JPH0729120B2 - Method for dehydration concentration of hardly dehydratable sediment - Google Patents

Method for dehydration concentration of hardly dehydratable sediment

Info

Publication number
JPH0729120B2
JPH0729120B2 JP2027101A JP2710190A JPH0729120B2 JP H0729120 B2 JPH0729120 B2 JP H0729120B2 JP 2027101 A JP2027101 A JP 2027101A JP 2710190 A JP2710190 A JP 2710190A JP H0729120 B2 JPH0729120 B2 JP H0729120B2
Authority
JP
Japan
Prior art keywords
water
latex
mud
added
sodium alginate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2027101A
Other languages
Japanese (ja)
Other versions
JPH03232600A (en
Inventor
徹也 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP2027101A priority Critical patent/JPH0729120B2/en
Publication of JPH03232600A publication Critical patent/JPH03232600A/en
Publication of JPH0729120B2 publication Critical patent/JPH0729120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はたとえば建設や土木工事の基礎杭や下水道掘削
シールド工事、擁壁基礎工事等の際に発生する廃泥や汚
水処理場から発生する余剰汚泥等の難脱水性沈降物から
水分を迅速に分離する難脱水性沈降物の脱水濃縮法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is generated, for example, from waste mud or sewage treatment plants generated during foundation piles for construction and civil engineering, sewer excavation shield construction, retaining wall foundation construction, etc. The present invention relates to a method for dehydrating and concentrating hard-to-dewater sediments that rapidly separates water from hard-to-dewater sediments such as excess sludge.

建設・土木工事の廃泥は微細な粘土が多量に混ざってお
り、砂石を分離した後でも泥漿状液体となって容易に沈
降せず、その処理に困っている。そのまま放流すると河
川を汚濁させるばかりでなく、途中の下水道を閉塞させ
るなど、社会的にも環境を破壊することになる。近年の
建設・土木工事は人力による掘削から、水噴射によるリ
グ工法へと急速に変わりつつあり大部分がこの方法にな
っている。したがって基礎杭や下水道を掘削して排出さ
れる廃土は普通の土ではなく、水によって希釈された泥
水状となって排出されてくる。
A large amount of fine clay is mixed in the waste mud used in construction and civil engineering work, and even after the sand stone is separated, it does not easily settle as a sludge-like liquid, which makes it difficult to process. If it is discharged as it is, not only will it pollute the river, but it will also socially damage the environment, such as blocking sewers on the way. In recent years, construction / civil engineering work is rapidly changing from manual excavation to rig construction using water injection, and most of this method is used. Therefore, the waste soil discharged from excavating foundation piles and sewers is not ordinary soil, but is discharged as muddy water diluted with water.

この泥水から土質分を分離する作業が新しい課題となっ
ており各種の方法が試みられているが、今だに満足しえ
る方法がない。それは、この泥水中に含まれる粘土質分
が微細なため、薬品添加による処理を行なっても、脱水
機等による濾過性が悪く、脱水が容易に行なえず、高分
水率のままで排出を余儀なくされている。故に、水分を
多量に含んだまま特殊運搬車やコンテナー車で埋立地等
に投棄が行なわれている。
The work of separating soil from this muddy water has become a new issue and various methods have been tried, but there is still no satisfactory method. This is because the clay content contained in this muddy water is minute, so even if treatment with chemicals is performed, the filterability with a dehydrator etc. is poor, dehydration cannot be performed easily, and it is discharged at a high water division ratio. Is forced. Therefore, special vehicles and container vehicles are dumping the landfills with a large amount of water.

本発明は、これらの処理困難な建設・土木工事から排出
される廃泥等の難脱水性沈降物を迅速に、かつ省エネル
ギー的に処理ができるよう、濾過性を著しく改善した難
脱水性沈降物の脱水濃縮法である。
INDUSTRIAL APPLICABILITY The present invention is a difficult-to-dehydrated sediment having remarkably improved filterability so that the difficult-to-dewater sediment such as waste mud discharged from these difficult-to-treat construction and civil engineering works can be treated quickly and in an energy-saving manner. It is a dehydration concentration method.

