JP3839391B2 - Sludge treatment method - Google Patents

Sludge treatment method Download PDF

Info

Publication number
JP3839391B2
JP3839391B2 JP2002327887A JP2002327887A JP3839391B2 JP 3839391 B2 JP3839391 B2 JP 3839391B2 JP 2002327887 A JP2002327887 A JP 2002327887A JP 2002327887 A JP2002327887 A JP 2002327887A JP 3839391 B2 JP3839391 B2 JP 3839391B2
Authority
JP
Japan
Prior art keywords
added
sludge
weight
floc
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002327887A
Other languages
Japanese (ja)
Other versions
JP2004160329A (en
Inventor
泰史 長江
敏 佐藤
勝久 阿部
雄一 谷
昇 猪足
久一郎 佐々木
直孝 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukoku Kogyo Co Ltd
Penta Ocean Construction Co Ltd
Original Assignee
Fukoku Kogyo Co Ltd
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukoku Kogyo Co Ltd, Penta Ocean Construction Co Ltd filed Critical Fukoku Kogyo Co Ltd
Priority to JP2002327887A priority Critical patent/JP3839391B2/en
Publication of JP2004160329A publication Critical patent/JP2004160329A/en
Application granted granted Critical
Publication of JP3839391B2 publication Critical patent/JP3839391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、各種の汚泥、例えば河川・湖沼及び港湾の浚渫土を脱水機を使用して脱水処理する方法に関する。
【0002】
【従来の技術】
河川・湖沼及び港湾の浚渫土の処理方法は、無機凝集剤もしくは、高分子凝集剤又はこれら両方を使用して行われている。すなわち、
▲1▼無機凝集剤又は高分子凝集剤をそれぞれ単独で添加し、浚渫土を処理する方法
▲2▼無機凝集剤を添加し、次いで高分子凝集剤を添加して浚渫土を処理する方法
▲3▼高分子凝集剤を添加し、次いで無機凝集剤を添加して浚渫土を処理する方法(特開平6−134500及び特開平3−161099参照)
▲4▼高分子凝集剤を添加し、フロックを形成させ、機械的破砕工程を経てフロックを破砕した後に、無機凝集剤を添加して浚渫土を処理する方法(特開平6−134500参照)
の4種類の方法に代表される。
これら方法のうち、▲1▼の処理方法は、各凝集剤が、浚渫土中に存在する懸濁物質のコロイド荷電を電気的に中和し、凝集させる方法である。▲2▼の処理方法は、無機凝集剤によって浚渫土中に存在する懸濁物質のコロイド荷電を電気的に中和し、次いで高分子凝集剤によって、中和された懸濁物質を高分子ポリマーで架橋し、凝集させる方法である。また▲3▼および▲4▼の処理方法は、高分子凝集剤の添加により、三次元網目構造を持つフロックを形成させ、次いで無機凝集剤の多価カチオンにより電気的に中和を行い、疎水性の高いフロックを形成させる方法である。
これらの方法で処理された浚渫土は、沈殿槽内で静置させて沈降分離する方法又は機械的に脱水する方法により固液分離される。
【0003】
【特許文献】
特開平3−161099
特開平6−134500
【0004】
【発明が解決しようとする課題】
従来技術のうち、無機又は高分子凝集剤を個々に添加して浚渫土を処理する方法では、沈降槽を用いた沈降分離や、フィルタープレスを用いた機械脱水処理による固液分離は可能であるが、圧搾力が加えられても形成されたフロックが壊れないような強いフロックを必要とするベルトプレス、ドラムプレス、スクリュープレス脱水機では処理することができなかった。
一方、無機凝集剤を添加し、浚渫土中に存在する懸濁物質のコロイド荷電を電気的に中和し、次いで高分子凝集剤を添加・攪拌し、中和された懸濁物質を高分子ポリマーの架橋作用によって、凝集せしめる方法では、圧搾力が加えられる脱水機を使用することは可能であるが、フロックが弱く機械から漏れ、処理水側に多量の懸濁物質が漏れ出すため、処理効率が落ちるばかりでなく、使用薬剤も多くなり、コスト的に問題であった。
【0005】
また、高分子凝集剤を添加し、次いで無機凝集剤を添加して浚渫土を処理する方法、並びに高分子凝集剤剤を添加し、フロックを形成させ、次いで、機械的破砕工程を経てフロックを破砕した後に、無機凝集剤を添加して浚渫土を処理する方法(特開平6−134500)は、液層部分に電解質を殆ど含まず、コロイド荷電量が比較的高い浚渫土については、十分適応できる。しかし、塩類を含む浚渫土や港湾浚渫及び河口付近における浚渫土(以下、港湾浚渫土と呼ぶ。)は、液層部分にNa+、Ca2+、Mg2+、Cl-、SO4 2-イオンに代表される電解質を多量に含んでいるので、粉末或は溶液で添加した高分子凝集剤の溶解速度及び分子の広がりが、抑制された状態になるため、形成されるフロックは、攪拌、衝撃に極めて弱く、直ぐに微細化し、フロック粒径を0.01〜2.0mm以下の範囲に調整することが難しい欠点があった。
【0006】
【課題を解決するための手段】
本発明者らは、従来法の欠点を克服し、浚渫土を安価に、かつ効率的に脱水処理する方法を確立すべく、鋭意研究を重ね、本発明を完成するに至った。
本発明の処理方法は、汚泥に、第一の工程で、アニオン性高分子凝集剤の希薄溶液を添加し、フロックを形成させ、第二の工程で、ラインミキサー等の高性能攪拌機を使用し、機械破砕にてフロックを0.5mm以下に破砕した後、第三の工程でアニオン性高分子凝集剤水溶液を添加し、フロックを再形成させ、第四の工程で、無機凝集剤を添加してフロックを疎水化後、脱水機を使用して、脱水処理物を得る汚泥処理方法である。
