired JPH0329615Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985127452U JPH0329615Y2 (en) 1985-08-20 1985-08-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985127452U JPH0329615Y2 (en) 1985-08-20 1985-08-20

Publications (2)

Publication Number Publication Date
JPS6235115U JPS6235115U (en) 1987-03-02
JPH0329615Y2 true JPH0329615Y2 (en) 1991-06-24

Family

ID=31022217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985127452U Expired JPH0329615Y2 (en) 1985-08-20 1985-08-20

Country Status (1)

Country Link
JP (1) JPH0329615Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749518Y2 (en) * 1990-05-21 1995-11-13 株式会社コムニクス Automatic playing device

Also Published As

Publication number Publication date
JPS6235115U (en) 1987-03-02

Similar Documents

Publication Publication Date Title
US6135641A (en) Hybrid duplex bearing assembly having thermal compensation
KR930010412B1 (en) Bearing assemblies
US4133587A (en) Bearing with an intermediate race
US5630671A (en) Locking device for a bearing assembly
US4895462A (en) Bearing assembly
US4804233A (en) Double-row anti-friction bearing, particulary for wheels of automotive vehicles
US20030007863A1 (en) Expansion turbine for low-temperature applications
FI116695B (en) Warehouse arrangements
JPH0329615Y2 (en)
JPH06280865A (en) Bearing device
US5249869A (en) Preloaded assembly with thermal compensation
US4687351A (en) Means for securing a bearing to a shaft
JP2005503518A (en) Gear shaft bearing assembly
JPS61252918A (en) Locking device for ceramics bearing
JPH0472088B2 (en)
JP2711434B2 (en) Slide bearing holding structure
JPH0629614B2 (en) Bearing fixing device
JP2001124073A (en) Rolling bearing
JPH0481043B2 (en)
JPH0776571B2 (en) Rolling bearing device
JPH09158936A (en) Screw part tightening structure
JPH05187443A (en) Static pressure gas bearing
JP2970029B2 (en) Ring attachment device
US20120006037A1 (en) Clamping assembly
JPS6330607A (en) Friction reducer of bearing