(従来の技術並びに発明が解決しようとする課題) 従来から行なわれてきた泥水のもっとも簡単な処理方法
は沈殿池を設けて自然沈降させ、上澄みを排除して沈殿
物を天日により脱水乾燥させているが、池を設ける場所
の確保や、元の土質に戻るまでに長時間を要するなど最
近の建設・土木現場には適さない状況にある。更に、機
械的に処理する方法として、マッドスクリーンや湿式サ
イクロンを使って廃泥水中に含まれる粗粒子を分離した
のち、いったん貯泥槽にため、その泥水に凝集剤や凝固
助剤を加えて凝集反応を促進させ、粒子の粗大化を図っ
たあと、微細な粒子をフロック化して濾過脱水槽に蓄え
沈降分離(一般に一次脱水という)し、清水と泥漿物に
分離させる。この段階で得られる処理土は、未だ高含水
のクリーム状の高粘度の土であり、このままで処分する
のは不適当であるが、一般には、この段階で処分されて
いる場合があり問題を引き起こしている。
(Prior arts and problems to be solved by the invention) The simplest treatment method of mud water that has been conventionally performed is to set up a sedimentation tank to allow natural sedimentation, remove the supernatant liquid, and dehydrate and dry the sediment by sunlight. However, it is not suitable for recent construction / civil engineering sites because it takes a long time to secure a place for ponds and to return to the original soil quality. Furthermore, as a method of mechanical treatment, after separating the coarse particles contained in the waste mud water using a mud screen or a wet cyclone, once it is stored in the mud tank, a coagulant or coagulant is added to the mud water. After promoting the agglutination reaction and coarsening the particles, fine particles are flocculated and stored in a filtration dehydration tank for sedimentation separation (generally called primary dehydration) to separate into fresh water and sludge. The treated soil obtained at this stage is still highly creamy and highly viscous soil with high water content, and it is inappropriate to dispose of it as it is, but in general, it may have been disposed of at this stage. Is causing.

適切な処理を行なうためには、この一次脱水のあと真空
脱水機やメッシュプレス、ベルトフィルター、などの濾
布を使った二次脱水を行なって低含水化し固化を行なう
が、この際にクリーム状に凝集した粘土質が濾布の目を
塞らせて迅速に効率よく脱水することは難しい。濾過面
積を多く必要とし、高圧力を加えたり、目づまりする濾
布を常時洗浄しながら行なわざるをえないなど、大量に
処理しなければならないクリーム状泥漿物をこのような
方法では処理し切れない現状にある。
In order to perform appropriate treatment, after this primary dehydration, secondary dehydration is performed using a filter cloth such as a vacuum dehydrator, mesh press, belt filter, etc. to reduce the water content and solidify. It is difficult to quickly and efficiently dehydrate the aggregated clay that blocks the eyes of the filter cloth. A large amount of filtration area is required, high pressure is applied, and the clogged filter cloth has to be washed while being constantly washed. Not in the present situation.

建設・土木工事から排出される泥水は主としてベントナ
イト泥水、シールド泥水、リバース泥水であり、その排
水量も多く排水処理に際しては、その沈降分離速度に合
わて処理装置を設計するが、工事現場では排出量が時間
的に大きく変化するため負荷変動の最大値を持ってつく
られる。その結果、装置が大きくなる。また、排出泥水
の濃度もまちまちなので安全サイドで操業ができるよ
う、凝集薬液の注入も最大負荷値に合わせた注入を行な
っているため、極めて不経済な処理方法になっている。
The muddy water discharged from construction and civil engineering works is mainly bentonite muddy water, shield muddy water, and reverse muddy water, and the amount of discharged water is large. Is created with the maximum value of load fluctuation. As a result, the device becomes bulky. In addition, since the concentration of discharged mud water varies, the coagulant liquid is injected in accordance with the maximum load value so that it can be operated on the safe side, which is an extremely uneconomical treatment method.