上記汚泥は、アニオン性高分子凝集剤のポリマー分子を、十分に広がらせるため、予めアルカリ剤を添加し、pHを8〜11に調整しておくことがのぞましい。
本発明は、各種の汚泥に適用できる。
【0007】
上述の処理方法における凝集・フロック形成メカニズムについては、現状では明確にではないが、概ね、図1に示すメカニズムと推定される。
第一の工程で、電解質を含んだ汚泥、例えば浚渫土粒子に対し、アニオン性高分子凝集剤の水溶液を添加して、電解質の凝集作用で不活性な状態にある土粒子と液層の一部とを包み込むように三次元網目構造を持つ大きなフロックを形成させる。第二の工程で、このフロックを機械的に0.5mm以下の粒径に破砕して、フロック内の水を除去し、コロイド状土粒子表面にポリマーを満遍なく吸着させると同時に、ポリマーが持つ吸着点を土粒子上に露出させる。第三の工程で、加えられるアニオン性高分子凝集剤が、この吸着点に効率良く吸着し、フロックを再形成し、第四の工程で加えられる無機凝集剤の多価カチオンの効果によってフロックは、疎水化され、圧搾脱水に耐えられる強いフロックが出来あがると考えられる。
【0008】
本発明の処理方法と従来の処理方法、特に特開平6−134500及び平3−161099記載の処理方法とは、次の点で大きく異なる。
汚泥の液層部分に電解質を殆ど含まない場合、特開平6−134500の処理方法によると、高分子凝集剤を添加した時に形成されるフロックが強いため、破砕によっても所定の粒径範囲にフロックを調整でき(微細な粒子が殆ど生じない)、無機凝集剤の添加で疎水化できる。しかし、液層部分にNa+、Ca2+、Mg2+、Cl-、SO4 2-イオンに代表される電解質が多量に含まれている汚泥の場合、高分子凝集剤を添加した時に形成されるフロックは弱いため、破砕によって容易に微細化し、所定の粒径に調整することが困難なばかりでなく、無機凝集剤を添加したときにフロックが崩れ、微細粒子になる欠点がある。
【0009】
これに対し、本発明の処理方法は、汚泥液層部に電解質が有る無しにかかわらず、第二の工程で、このフロックを機械的に例えば0.5mm以下の粒径に破砕し、第三の工程で再フロック化を行い、最後に、第四の工程で加えられる無機凝集剤の多価カチオンの効果によって、疎水性の圧搾脱水に耐えられる強いフロックを形成させることができる。また、再フロック化させる第三の工程を加えることで、フロックを機械的に一定の粒径範囲に調整する困難さを排除することができる。
本発明の処理法は、液層部分にNa+、Ca2+、Mg2+、Cl-、SO4 2-イオンに代表される電解質が多量に含まれている汚泥の場合、著しくその効果を発揮するが、電解質を含まない汚泥にも適用できる。
【0010】
第一の工程で使用されるアニオン性高分子凝集剤は、ポリアクリル酸ナトリウム、アクリルアミド・アクリル酸共重合物に代表されるアニオン性ポリマーであれば、何れを用いても良いが、中でもアニオン性が強い、より分子量の高い、例えば分子量1200万〜1800万の高分子凝集剤が好ましい。希薄水溶液のポリマー濃度は、水100容量部に対し0.05重量部〜0.2重量部の何れの濃度を用いても良いが、浚渫土の乾燥固形分100重量部に対し、0.01〜0.5重量部の範囲になる様に調整されなければならない。
【0011】
第三の工程で使用されるアニオン性高分子凝集剤は、弱アニオン性のものとしては、ポリアクリルアミド、ポリビニールアルコール、無水マレイン酸重合物、ポリアクリル酸エステル、グアガム等があり、中及び高アニオン性としては、アクリルアミドとアクリル酸塩の共重合物、ポリスチレンスルホン酸、ポリアクリル酸、ポリビニルスルホン酸等があり、これらの誘導体類も用いることができる。これら高分子凝集剤の分子量としては、1200〜1800万程度のものが優れた効果を発揮する。
また、アニオン性高分子凝集剤は、粉末品を浚渫土の乾燥固形分100重量部に対し、0.01〜1.0重量部の範囲添加するか、又は海水100容量部に対し、0.3〜0.90重量部の範囲で溶解した溶液を浚渫土の乾燥固形分100重量部に対し、粉末換算にして0.01〜1.0重量部の範囲で添加しても良い。
固形分含有量40%以上の液状タイプのアニオン性高分子凝集剤を、浚渫土の乾燥固形分100重量部に対し、0.05〜1.0重量部の範囲で添加しても良い。
【0012】
さらに第四の工程で添加される無機凝集剤としては、ポリ塩化アルミニウム(PAC)塩化第2鉄、硫酸アルミニウム、硫酸第一鉄を用いることができる。中でもポリ塩化アルミニウム溶液が最も好ましく、浚渫土の乾燥固形分100重量部に対し、0.01〜5重量部の範囲で添加する。
本発明を下記の実施例によってさらに詳細に説明するが、その内容に限定されない。
【0013】
〔実施例1〕
電解質を含む汚泥について、従来法と本発明の処理方法とを比較した処理試験結果を以下に説明する。
本発明の処理方法
含水比500%の港湾浚渫土の乾燥固形分量100重量部に対し、
第一の工程: アルカリ剤として、水酸化ナトリウム20%溶液を1.0重量部添加し、攪拌機で十分に攪拌して、pHを9.2に調整し、次いで、0.1(重量/容量%)濃度のアニオン性高分子凝集剤希薄水溶液を有効固形分量で0.05重量部添加し、攪拌し、フロックを形成させる。
第二の工程: フロックを高速攪拌にて粒径を0.5mm以下に整える。
第三の工程: 液状タイプのアニオン性高分子凝集剤(固形分含有量:40%)を有効固形分量で0.05〜0.4重量部の範囲で添加量を変えて添加し、十分に攪拌を行う。
第四の工程: 無機凝集剤として、ポリ塩化アルミニウム溶液を有効固形分量で0.08〜0.4重量部の範囲で添加量を変えて添加し、攪拌を行い、疎水性の強いフロックを得る。
得られたフロックを圧搾方式の脱水試験機を用いて脱水し、脱水スラッジの含水比、コーン指数を測定した。
【0014】
〔比較例1〕
〔0002〕 ▲2▼の方法)
含水比500%の港湾浚渫土の乾燥固形分100重量部に対し、
▲1▼ ポリ塩化アルミニウム溶液を有効固形分量で0.08重量部添加し、攪拌する。
▲2▼ 0.1(重量/容量%)濃度の高分子凝集剤溶液を有効固形分濃度で0.025又は0.05重量部と添加量を変えて添加し、攪拌、凝集しフロックを得る。
得られたフロックを圧搾方式の脱水試験機を用いて脱水し、脱水スラッジの含水比、コーン指数を測定した。
なお、凝集物の脱水方法は、同容量の凝集物を、底面にろ紙を施した円筒セル容器に注ぎ入れ、上部から油圧シリンダーにつながるOリング付きのピストンを押し込んで200kN/m2×10分の条件で圧搾脱水する方法である。また、コーン指数は締固めた土のコーン指数試験方法〔JIS A 1228〕に準拠し、測定した。
実験結果を表-1に示す。
【0015】
【表1】

Figure 0003839391