ここで使われる凝集剤は微細な懸濁粒子の表面に吸着し
て粒子と粒子とを結合させるための橋かけ剤としての役
割を持たせるために添加するものである。したがって従
来からある凝集剤は吸着能力を持つための極性基を分子
内に有した高分子化合物が用いられている。また、この
吸着機能と併せて、泥水中に懸濁する微細粒子は電気的
に反発しあう電気二重層を形成しているため、この反発
しあって安定化している微細土粒子に反対電荷をもつ高
分子電解質を加えることにより、その電解基のところで
微細粒子の表面の電荷と部分的に中和し、吸着高分子の
電解質鎖土に固定される。その際、電気二重層により反
発しあっている粒子間距離の長さよりずっと大きい広が
りを持った高分子であれば、それぞれの反発しあってい
る粒子を電解質高分子鎖上の別の電解質のところで別の
粒子の電荷を中和し、結果として網状型吸着によって橋
かけ凝集が起こり、粒子の粗大化が起こる。その結果沈
降速度が増して分離しやすくなるという考え方で凝集剤
が添加され使われてきた。この考え方に沿って実際に凝
集剤を使えば確かに沈降速度は無添加の場合と比べて速
くなる。生成するフロックを大きくすればするほど沈降
速度は速くなるが、フロックの大きいものは機械的攪拌
により破壊されやすいうえに粒子間結合水や表面付着水
も多く含んでおり、沈澱物の容積が大きく上澄を除いた
後の泥漿物はフワフワのヌルヌルした濾過性の悪い沈殿
物となる。逆に凝集剤と泥水とを反応させる際に初期分
散と初期攪拌を強力に行なうと小さなフロックが生成
し、フロック強度は増大するが粒子が小さくなり低含水
率の脱水処理土を得ようとすると脱水機等での濾過抵抗
が増大して濾布を詰まらせ迅速脱水が出来ない。
The aggregating agent used here is added in order to be adsorbed on the surface of fine suspended particles and to have a role as a crosslinking agent for binding particles to each other. Therefore, as a conventional coagulant, a polymer compound having a polar group in the molecule for having an adsorbing ability is used. In addition to this adsorption function, the fine particles suspended in the muddy water form an electric double layer that repels each other electrically. By adding the polyelectrolyte with, it is partially neutralized with the electric charge on the surface of the fine particles at the electrolytic group and is fixed to the electrolyte chain of the adsorbed polymer. At that time, if the polymer has a spread much larger than the length of the interparticle distance repelled by the electric double layer, each repelled particle is separated by another electrolyte on the electrolyte polymer chain. The charge of another particle is neutralized, resulting in cross-linking aggregation due to reticulated adsorption, resulting in particle coarsening. As a result, a flocculant has been added and used with the idea that the sedimentation rate increases and separation becomes easier. If a flocculant is actually used in accordance with this idea, the sedimentation speed will certainly be faster than that without addition. The larger the flocs produced, the faster the sedimentation rate.However, those with large flocs are easily broken by mechanical agitation and also contain a large amount of interparticle bound water and surface-adhered water, resulting in a large precipitate volume. After removing the supernatant, the sludge becomes a fluffy, slimy, and poorly filterable precipitate. On the contrary, when flocculating agent and muddy water are reacted with each other, initial flocculation and initial agitation are strongly performed to generate small flocs, and the floc strength is increased, but particles are reduced to obtain a dehydrated soil with a low water content. The filtration resistance in a dehydrator etc. increases and the filter cloth is clogged, which prevents rapid dehydration.

これらの欠点を解決するため、凝集沈降のプロセスを全
く別の視点で捕らえ上記の不都合を一掃する処理方法を
提供するものである。
In order to solve these drawbacks, the present invention provides a treatment method for catching the process of flocculation and sedimentation from a completely different viewpoint and eliminating the above disadvantages.

従来の方法に比べて処理時間の短縮、高脱水物の確保に
よる処理嵩量の大幅な削減が実現し、脱水濾過性の著し
い改善により装置の小型化とそれに要するエネルギーの
低減が図れる画期的な建設・土木工事等の廃泥水処理の
方法を提供することを目的としている。尚本発明による
方法は、これら土木工事廃泥水に限らず、一般水処理の
脱水にも同様の効果を発揮することができる。
Compared with the conventional method, the processing time is shortened, the volume of processing is greatly reduced by securing a high dehydration product, and the remarkably improved dewatering / filtering property makes it possible to downsize the device and reduce the energy required for it. The purpose is to provide a method of waste mud treatment such as simple construction and civil engineering. The method according to the present invention can exert the same effect not only on the waste mud of civil engineering works but also on the dehydration of general water treatment.

(課題を解決するための手段) 本発明は上記課題を解決するために、提案されたもので
本発明の難脱水性沈降物の脱水濃縮法は、難脱水性沈降
物にラテックスを添加、混合し、次でこれに親水性保護
コロイド形成物質としてアルギン酸ソーダを添加、混合
し、その混合液のpHを弱酸性にしながら多価金属イオン
を添加して、ラテックスと親水性保護コロイド形成物質
の不溶化処理を行うことを特徴とする。
(Means for Solving the Problems) The present invention has been proposed in order to solve the above problems, and the method for dehydrating and concentrating the hardly dehydratable precipitate of the present invention is to add and mix latex to the hardly dehydratable precipitate. Then, add sodium alginate as a hydrophilic protective colloid-forming substance to it, mix it, and add a polyvalent metal ion while making the pH of the mixed solution weakly acidic to insolubilize the latex and the hydrophilic protective colloid-forming substance. It is characterized by performing processing.

廃泥等の難脱水性沈降物は一般にpHが8付近の弱アルカ
リ性が多いが、もし、難脱水性沈降物がpH8以下の場合
は、苛性ソーダないしはアンモニア水溶液を使ってあら
かじめpHを8付近に調整した後にラテックスを添加する
のが好ましい。尚、使用するラテックスはNBRラテック
ス、SBRラテックス、SBラテックス、Histラテックス、
アクリレート系ラテックス、PVCラテックス等任意であ
り、使用量は難脱水性沈降物1m3に対してラテックス固
形分にしてて0.1〜0.5wt%程度とする。また、ラテック
スは3〜10%程度の水溶液にして用いるのが好ましい。
Generally, difficult-to-dehydrated sediments such as waste mud have a weak alkaline pH of around 8, but if the difficult-to-dehydrated sediments have a pH of 8 or less, adjust the pH to around 8 beforehand using caustic soda or aqueous ammonia solution. It is preferred to add the latex after this. The latex used is NBR latex, SBR latex, SB latex, Hist latex,
Any acrylate latex, PVC latex, etc. may be used, and the amount used is about 0.1 to 0.5 wt% in terms of latex solid content per 1 m 3 of hardly dehydratable sediment. The latex is preferably used as an aqueous solution of about 3 to 10%.

このようにして出来た溶液は微細粒子が電気二重層を形
成して反発しあっているコロイド液中にラテックスの微
細粒子が拡散して水中に分散する。このラテックスは微
細泥粒子の間を縫って接近し、微細泥粒子を取り巻く状
態になる。
In the solution thus produced, the fine particles of the latex form an electric double layer and repel each other, and the fine particles of the latex are dispersed in the colloidal liquid and dispersed in water. The latex is sewn between the fine mud particles to come close to each other, and becomes in a state of surrounding the fine mud particles.

このようにして分散吸着固定化した後、このラテックス
を吸着した泥漿物に親水性保護コロイドを形成する物質
としてアルギン酸ソーダを加えると泥漿物の表面に吸着
したラテックスの表面にこれらの親水性保護コロイド質
が更に吸着する。この結果、低分子量高分子特有の粘着
性が失われる。このような状態でpHを弱酸性にすると、
ラテックスが分解して低分子量高分子が塊状になって収
縮凝固する性質を示し不溶化される。このとき親水性保
護コロイド形成物質としてアルギン酸ソーダを用いる
と、ラテックスの収縮凝固と併せて、このラテックスの
表面に吸着した親水性保護コロイド形成物質であるアル
ギン酸ソーダの不溶化収縮による相乗効果が生まれる。
更に詳しく説明すると微細粒子の表面に付着したラテッ
クス粒子に水で膨潤したアルギン酸ソーダ分子が吸着
し、ラテックス表面を覆うようにアルギン酸ソーダの粘
膜で微細土粒を包み込む。次に、この混合溶液のpHを弱
酸性にしながら多価金属イオン(例えばカルシウムイオ
ン、アルミニウムイオン、マグネシウムイオン、鉄イオ
ン等)を添加すると、今まで膨潤していたラテックスと
アルギン酸ソーダの薄層は泥漿物の表面を取り巻くよう
にしてアルギン酸の不溶化に伴う凝縮と平行してラテッ
クスの凝縮も起こり、泥漿物を包み込みながら強力に収
縮していく。一般にラテックスだけを酸などを使って凝
固分散させただけでは折出した低分子量高分子が粘着性
を示す。仮にラテックスだけを使って泥漿物を同様に凝
固脱水させると、その脱水物は粘着性が残り、濾布など
を使って強制的に絞った場合その脱水泥漿物は濾布に付
着してうまく処理できない。しかし、吸着したラテック
スの表面を高分子電解質で処理すると、低分子量高分子
の粘着性が失われるだけでなく、凝縮沈降分離性が著し
く改善され、水層と沈澱層にすばやく分離する。
After being dispersed and adsorbed and immobilized in this way, when sodium alginate is added to the sludge-adsorbed sludge as a substance forming a hydrophilic protective colloid, these hydrophilic protective colloids are adsorbed on the surface of the sludge. The quality is further absorbed. As a result, the tackiness peculiar to the low molecular weight polymer is lost. If the pH is made weakly acidic in this state,
The latex is decomposed and the low-molecular weight polymer becomes a lump, shrinks and solidifies, and is insolubilized. At this time, when sodium alginate is used as the hydrophilic protective colloid-forming substance, a synergistic effect is produced by the insolubilizing shrinkage of sodium alginate, which is the hydrophilic protective colloid-forming substance adsorbed on the surface of the latex, together with shrinkage and coagulation of the latex.
More specifically, water-swollen sodium alginate molecules are adsorbed on the latex particles adhering to the surfaces of the fine particles, and the fine soil particles are wrapped with a mucous membrane of sodium alginate so as to cover the latex surface. Next, adding a polyvalent metal ion (for example, calcium ion, aluminum ion, magnesium ion, iron ion, etc.) while making the pH of this mixed solution weakly acidic gives a thin layer of latex and sodium alginate which has been swollen until now. Condensation of latex occurs in parallel with the insolubilization of alginic acid so that it surrounds the surface of the sludge, and it strongly contracts while wrapping the sludge. Generally, when only latex is coagulated and dispersed with an acid or the like, the low-molecular weight polymer which is ejected exhibits tackiness. If the slurry is coagulated and dehydrated in the same way using only latex, the dehydrated product will remain sticky, and if it is forcibly squeezed using a filter cloth, etc., the dehydrated slurry will adhere to the filter cloth and be processed well. Can not. However, when the surface of the adsorbed latex is treated with a polyelectrolyte, not only the tackiness of the low molecular weight polymer is lost, but also the condensation-sedimentation separability is remarkably improved, resulting in quick separation into an aqueous layer and a precipitation layer.