表1に示すように、本発明の処理法は、従来法に比し、脱水後のフロックの含水比、コーン指数測定値において、明らかな改善を示した。
【0016】
〔実施例2〕
電解質を含む汚泥について、従来法(特開平6−134500及び平3−161099)と本発明の処理方法とを比較した処理試験結果を以下に説明する。
本発明の処理方法
含水比500%の港湾浚渫土の乾燥固形分100重量部に対し、
第一の工程: アルカリ剤として、水酸化ナトリウム20%溶液を1.0重量部添加し、攪拌機で十分に攪拌して、pHを9.2に調整し、次いで、0.1(重量/容量%)濃度のアニオン性高分子凝集剤希薄水溶液を有効固形分量で0.05又は0.1重量部と添加量を変えて添加し、攪拌し、フロックを形成させる。
第二の工程: フロックを高速攪拌にて粒径を0.5mm以下に整える。
第三の工程: 液状タイプのアニオン性高分子凝集剤(固形分含有量:40%)を有効固形分量で0.08〜0.2重量部の範囲で添加量を変えて添加し、十分に攪拌を行う。
第四の工程: 無機凝集剤として、ポリ塩化アルミニウム溶液を有効固形分で0.15〜0.3重量部の範囲で添加量を変えて添加し、攪拌を行い、疎水性の強いフロックを得る。
得られたフロックを圧搾方式の脱水試験機を用いて脱水し、脱水スラッジの含水比、コーン指数を測定した。
【0017】
〔比較例2〕
(特開平3−161099の方法)
含水比500%の港湾浚渫土の乾燥固形分100重量部に対し、
▲1▼ 高分子凝集剤の濃度0.1(重量/容量%)溶液を固形分濃度で0.05〜0.2重量部の範囲で添加量を変えて添加し、攪拌する。
▲2▼ ポリ塩化アルミニウム溶液を有効固形分で0.1又は、0.2重量部の範囲で添加量を変えて添加し、攪拌して凝集させる。
〔比較例3〕
(特開平6−134500の方法)
含水比500%の港湾浚渫土の乾燥固形分100重量部に対し、
▲1▼ 0.1(重量/容量%)濃度の高分子凝集剤を固形分濃度で0.1又は、0.2重量部の範囲で添加量を変えて添加し、攪拌凝集させる。
▲2▼ 高速攪拌にてフロックの粒径を0.01〜2mmに調整する。
▲3▼ ポリ塩化アルミニウム溶液を有効固形分量で0.1又は、0.2重量部の範囲で添加量を変えて添加し、攪拌して凝集させる。
得られたフロックを圧搾方式の脱水試験機を用いて脱水し、脱水スラッジの含水比、コーン指数を測定した。
なお、凝集物の脱水方法、含水比及びコーン指数の測定方法は、実施例1と同様である。
【0018】
【表2】
Figure 0003839391
表2に示すように、本発明の処理法は、従来法に比し、使用する高分子凝集剤の添加量を抑えながら、脱水後のコーン指数測定値を高い値に改善することができた。
【0019】
〔実施例3〕
圧搾式脱水機として、直径φ200のスクリュープレス脱水機を使用し、攪拌混合機として、バッヂ型の二軸パドルミキサーを使用し、含水比500%の電解質を含んだT沼の浚渫土について、従来法(特開平6−134500及び平3−161099記載)と本発明の処理方法とを比較した処理試験結果について以下に説明する。
本発明の処理方法
含水比500%の浚渫土の乾燥固形分100重量部に対し、
第一の工程: アルカリ剤として水酸化ナトリウム20%溶液を1.0重量部添加し攪拌機で十分に攪拌し、汚泥のpHを9.0に調整した後、濃度0.1(重量/容量%)のアニオン性高分子凝集剤水溶液を有効固形分量で0.1重量部添加し、十分に攪拌する。
第二の工程: 十分に攪拌して生成されたフロックを0.5mm以下に細分化する。
第三の工程: アニオン性高分子凝集剤の液状タイプ(固形分含有量:40%)を固形分で0.06重量部添加し、十分に攪拌を行った。
第四の工程: ポリ塩化アルミニウム溶液を有効固形分量で0.13重量部添加し、攪拌を行った。
得られたフロックを直径φ200のスクリュープレス脱水機を使用し、圧搾脱水後、脱水スラッジの含水比、コーン指数及び固形物処理量を測定した。
【0020】
〔比較例4〕
(〔0002〕 ▲2▼の方法)
含水比500%の同浚渫土の乾燥固形分100重量部に、
▲1▼ 無機凝集剤としポリ塩化アルミニウム溶液を有効固形分量で0.13重量部添加し、攪拌する。
▲2▼ 0.1(重量/容量%)濃度の高分子凝集剤を有効固形分濃度で0.025重量部を添加し、攪拌、凝集しフロックを得る。
〔比較例5〕
(特開平6−134500の方法)
含水比500%の港湾浚渫土の乾燥固形分100重量部に対し、
▲1▼ 0.1(重量/容量%)濃度の高分子凝集剤を固形分濃度で0.15重量部を添加し、攪拌凝集させる。
▲2▼ 高速攪拌にてフロックの粒径を0.01〜2mmに調整する。
▲3▼ ポリ塩化アルミニウム溶液を有効固形分量で0.13重量部を添加し、攪拌して凝集させる。
得られたフロックを圧搾脱水後、脱水スラッジの含水比、コーン指数及び固形物処理量を測定した。
試験結果を表3に示す。
【0021】
【表3】
Figure 0003839391
本発明の処理法と従来の処理法を比較すると、本発明の処理法により得られたフロックは、疎水性に優れていることから、回転数1.0rpmにおいて、脱水ケーキの含水比、コーン指数とも大幅に改善されている。
また、スクリュープレスは、スクリューの回転数を上げることにより処理能力(固形物処理量)が大きく向上することから、如何に高回転で処理するかが重要である。本発明の処理法では、得られるフロックが、非常に大きく、強固なことからスクリュープレスの回転数を3.0rpmまで上げることができ、固形物処理能力も非常に高い値を示したのに対し、従来の処理法では、フロックが非常に貧弱なため、固形物の大部分が処理水側に漏れ出し、1.0rpm以上の回転を与えることができなかった。
【0022】
【発明の効果】
汚泥に対し、本発明の処理方法を適用することにより、高分子凝集剤のポリマー分子をコロイド粒子に効率よく吸着させ、荷重強さと疎水性を有するフロックを得ることができ、従来の処理方法と比較し、圧搾式脱水機による脱水ケーキ含水比とケーキ強度の大幅な向上が可能となった。特にスクリュープレス脱水機では、脱水ケーキ含水比や、ケーキ強度の向上だけでなく、従来の処理方法では成し得なかった、高回転での脱水処理が可能となり、大幅に処理能力が向上した。
【図面の簡単な説明】
【図1】本発明の処理方法による、汚泥水の土粒子の凝集・フロック形成メカニズムを示す概念図である。[0001]
[Industrial application fields]
The present invention relates to a method for dehydrating various sludges, such as rivers, lakes, and harbor dredging using a dehydrator.