この沈殿物はもちろん、水には不溶性であり粒子が粗
く、不粘着であり、濾過性もよく、目の粗い濾布でも濾
過でき、脱水時の圧力も小さくてすみ、低含水率の脱水
土が得られ普通の土と全く同じ扱いができ、埋め立てや
用地造成用土として使用できるだけでなく、粘土特有の
粘着性や保水性も減少し、水を加えても再度泥状化しな
い硬度地盤を形成することができる。
This precipitate is of course insoluble in water, has coarse particles, is non-adhesive, has good filterability, can be filtered with a coarse filter cloth, requires only a small pressure during dehydration, and has a low water content. It can be treated exactly like ordinary soil and can be used not only as landfill or land preparation soil, but also reduces the tackiness and water retention characteristic of clay and forms a hard ground that does not become mud again when water is added. can do.

(実施例) 次に本発明の実施例について説明する。(Example) Next, the Example of this invention is described.

基礎工事や土木工事から排出されるベントナイト系廃泥
をマッドスクリーンを経て貯泥槽で一旦静沈させた後そ
の下層を引き抜き、そのままの状態の泥漿物に、たとえ
ばゴム系ラテックス水溶液を添加して、攪拌機で十分に
混合する。次にアルギン酸ソーダ水溶液を加え更によく
攪拌し、泥水中の固形物に吸着させる。その後ポリ塩化
アルミニウム(PAC)などの多価金属塩からなる水溶液
を攪拌しながらpHを徐々に酸性にしていくと、スラリー
状であった泥漿物は急速に凝固し始めアルギン酸ソーダ
のソーダ塩当量の多価金属塩水溶液の注入が終了すると
同じに完全に凝固固化し水層と土質層に分離してくる。
固化した土質は再度水に分散させても可溶化することは
なく、小さな粒状に凝固し、強度も大きく、安定した固
形物を形成する。
Bentonite waste mud discharged from foundation work and civil engineering works is settled in a mud tank after passing through a mud screen, and then the lower layer is pulled out, and, for example, a rubber latex aqueous solution is added to the sludge as it is. , Mix thoroughly with a stirrer. Next, an aqueous solution of sodium alginate is added and the mixture is further stirred to adsorb it on the solid matter in the mud water. After that, when the pH was gradually made acidic while stirring the aqueous solution of polyvalent metal salt such as polyaluminum chloride (PAC), the slurry in the form of slurry began to rapidly solidify and the soda salt equivalent of sodium alginate When the injection of the polyvalent metal salt aqueous solution is completed, it is completely solidified and solidified in the same manner and separated into a water layer and a soil layer.
The solidified soil does not solubilize even when dispersed in water again, solidifies into small particles, has high strength, and forms a stable solid matter.

また、泥水を処理する際に、出来るだけ効率よく脱水を
行なうために、従来の方法をそのまま応用し、ポリアク
リル酸アミド系、マレイン酸共重合物をベースにしたア
ニオン系や無機系凝集剤をあらかじめ泥水に添加し、フ
ロックを形成して沈降を促進させ、上澄を分離しながら
一次脱水層に入れ、土質濃度を高めた後にゴム系ラテッ
クスを添加すると、アルギン酸ソーダの添加量を節約す
ることができる。
In addition, in order to remove water as efficiently as possible when treating mud water, the conventional method is applied as it is, and an anionic or inorganic flocculant based on a polyacrylic acid amide type or maleic acid copolymer is used. If added to mud water in advance to promote flocculation and sedimentation, separate the supernatant into the primary dehydration layer, increase the soil concentration, and add rubber latex to save the amount of sodium alginate added. You can

アルギン酸ソーダは泥水中に分散している土質の表面に
吸着しやすく、水分の多い低濃度泥水においては、上層
部土質に優先的に吸着し、貯泥槽の下層の土粒まで達せ
ず、結果的に必要以上のアルギン酸ソーダを添加しない
と泥水中の表面を全部同じように被覆することができな
い。
Sodium alginate is easily adsorbed on the surface of soil dispersed in muddy water, and in low-concentration muddy water with high water content, it is preferentially adsorbed on the upper soil and does not reach the soil particles in the lower layer of the mud storage tank. Unless the sodium alginate is added more than necessary, the entire surface in the mud cannot be coated in the same manner.

これを補うためには、連続比例添加方式として流動層中
に添加する方法もあるが、狭い工事現場では場所の確保
が難しく、回分式のほうが都合のよい場合が多い。
In order to make up for this, there is a method of adding in the fluidized bed as a continuous proportional addition method, but it is difficult to secure a place in a narrow construction site, and the batch method is often more convenient.

このようにして、高分子凝集剤を使って、ある程度まで
濃縮した泥漿物に対して、ゴム系ラテックス溶液を添加
し均一になるまで攪拌するとゴム系ラテックスは凝集し
た微細粒子の表面を隅なく覆い、丁度、煉り餡を薄皮で
包んだような状態になる。このゴムラテックス層の上に
更にアルギン酸ソーダを薄膜状に吸着させた後に不溶化
すると形成される皮膜は多孔質の水透過性フィルムにな
る。この皮膜は包水したフロックを包み込んだ濾布の役
割となり、併せて不溶化にともなって、この多孔質膜が
強烈な収縮を起こす。このときの収縮は今まで微粒化し
ていたゴムラテックスや直鎖状に伸びていたアルギン酸
分子が屈曲し絡み合いながら収縮していくため、濾布の
役割をしながら自らが収縮することにより、濾過圧を生
じるため、外部から機械的圧力を加えなくても、包水し
たフロック塊の中の水を絞りだす効果を発揮している。
この点が本発明のもっとも大きな特長であり、今までの
凝集剤による微細粒子の凝集化、粗大化とは根本的に異
なるところである。
In this way, using a polymer flocculant, add a latex latex solution to a slurry that has been concentrated to a certain degree and stir it until it becomes uniform. The latex latex will cover the surface of the aggregated fine particles in every corner. It's just like the bean jam wrapped in thin skin. A film formed by further adsorbing sodium alginate in the form of a thin film on the rubber latex layer and then insolubilizing it becomes a porous water-permeable film. This film serves as a filter cloth that wraps the water-containing flocs, and when it becomes insoluble, the porous film undergoes a strong shrinkage. The shrinkage at this time shrinks while the rubber latex that has been atomized until now and the alginic acid molecule that has been linearly stretched bends and entangles, so that it shrinks by itself while acting as a filter cloth. Therefore, it exerts the effect of squeezing out the water in the enclosed floc mass without applying mechanical pressure from the outside.
This is the most important feature of the present invention, which is fundamentally different from the coagulation and coarsening of fine particles by the coagulant.

次に、本発明のより具体的な実施例について説明する。Next, more specific examples of the present invention will be described.

例1 土木工事現場から排出されるシールド泥水で水分92〜95
wt%を含む廃液を一次貯泥槽にため、沈降静沈した下層
の泥漿物で60〜65wt%の水分を含んだもの1m3に対し
て、ゴムラテックス(Nipol 2570X5スチレン・ブタジエ
ン系ラテックスでカルボキシル化したもの)50%水溶液
を5%水溶液にしたものを50リットル添加する。
Example 1 Moisture 92-95 in shielded mud discharged from a civil engineering site
Since the waste liquid containing the wt% primary貯泥tank, carboxyl against 1 m 3 which contained 60~65Wt% moisture in the underlying mud漿物of sediment Shizu沈, rubber latex (Nipol 2570X5 styrene-butadiene latex 50% aqueous solution was made into 5% aqueous solution and 50 liters was added.

この時の泥漿物のpHは8付近がよい。もし、pHが低いと
きは苛性ソーダ等を使いPHを8付近に調整する。次に、
この混合物を攪拌機で低速回転(100〜150rpm)させ泥
粒の表面にゴムラテックスを均一に吸着させる。
The pH of the sludge at this time should be around 8. If the pH is low, adjust the pH to around 8 using caustic soda. next,
This mixture is rotated at low speed (100 to 150 rpm) with a stirrer to uniformly adsorb the rubber latex on the surface of the mud particles.

次にアルギン酸ソーダを3%前後に調整した水溶液をア
ルギン酸ソーダとして0.2%重量相当になるよう添加し
て、更によく攪拌をし泥粒の表面に吸着しているゴムラ
テックスに吸着させる。pHを6.5付近に調整した後に、
ポリ塩化アルミニウム(PAC)として10.5%、塩基度45
%の溶液1.3kgを攪拌しながら徐々に添加する。このと
きの攪拌は低速で行ない、強い剪断力を与えないほうが
造粒される土粒は大きくなる。添加していくポリ塩化ア
ルミニウムがアルギン酸ソーダのナトリウム塩当量に近
づくと急速に固化が起こり、今まで泥水土中に包水して
いた水分が分離しはじめ、凝塊物と水に分かれる。この
状態で、もはや泥水は水不溶の脱水性が著しく改善され
た土粒塊となっている。
Next, an aqueous solution of sodium alginate adjusted to about 3% is added as sodium alginate so as to be equivalent to 0.2% by weight, and the mixture is further stirred to be adsorbed on the rubber latex adsorbed on the surface of the mud particles. After adjusting the pH to around 6.5,
10.5% as polyaluminum chloride (PAC), basicity 45
% Solution of 1.3% is slowly added with stirring. The agitation at this time is performed at a low speed, and the soil particles to be granulated become larger if the strong shearing force is not applied. When the polyaluminum chloride to be added approaches the sodium salt equivalent of sodium alginate, solidification occurs rapidly, and the water contained in the mud soil begins to separate, and separates into a coagulum and water. In this state, the muddy water is no longer water-soluble and has become an agglomerate of soil with significantly improved dehydration.