[0002]
[Prior art]
The method for treating dredged soil in rivers, lakes and harbors is performed using an inorganic flocculant or a polymer flocculant or both. That is,
(1) A method for treating a clay by adding an inorganic flocculant or a polymer flocculant alone (2) A method for treating a clay by adding an inorganic flocculant and then adding a polymer flocculant (7) 3) Method of treating a clay by adding a polymer flocculant and then adding an inorganic flocculant (refer to Japanese Patent Laid-Open Nos. 6-134500 and 3-161099)
(4) A method in which a polymer flocculant is added to form flocs, the flocs are crushed through a mechanical crushing step, and then an inorganic flocculant is added to treat the clay (see JP-A-6-134500).
It is represented by the following four methods.
Among these methods, the treatment method (1) is a method in which each aggregating agent electrically neutralizes the colloidal charge of the suspended substance existing in the clay and agglomerates. In the treatment method (2), the colloidal charge of the suspended material existing in the clay is electrically neutralized with the inorganic flocculant, and then the neutralized suspended material is polymerized with the polymer flocculant. This is a method of cross-linking and agglomerating. Further, the treatment methods (3) and (4) are such that a floc having a three-dimensional network structure is formed by adding a polymer flocculant, and then electrically neutralized with polyvalent cations of the inorganic flocculant to make hydrophobic. This is a method of forming a highly floc.
The clay treated by these methods is solid-liquid separated by a method of allowing it to stand in a settling tank and settling and separating, or a method of mechanically dehydrating.
[0003]
[Patent Literature]
Japanese Patent Laid-Open No. 3-161099
JP-A-6-134500
[0004]
[Problems to be solved by the invention]
Among the conventional techniques, in the method of treating the clay by adding inorganic or polymer flocculants individually, sedimentation separation using a sedimentation tank or solid-liquid separation by mechanical dehydration treatment using a filter press is possible. However, it could not be processed by a belt press, drum press, or screw press dehydrator that requires a strong flock that does not break the formed flock even when a pressing force is applied.
On the other hand, an inorganic flocculant is added to electrically neutralize the colloidal charge of the suspended solids present in the clay, and then the polymer flocculant is added and stirred to remove the neutralized suspended solids from the polymer. In the method of agglomerating by the cross-linking action of the polymer, it is possible to use a dehydrator to which pressing force is applied, but since the floc is weak and leaks from the machine, a large amount of suspended matter leaks to the treated water side, Not only was efficiency lowered, but the amount of chemicals used increased, which was a problem in terms of cost.
[0005]
Also, a method of treating a clay by adding a polymer flocculant and then adding an inorganic flocculant, and adding a polymer flocculant agent to form a floc, and then performing a mechanical crushing step to floc The method of treating the clay by adding an inorganic flocculant after crushing (Japanese Unexamined Patent Publication No. Hei 6-134500) is sufficiently adaptable for clays containing almost no electrolyte in the liquid layer part and a relatively high amount of colloidal charge. it can. However, dredged soil containing salt, harbor dredging, and dredging in the vicinity of the estuary (hereinafter called harbor dredged soil) are Na + , Ca 2+ , Mg 2+ , Cl-, SO 4 2- Since it contains a large amount of electrolyte typified by ions, the dissolution rate and molecular spread of the polymer flocculant added in powder or solution are suppressed, so the floc formed is stirred, There was a drawback that it was extremely vulnerable to impact, and it was difficult to adjust the floc particle size to a range of 0.01 to 2.0 mm or less immediately after making it finer.
[0006]
[Means for Solving the Problems]
In order to overcome the drawbacks of the conventional methods and to establish a method for efficiently and efficiently dewatering the clay, the present inventors have conducted intensive studies and completed the present invention.
In the treatment method of the present invention, a dilute solution of an anionic polymer flocculant is added to sludge in the first step to form flocs, and a high-performance stirrer such as a line mixer is used in the second step. After crushing the floc to 0.5 mm or less by mechanical crushing, add an anionic polymer flocculant aqueous solution in the third step to re-form the floc, and add the inorganic flocculant in the fourth step This is a sludge treatment method for obtaining a dehydrated product using a dehydrator after hydrophobizing the floc.
In order to sufficiently spread the polymer molecules of the anionic polymer flocculant in the sludge, it is preferable to add an alkali agent in advance and adjust the pH to 8 to 11.
The present invention can be applied to various types of sludge.
[0007]
The aggregation / floc formation mechanism in the above processing method is not clear at present, but is generally presumed to be the mechanism shown in FIG.
In the first step, an aqueous solution of an anionic polymer flocculant is added to sludge containing electrolyte, for example, clay particles, and the soil particles and liquid layers in an inactive state due to the aggregating action of the electrolyte are added. A large flock having a three-dimensional network structure is formed so as to wrap the part. In the second step, this floc is mechanically crushed to a particle size of 0.5 mm or less, the water in the floc is removed, and the polymer is evenly adsorbed on the surface of the colloidal soil particles. Expose the spots on the soil particles. In the third step, the anionic polymer flocculant added is efficiently adsorbed to this adsorption point, re-forming the floc, and the floc is formed by the effect of the polyvalent cation of the inorganic flocculant added in the fourth step. It is thought that a strong floc that can be hydrophobized and can withstand dehydration is produced.
[0008]
The processing method of the present invention and the conventional processing method, particularly the processing methods described in JP-A Nos. 6-134500 and 3-161099, are greatly different in the following points.
When the sludge liquid layer contains almost no electrolyte, according to the treatment method disclosed in JP-A-6-134500, the floc formed when the polymer flocculant is added is strong, so that the floc is kept within a predetermined particle size range even by crushing. (Fine particles are hardly generated) and can be hydrophobized by adding an inorganic flocculant. However, in the case of sludge that contains a large amount of electrolytes typified by Na + , Ca 2+ , Mg 2+ , Cl-, and SO 4 2- ions in the liquid layer, it is formed when a polymer flocculant is added. Since the flocs to be produced are weak, it is not only difficult to make them fine by crushing and adjusting to a predetermined particle diameter, but also has the disadvantage that the flocs collapse and become fine particles when an inorganic flocculant is added.
[0009]
In contrast, the treatment method of the present invention mechanically crushes this floc into a particle size of 0.5 mm or less in the second step, regardless of whether or not the sludge liquid layer has an electrolyte. In this step, re-flocing is performed, and finally, a strong floc that can withstand hydrophobic squeezing and dehydration can be formed by the effect of the polyvalent cation of the inorganic flocculant added in the fourth step. Further, by adding the third step of re-flocing, it is possible to eliminate the difficulty of mechanically adjusting the floc to a certain particle size range.
The treatment method of the present invention has a remarkable effect in the case of sludge in which the liquid layer portion contains a large amount of electrolytes typified by Na + , Ca 2+ , Mg 2+ , Cl- and SO 4 2- ions. It can be applied to sludge without electrolyte.
[0010]
As the anionic polymer flocculant used in the first step, any anionic polymer represented by sodium polyacrylate and acrylamide / acrylic acid copolymer may be used. A high molecular weight, high molecular weight, for example, a polymer flocculant having a molecular weight of 12 to 18 million is preferable. The polymer concentration of the dilute aqueous solution may be any concentration of 0.05 to 0.2 parts by weight with respect to 100 parts by volume of water, but is 0.01 with respect to 100 parts by weight of the dry solid content of the clay. It must be adjusted to be in the range of ~ 0.5 parts by weight.
[0011]
The anionic polymer flocculant used in the third step includes polyacrylamide, polyvinyl alcohol, maleic anhydride polymer, polyacrylate ester, guar gum, etc. as weak anionic ones. Examples of the anionic property include copolymers of acrylamide and acrylate, polystyrene sulfonic acid, polyacrylic acid, polyvinyl sulfonic acid, and the like, and derivatives thereof can also be used. As the molecular weight of these polymer flocculants, those having a molecular weight of about 1200 to 18 million exhibit excellent effects.
In addition, the anionic polymer flocculant is added in the range of 0.01 to 1.0 parts by weight with respect to 100 parts by weight of the dry solid content of the clay, or 0.1 parts by weight with respect to 100 parts by volume of seawater. You may add the solution melt | dissolved in the range of 3-0.90 weight part in 0.01-1.0 weight part in conversion of a powder with respect to 100 weight part of dry solid content of a clay.
A liquid type anionic polymer flocculant having a solid content of 40% or more may be added in a range of 0.05 to 1.0 part by weight with respect to 100 parts by weight of the dry solid content of the clay.
[0012]
Furthermore, polyaluminum chloride (PAC) ferric chloride, aluminum sulfate, and ferrous sulfate can be used as the inorganic flocculant added in the fourth step. Of these, a polyaluminum chloride solution is most preferred, and is added in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the dry solid content of the clay.
The present invention will be described in more detail by the following examples, but is not limited thereto.
[0013]
[Example 1]
About the sludge containing electrolyte, the processing test result which compared the conventional method and the processing method of this invention is demonstrated below.
Treatment method of the present invention The dry solid content of 100 parts by weight of harbor clay with a water content ratio of 500%,
First step: Add 1.0 part by weight of 20% sodium hydroxide solution as an alkaline agent, thoroughly stir with a stirrer to adjust pH to 9.2, then 0.1 (weight / volume%) Add 0.05 part by weight of dilute aqueous solution of anionic polymer flocculant with effective solid content and stir to form floc.
Second step: The particle size of the floc is adjusted to 0.5 mm or less by high speed stirring.
Third step: Add a liquid type anionic polymer flocculant (solid content: 40%) by changing the addition amount in the range of 0.05 to 0.4 parts by weight in terms of effective solid content, and fully Stir.
Fourth step: As an inorganic flocculant, a polyaluminum chloride solution is added with an effective solid content in the range of 0.08 to 0.4 parts by weight, and stirred to obtain a highly hydrophobic floc. .
The obtained floc was dehydrated using a compression-type dehydration tester, and the water content ratio and corn index of the dehydrated sludge were measured.
[0014]
[Comparative Example 1]
( Method [0002] ( 2))
For 100 parts by weight of dry solids of harbor clay with a moisture content of 500%,
(1) Add 0.08 part by weight of an effective solid content of polyaluminum chloride solution and stir.
(2) Add a polymer flocculant solution with a concentration of 0.1 (weight / volume%) at an effective solid content concentration of 0.025 or 0.05 part by weight, and stir and agglomerate to obtain a floc. .
The obtained floc was dehydrated using a compression-type dehydration tester, and the water content ratio and corn index of the dehydrated sludge were measured.