この凝塊物と水との混合物はフィルタープレス等の通常
の脱水機で絞っても濾布の目を詰まらせることもなく迅
速に脱水ができ、低含水率の脱水物が得られた。
The mixture of this agglomerate and water could be quickly dehydrated without squeezing it with a normal dehydrator such as a filter press, and the dehydration product having a low water content was obtained.

例2 基礎工事等から排出されるリバース泥水を連続脱水分離
するために、マッドスクリーンを通して小石等の粗粒子
を除いたあと貯泥水槽を経てから凝集剤と反応させるた
めに反応装置に導き、そこで泥水1m3に対して10〜50gr
の凝集剤を加えpHが8付近になるよう調整しながら、フ
ロックを形成させる。
Example 2 In order to continuously dehydrate and separate the reverse mud water discharged from foundation works, etc., coarse particles such as pebbles are removed through a mud screen, and after passing through a mud water tank, it is led to a reactor for reaction with a flocculant, where 10 to 50 gr for 1 m 3 of muddy water
The floc is formed while adjusting the pH to around 8 by adding the flocculant of.

次に、このフロック化した泥水を一次濾過脱水槽に導き
清水と泥とに分離する。ここで濾過され残った泥はクリ
ーム状でその含水率は50%前後になっているが、粒子が
微細であり包水力が強く、粘土状になって粘った状態で
ある。この粘土状一次脱水物1m3に対して5%重量相当
に水で希釈したゴムラテックス水溶液50リットルを加
え、よく攪拌混合する。ペースト状に均一になった泥漿
物にアルギン酸ソーダを3%前後に調整した水溶液を0.
2%重量相当になるよう添加した後酢酸酸性にしたキト
酸水溶液を0.1%重量相当加え、その後20%の塩化カル
シウム溶液2.3リットルを攪拌しながら徐々に添加す
る。この時の攪拌も低速で行なったほうが、生成する土
塊粒は大きくなる。添加していく塩化カルシウムの量が
アルギン酸ソーダのナトリウム塩当量に近づくと急速に
固化が起こり、例1で示したときと同様の状態となり、
水分25〜28%の脱水物が容易に得られた。
Next, the muddy water that has been flocculated is introduced into a primary filtration dehydration tank and separated into fresh water and mud. The mud remaining after filtration here is creamy and has a water content of about 50%, but the particles are fine and have a high water-retaining power, and are clay-like and sticky. To 1 m 3 of this clay-like primary dehydrated product, 50 liters of a rubber latex aqueous solution diluted with water to an amount of 5% is added, and well mixed with stirring. An aqueous solution of sodium alginate adjusted to about 3% is added to a paste-like uniform sludge.
Add 0.1% by weight of an aqueous solution of chito acid, which has been added so as to have an amount of 2% by weight and then acidified with acetic acid, and then gradually add 2.3 liters of a 20% calcium chloride solution while stirring. If the stirring at this time is also performed at a low speed, the generated clod particles become larger. When the amount of calcium chloride to be added approaches the sodium salt equivalent of sodium alginate, solidification occurs rapidly, and the state is the same as that shown in Example 1,
A dehydrated product with a water content of 25 to 28% was easily obtained.

例3 極めて脱水が困難とされるものに下水処理場から排出さ
れる余剰汚泥がある。これは、濾布の目詰まりを起こ
し、濾布に付着した汚泥が落ちにくく、濾布の洗浄に手
間取り、均一な脱水が得難く、圧密性の大きいスラッジ
である。
Example 3 Excess sludge discharged from sewage treatment plants is one that is extremely difficult to dehydrate. This is a sludge having a large compaction property, which causes clogging of the filter cloth, sludge that is attached to the filter cloth does not easily fall off, is time-consuming to wash the filter cloth, and is difficult to obtain uniform dehydration.

この下水活性汚泥のスラッジ原液(固形物濃度2%)に
アクリルアマイド系の凝集剤を50ppm添加し、攪拌混合
してフロックを生成させたあと脱水回転式スクーリン
(回転速度10m/分)によって一次脱水を行なうと水分90
%前後の脱水ケーキが得られる。これに5%のゴムラテ
ックス溶液を50リットル添加し、ニーダ攪拌機等でよく
混合分散させる。
50ppm of acrylic amide type coagulant was added to the sludge stock solution of sewage activated sludge (concentration of solids 2%), and the mixture was stirred and mixed to generate flocs. Moisture 90
A dehydrated cake of about% is obtained. To this, 50 liters of a 5% rubber latex solution is added and well mixed and dispersed with a kneader stirrer or the like.