In addition, the dehydration method of the agglomerates is the same volume of agglomerates poured into a cylindrical cell container with a filter paper on the bottom, and a piston with an O-ring connected to the hydraulic cylinder from the top is pushed in to 200 kN / m 2 × 10 min. This is a method of squeezing and dehydrating under the conditions of The cone index was measured in accordance with the cone index test method [JIS A 1228] for compacted soil.
The experimental results are shown in Table-1.
[0015]
[Table 1]
Figure 0003839391
As shown in Table 1, the treatment method of the present invention showed a clear improvement in the moisture content of the floc after dehydration and the measured corn index, compared with the conventional method.
[0016]
[Example 2]
About the sludge containing electrolyte, the processing test result which compared the conventional method (Unexamined-Japanese-Patent Nos. 6-134500 and 3-161099) and the processing method of this invention is demonstrated below.
Treatment method of the present invention With respect to 100 parts by weight of dry solids of harbor clay having a water content of 500%,
First step: Add 1.0 part by weight of 20% sodium hydroxide solution as an alkaline agent, thoroughly stir with a stirrer to adjust pH to 9.2, then 0.1 (weight / volume%) Add a dilute aqueous solution of anionic polymer flocculant at a concentration of 0.05 or 0.1 part by weight in terms of effective solid content, stir, and form floc.
Second step: The particle size of the floc is adjusted to 0.5 mm or less by high speed stirring.
Third step: Add a liquid type anionic polymer flocculant (solid content: 40%) by changing the addition amount in the range of 0.08 to 0.2 parts by weight of the effective solid content, and fully Stir.
Fourth step: As an inorganic flocculant, a polyaluminum chloride solution is added at an effective solid content in the range of 0.15 to 0.3 parts by weight, and the mixture is stirred to obtain a highly hydrophobic floc. .
The obtained floc was dehydrated using a compression-type dehydration tester, and the water content ratio and corn index of the dehydrated sludge were measured.
[0017]
[Comparative Example 2]
(Method of Japanese Patent Laid-Open No. 3-161099)
For 100 parts by weight of dry solids of harbor clay with a moisture content of 500%,
{Circle around (1)} A polymer flocculant concentration 0.1 (weight / volume%) solution is added at a solid content concentration in the range of 0.05 to 0.2 parts by weight, and stirred.
{Circle around (2)} The polyaluminum chloride solution is added at an effective solid content of 0.1 or 0.2 parts by weight, and the agglomeration is performed by stirring.
[Comparative Example 3]
(Method of JP-A-6-134500)
For 100 parts by weight of dry solids of harbor clay with a moisture content of 500%,
(1) A polymer flocculant having a concentration of 0.1 (weight / volume%) is added at a solid content concentration of 0.1 or 0.2 parts by weight, and the mixture is stirred and agglomerated.
(2) Adjust the floc particle size to 0.01-2mm by high speed stirring.
(3) The polyaluminum chloride solution is added at an effective solid content of 0.1 or 0.2 parts by weight, and the agglomeration is performed by stirring.
The obtained floc was dehydrated using a compression-type dehydration tester, and the water content ratio and corn index of the dehydrated sludge were measured.
The method for dehydrating the agglomerates, measuring the water content, and measuring the corn index are the same as in Example 1.
[0018]
[Table 2]
Figure 0003839391
As shown in Table 2, the treatment method of the present invention was able to improve the corn index measurement value after dehydration to a high value while suppressing the addition amount of the polymer flocculant used compared to the conventional method. .
[0019]
Example 3
About the swamp soil of the T swamp containing an electrolyte with a water content of 500%, using a screw press dehydrator with a diameter of φ200 as the compression dehydrator, using a badge-type biaxial paddle mixer as the stirring mixer Processing test results comparing the method (described in JP-A-6-134500 and JP-A-3-161099) and the processing method of the present invention will be described below.
Treatment method of the present invention With respect to 100 parts by weight of the dry solid content of the clay with a water content of 500%,
First step: Add 1.0 part by weight of 20% sodium hydroxide solution as an alkaline agent, thoroughly stir with a stirrer, adjust the sludge pH to 9.0, and then adjust the concentration to 0.1 (weight / volume%). Add 0.1 part by weight of an anionic polymer flocculant aqueous solution with an effective solid content, and stir well.
Second step: The floc produced by stirring sufficiently is subdivided to 0.5 mm or less.
Third step: A liquid type of anionic polymer flocculant (solid content: 40%) was added in an amount of 0.06 parts by weight as a solid content and sufficiently stirred.
Fourth step: 0.13 parts by weight of an effective solid content of polyaluminum chloride solution was added and stirred.
The obtained floc was squeezed and dehydrated using a screw press dehydrator having a diameter of φ200, and the water content ratio, corn index and solid matter throughput of the dewatered sludge were measured.
[0020]
[Comparative Example 4]
([0002] Method 2)
To 100 parts by weight of dry solid content of the same clay with a water content of 500%
(1) Add 0.13 parts by weight of an effective solid content of polyaluminum chloride solution as an inorganic flocculant and stir.
{Circle around (2)} 0.025 parts by weight of a polymer flocculant having a concentration of 0.1 (weight / volume%) at an effective solid content concentration is added and stirred and agglomerated to obtain a floc.
[Comparative Example 5]
(Method of JP-A-6-134500)
For 100 parts by weight of dry solids of harbor clay with a moisture content of 500%,
{Circle around (1)} 0.15 parts by weight of a polymer flocculant having a concentration of 0.1 (weight / volume%) at a solid content concentration is added and agglomerated by stirring.
(2) Adjust the floc particle size to 0.01-2mm by high speed stirring.
(3) Add 0.13 parts by weight of an effective solid content of the polyaluminum chloride solution, and stir to agglomerate.
The obtained floc was squeezed and dehydrated, and then the water content ratio, corn index and solid matter throughput of the dewatered sludge were measured.
The test results are shown in Table 3.
[0021]
[Table 3]
Figure 0003839391
When the treatment method of the present invention is compared with the conventional treatment method, the floc obtained by the treatment method of the present invention is excellent in hydrophobicity. Therefore, at a rotation speed of 1.0 rpm, the water content of the dehydrated cake, the corn index Both have been greatly improved.
In addition, since the processing capacity (solid matter throughput) of the screw press is greatly improved by increasing the number of rotations of the screw, it is important how to process at a high speed. In the processing method of the present invention, the floc obtained is very large and strong, so that the number of rotations of the screw press can be increased to 3.0 rpm, and the solids processing capacity showed a very high value. In the conventional treatment method, since the floc is very poor, most of the solid matter leaked out to the treated water side and could not give a rotation of 1.0 rpm or more.
[0022]
【The invention's effect】
By applying the treatment method of the present invention to sludge, the polymer molecules of the polymer flocculant can be efficiently adsorbed on the colloidal particles, and flocs having load strength and hydrophobicity can be obtained. In comparison, the moisture content of the dehydrated cake and the cake strength can be greatly improved by the compression dehydrator. In particular, the screw press dehydrator not only improved the water content of the dehydrated cake and the cake strength, but also made it possible to perform a dehydration process at a high rotation speed, which could not be achieved by the conventional processing method, and greatly improved the processing capacity.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a conceptual diagram showing a mechanism of coagulation / floc formation of soil particles of sludge water by a treatment method of the present invention.

Claims (8)

第一の工程で、汚泥にアニオン性高分子凝集剤水溶液を添加し、土粒子と液層の一部とを包み込むように三次元網目構造を持つ大きなフロックを形成させ、
第二の工程で、このフロックを機械的に破砕することにより、フロック内の水を排除し、土粒子表面にポリマーを吸着させ、かつ、ポリマーが持つ吸着点を破砕粒子上に露出させた状態を作り出し、
第三の工程で、アニオン性高分子凝集剤水溶液を再度添加し、上記吸着点にポリマーを吸着させたのち、
第四の工程で、無機凝集剤を添加、攪拌してフロックを再形成及び疎水化させたのち、脱水機を使用して、脱水処理物を得ることを特徴とする汚泥処理方法。
In the first step, an anionic polymer flocculant aqueous solution is added to the sludge to form a large flock with a three-dimensional network structure so as to wrap the soil particles and a part of the liquid layer,
In the second step, this floc is mechanically crushed to eliminate water in the floc, adsorb the polymer on the surface of the soil particles, and expose the adsorption point of the polymer on the crushed particles Produce
In the third step, the anionic polymer flocculant aqueous solution is added again, and after the polymer is adsorbed to the adsorption point,
In the fourth step, an inorganic flocculant is added and stirred to re-form and hydrophobize flocs, and then a dewatered product is obtained using a dehydrator.
電解質を含む汚泥に、第一の工程で、アニオン性高分子凝集剤水溶液を添加し、電解質の凝集作用で不活性な状態にある土粒子と液層の一部とを包み込むように三次元網目構造を持つ大きなフロックを形成させ、
第二の工程で、このフロックを機械的に破砕することにより、フロック内の水を排除し、土粒子表面にポリマーを吸着させ、かつ、ポリマーが持つ吸着点を破砕粒子上に露出させた状態を作り出し、
第三の工程で、アニオン性高分子凝集剤水溶液を再度添加し、上記吸着点にポリマーを吸着させたのち、
第四の工程で、無機凝集剤を添加、攪拌してフロックを再形成及び疎水化させたのち、脱水機を使用して、脱水処理物を得ることを特徴とする汚泥処理方法。
In the first step, an anionic polymer flocculant aqueous solution is added to the sludge containing the electrolyte to wrap the soil particles and a part of the liquid layer in an inactive state due to the aggregating action of the electrolyte. Forming a large flock with structure,
In the second step, this floc is mechanically crushed to eliminate water in the floc, adsorb the polymer on the surface of the soil particles, and expose the adsorption point of the polymer on the crushed particles Produce
In the third step, the anionic polymer flocculant aqueous solution is added again, and after the polymer is adsorbed to the adsorption point,
In the fourth step, an inorganic flocculant is added and stirred to re-form and hydrophobize flocs, and then a dewatered product is obtained using a dehydrator.
電解質を含む汚泥の含水比を、200〜1000%の範囲にした請求項2記載の処理工程を用いる汚泥処理方法。The sludge processing method using the process process of Claim 2 which made the water content ratio of the sludge containing electrolyte the range of 200 to 1000%. 電解質を含む汚泥が港湾浚渫土であることを特徴とする請求項2または3記載の汚泥処理方法。The sludge treatment method according to claim 2 or 3, wherein the sludge containing electrolyte is harbor dredged material. 第一の工程で添加されるアニオン性高分子凝集剤水溶液の有効固形分量が、汚泥乾燥固形分100重量部に対し、0.01〜0.5重量部の範囲であり、第二の工程で、機械破砕にて破砕されるフロックの粒径が0.5mm以下であり、第三の工程で添加されるアニオン性高分子凝集剤水溶液の有効固形分量が、汚泥乾燥固形分100重量部に対し、0.01〜1.0重量部の範囲であり、第四の工程で添加される無機凝集剤の有効固形分量が、汚泥乾燥固形分100重量部に対し、0.01〜5.0重量部の範囲であることを特徴とする請求項1ないし4のいずれかに記載の汚泥処理方法。The effective solid content of the aqueous anionic polymer flocculant solution added in the first step is in the range of 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the sludge dry solids. The particle size of the floc crushed by mechanical crushing is 0.5 mm or less, and the effective solid content of the aqueous anionic polymer flocculant solution added in the third step is 100 parts by weight of the sludge dry solid content. The effective solid content of the inorganic flocculant added in the fourth step is 0.01 to 5.0 parts by weight with respect to 100 parts by weight of the sludge dry solids. The sludge treatment method according to any one of claims 1 to 4, wherein the sludge treatment method is in the range of a part. 第一の工程で添加するアニオン性高分子凝集剤が、ポリアクリルアミド、ポリビニールアルコール、無水マレイン酸重合物、ポリアクリル酸エステル、グアガム、アクリルアミドとアクリル酸塩の共重合物、ポリスチレンスルホン酸塩、ポリアクリル酸塩、ポリビニルスルホン酸塩の内の一種類又は二種類以上の組み合わせからなることを特徴とする請求項1ないし4のいずれかに記載の汚泥処理方法。The anionic polymer flocculant added in the first step is polyacrylamide, polyvinyl alcohol, maleic anhydride polymer, polyacrylate ester, guar gum, copolymer of acrylamide and acrylate, polystyrene sulfonate, The sludge treatment method according to any one of claims 1 to 4, wherein the sludge treatment method comprises one or a combination of two or more of polyacrylate and polyvinyl sulfonate. 第三の工程で添加するアニオン性高分子凝集剤が、ポリアクリルアミド、ポリビニールアルコール、無水マレイン酸重合物、ポリアクリル酸エステル、グアガム、アクリルアミドとアクリル酸塩の共重合物、ポリスチレンスルホン酸、ポリアクリル酸、ポリビニルスルホン酸及びこれら誘導体類の内の一種類又は二種類以上の組み合わせからなることを特徴とする請求項1ないし4のいずれかに記載の汚泥処理方法。The anionic polymer flocculant added in the third step is polyacrylamide, polyvinyl alcohol, maleic anhydride polymer, polyacrylic ester, guar gum, copolymer of acrylamide and acrylate, polystyrene sulfonic acid, poly The sludge treatment method according to any one of claims 1 to 4, comprising one kind or a combination of two or more of acrylic acid, polyvinyl sulfonic acid and derivatives thereof. 第四の工程で添加する無機凝集剤が、ポリ塩化アルミニウム(PAC)塩化第2鉄、硫酸アルミニウム、硫酸第一鉄、塩化カルシウム、塩化マグネシウム、セメント、消石灰の内の一種類又は二種類以上の組み合わせからなることを特徴とする請求項1ないし4のいずれかに記載の汚泥処理方法。The inorganic flocculant added in the fourth step is one or more of polyaluminum chloride (PAC) ferric chloride, aluminum sulfate, ferrous sulfate, calcium chloride, magnesium chloride, cement, slaked lime It consists of a combination, The sludge processing method in any one of Claim 1 thru | or 4 characterized by the above-mentioned.