ペースト状に均一になった泥漿物にアルギン酸ソーダ10
%前後の水溶液を0.2%重量相当になるよう添加し、pH
を6〜7に調整した後、ポリ塩化アルミニウム(PAC)
1.6kgを徐々に攪拌しながら添加すると、アルギン酸ソ
ーダのソーダ塩当量付近になると急激に固化し、凝縮脱
水が起こり、水とスラッジが分離し、汚泥はサラサラし
た粒状の付着性のない固形物になり、脱水濾過性が著し
く改善され高圧を必要とせず、従来の脱水機で50%程度
までの脱水ができた。
Add sodium alginate 10 to the paste that has become uniform.
% To add 0.2% by weight of the aqueous solution to adjust the pH.
After adjusting to 6-7, polyaluminum chloride (PAC)
When 1.6 kg was added slowly with stirring, it solidified rapidly near the soda salt equivalent of sodium alginate, condensed and dehydrated, water and sludge were separated, and sludge became a dry, granular, non-adhesive solid substance. The dehydration filterability was remarkably improved, high pressure was not required, and dehydration up to about 50% was possible with the conventional dehydrator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】難脱水性沈降物にラテックスを添加、混合
し、次でこれに親水性保護コロイド形成物質としてアル
ギン酸ソーダを添加、混合し、その混合液のpHを弱酸性
にしながら多価金属イオンを添加して、ラテックスと親
水性保護コロイド形成物質の不溶化処理を行うことを特
徴とする難脱水性沈降物の脱水濃縮法。
1. A latex is added to and mixed with a hardly dehydratable precipitate, and then sodium alginate as a hydrophilic protective colloid-forming substance is added and mixed therewith, while the pH of the mixed solution is made weakly acidic, and a polyvalent metal is added. A method for dehydrating and concentrating a hardly dehydratable precipitate, which comprises insolubilizing a latex and a hydrophilic protective colloid-forming substance by adding ions.
JP2027101A 1990-02-08 1990-02-08 Method for dehydration concentration of hardly dehydratable sediment Expired - Lifetime JPH0729120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2027101A JPH0729120B2 (en) 1990-02-08 1990-02-08 Method for dehydration concentration of hardly dehydratable sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2027101A JPH0729120B2 (en) 1990-02-08 1990-02-08 Method for dehydration concentration of hardly dehydratable sediment

Publications (2)

Publication Number Publication Date
JPH03232600A JPH03232600A (en) 1991-10-16
JPH0729120B2 true JPH0729120B2 (en) 1995-04-05

Family

ID=12211696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2027101A Expired - Lifetime JPH0729120B2 (en) 1990-02-08 1990-02-08 Method for dehydration concentration of hardly dehydratable sediment

Country Status (1)

Country Link
JP (1) JPH0729120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209936B2 (en) * 2013-10-25 2017-10-11 株式会社大林組 Method of building a well in the ground, diluent and cleaning material used in this method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627309A (en) * 1979-08-14 1981-03-17 Ota Masayuki Method of treating stripped core

Also Published As

Publication number Publication date
JPH03232600A (en) 1991-10-16

Similar Documents

Publication Publication Date Title
JP3723625B2 (en) Treatment method for high water content sludge
JP5521272B2 (en) Sludge or wastewater treatment method
JP3839391B2 (en) Sludge treatment method
JPH10328700A (en) Treatment of waste sludge
JPH10272306A (en) Method for dewatering waste slurry
JP3721852B2 (en) Muddy water dehydration method
JP3783227B2 (en) How to treat dredged mud
JP3880917B2 (en) Harbor dredging method
JPH0729120B2 (en) Method for dehydration concentration of hardly dehydratable sediment
JP4816374B2 (en) Coagulation method of high water content sludge
JPH0741278B2 (en) Method for dehydration concentration of hardly dehydratable sediment
JPS6054797A (en) Treatment of sludge
CN1091752C (en) Post-dosing centrifugal dehydration method for municipal engineering slurry machine
JPH10192899A (en) Method for treating dredged sludge
JP3705012B2 (en) Muddy water dehydration
JP7345758B2 (en) How to dehydrate muddy water
JPH06134500A (en) Treatment of sludge
JPH10128010A (en) Treatment of dredge mud
JP2004008850A (en) Treatment method of muddy water
JP3405421B2 (en) Dehydration method of highly alkaline slurry
JPH0732000A (en) Low concentration sludge slurry flock-settling agent, inorganic flocculant, organic high polymer flocculant and surplus soil making method of sludge
JP3398182B2 (en) Sludge treatment method and treatment material used therefor
JP3947256B2 (en) Treatment method of dredged mud
JPH02122900A (en) Treating agent for dehydrating, coagulating and stabilizing mud and dehydrating, coagulating and stabilizing treatment of mud
JP2000288600A (en) Dehydration treatment of dredged bottom mud