JP2002327887A 2002-11-12 2002-11-12 Sludge treatment method Expired - Fee Related JP3839391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327887A JP3839391B2 (en) 2002-11-12 2002-11-12 Sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327887A JP3839391B2 (en) 2002-11-12 2002-11-12 Sludge treatment method

Publications (2)

Publication Number Publication Date
JP2004160329A JP2004160329A (en) 2004-06-10
JP3839391B2 true JP3839391B2 (en) 2006-11-01

Family

ID=32806346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327887A Expired - Fee Related JP3839391B2 (en) 2002-11-12 2002-11-12 Sludge treatment method

Country Status (1)

Country Link
JP (1) JP3839391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860546A (en) * 2019-11-28 2020-03-06 天津凯英科技发展股份有限公司 Sludge-based covering material for refuse landfill and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872058B1 (en) * 2008-04-14 2008-12-05 주식회사 아이렉스 Processing device of high-density slurry happening in construction working place
CN101691273B (en) 2009-09-28 2012-07-04 广州普得环保设备有限公司 Method for integration of thickening, dehydration and aerobic air drying of sewage sludge
JP2012135736A (en) * 2010-12-27 2012-07-19 Sumitomo Heavy Ind Ltd Sludge dehydration system and sludge dehydration method
CN102311217A (en) * 2011-06-03 2012-01-11 江苏艾特克环境工程设计研究院有限公司 Granulation and dehydration technology for dredged sludge
CN102583953A (en) * 2012-03-28 2012-07-18 浙江富春江环保热电股份有限公司 Sludge drying method
JP5492268B2 (en) * 2012-09-10 2014-05-14 株式会社テルナイト Method for producing modified clay
CN104129900A (en) * 2013-08-09 2014-11-05 上海同臣环保有限公司 Method for preparing covering soil for refuse landfill from raw sludge
KR101906493B1 (en) * 2018-04-09 2018-12-05 주식회사 움벨텍 Dehydration treatment method of sludge and apparatus for the same
EP3986942A4 (en) * 2019-06-24 2023-04-05 Kemira OYJ Polymeric structure and its uses
CN111777988B (en) * 2020-05-29 2022-12-09 清华苏州环境创新研究院 Hydrophobic material and preparation method thereof
KR102564415B1 (en) * 2022-02-04 2023-08-28 (주)케이엠에스씨 Organic composit for nitrogen oxides removal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2515162A1 (en) * 1975-04-08 1976-10-21 Rittershaus & Blecher Gmbh Dewatering of sludge - by adding two flocculating agents giving opposite charges successively before filtering
JPH06134500A (en) * 1992-10-21 1994-05-17 Nippon Steel Corp Treatment of sludge
JP3691768B2 (en) * 2001-02-08 2005-09-07 株式会社埼玉種畜牧場 Sludge treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860546A (en) * 2019-11-28 2020-03-06 天津凯英科技发展股份有限公司 Sludge-based covering material for refuse landfill and preparation method thereof

Also Published As

Publication number Publication date
JP2004160329A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
AU654135B2 (en) Purification of aqueous liquor
KR101196243B1 (en) Dewatering process
KR100399335B1 (en) Amphoteric water-soluble polymer dispersion, preparation method thereof and treating agent containing same
KR101198649B1 (en) Dewatering process
JP3839391B2 (en) Sludge treatment method
JP3313711B2 (en) Dehydration of aqueous suspension
CN102311217A (en) Granulation and dehydration technology for dredged sludge
JP3880917B2 (en) Harbor dredging method
JPH0390000A (en) Sludge treatment
JPH10249400A (en) Method for dehydrating sludge
JP3721852B2 (en) Muddy water dehydration method
JP4816374B2 (en) Coagulation method of high water content sludge
JP3222278B2 (en) Sludge dewatering method
KR20140080480A (en) Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same
JPH10235399A (en) Sludge dehydration
JPH10230299A (en) Dehydrating method of sludge
JPH06134500A (en) Treatment of sludge
JP5258647B2 (en) Sludge dewatering method
JPH10249399A (en) Method for dehydrating sludge
JPS6125700A (en) Dehydrating method of organic sludge
JPS62156000A (en) Treatment of oil-containing sludge
JPH10192899A (en) Method for treating dredged sludge
JPH03161099A (en) Treatment process for waste sludge containing bentonite
JP3880700B2 (en) Treatment method for high water content mud
JP7190642B2 (en) Composition for sludge control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees