JPH0729111A - Structure for welding part of electronic apparatus - Google Patents

Structure for welding part of electronic apparatus

Info

Publication number
JPH0729111A
JPH0729111A JP19409493A JP19409493A JPH0729111A JP H0729111 A JPH0729111 A JP H0729111A JP 19409493 A JP19409493 A JP 19409493A JP 19409493 A JP19409493 A JP 19409493A JP H0729111 A JPH0729111 A JP H0729111A
Authority
JP
Japan
Prior art keywords
base
welding
shield case
case
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19409493A
Other languages
Japanese (ja)
Other versions
JP2980490B2 (en
Inventor
Masaru Sakurai
勝 桜井
Satoshi Watabe
智 渡部
Masatomi Abe
正富 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP5194094A priority Critical patent/JP2980490B2/en
Priority to MYPI94001767A priority patent/MY111113A/en
Priority to CN94107827A priority patent/CN1062366C/en
Publication of JPH0729111A publication Critical patent/JPH0729111A/en
Application granted granted Critical
Publication of JP2980490B2 publication Critical patent/JP2980490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To widen the range of welding conditions and increase and stabilize welding strength in an electric resistance welding structure between a part having a case such as a magnetic head and a base plate. CONSTITUTION:A small projection 11 is formed on a base plate 10 and the surface of this small projection 11 is formed, for example, like a cylindrical surface. A curved part 3d of the surface of the bending portion 3c at the boundary of the bottom surface 3a and the side surface 3b of a shielding case 3 of a magnetic head 1 is abutted with the small projection 11. A current is impressed between the shielding case 3 and base plate 10 and the abutting part is caused to generate heat with an electric resistance for the purpose of welding. At the ding portion 3c of the shielding case 3, the heat generated by electric resistance cannot be released easily and therefore the bending portion 3c and small projection 11 are heated under good balance to ensure stabilized welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば磁気ヘッドなど
のように導電性のケースが設けられている電子機器部品
と、導電性の基台に設けられた突起とが、突き当てられ
て電気抵抗溶接された電子機器部品の溶接構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device part such as a magnetic head provided with a conductive case, and a projection provided on a conductive base, which are abutted against each other to generate an electric power. The present invention relates to a welded structure of electronic equipment parts that are resistance-welded.

【0002】[0002]

【従来の技術】図11において、符号1はVTR装置に
搭載される音声の記録再生および磁気ヘッドの走行コン
トロール用の磁気ヘッドである。この磁気ヘッド1は基
台2に固定され、この基台2に形成された取付穴2aに
よりVTR装置のユニットベースに固定される。上記磁
気ヘッド1と基台2との固定はねじ止めにより行われて
いたが、作業性の改善とねじ部品の削減のために、最近
では、両者を電気抵抗溶接により固定することが行われ
ている。
2. Description of the Related Art In FIG. 11, reference numeral 1 is a magnetic head mounted on a VTR device for recording / reproducing audio and controlling running of the magnetic head. The magnetic head 1 is fixed to a base 2, and is fixed to a unit base of a VTR device by a mounting hole 2a formed in the base 2. The magnetic head 1 and the base 2 are fixed by screws, but recently, in order to improve workability and reduce the number of screw parts, both of them are fixed by electric resistance welding. There is.

【0003】従来の電気抵抗溶接の工程では、基台2の
表面で且つ磁気ヘッド1のシールドケース3の底面3a
に対向する部分にプロジェクションと称される小突起2
bを複数形成する。この小突起2bはプレス工程にて隆
起成形され、その表面形状はほぼ球面である。図12に
示すように、前記小突起2bをシールドケース3の底面
3aに突き当てた状態で、磁気ヘッド1と基台2とを電
極4と電極5とで挟み、加圧しながら両電極4と5との
間に電流を与える。小突起2bと底面3aとの突き当て
部境界に流れる電流によりこの部分が電気抵抗発熱し、
この熱により両部材が溶解されて互いに固着される。上
記小突起2bを設ける理由は、シールドケース3と基台
2との間を通る電流を集中させるためであるが、電気抵
抗発熱による熱の伝導のバランスをとるため、一般的に
は互いに溶接される部材のうち熱の逃げやすい方例えば
板厚の大きい部材に前記小突起2bが形成される。
In the conventional process of electric resistance welding, the bottom surface 3a of the shield case 3 of the magnetic head 1 is on the surface of the base 2.
Small projection 2 called a projection on the part facing the
A plurality of b are formed. The small protrusions 2b are formed by bulging in the pressing process, and their surface shape is almost spherical. As shown in FIG. 12, the magnetic head 1 and the base 2 are sandwiched between the electrode 4 and the electrode 5 in a state where the small projection 2b is abutted against the bottom surface 3a of the shield case 3, and both electrodes 4 are pressed while applying pressure. An electric current is applied between 5 and 5. Due to the electric current flowing at the boundary between the small projection 2b and the bottom surface 3a, this portion generates electric resistance,
This heat melts both members and fixes them together. The reason why the small protrusions 2b are provided is to concentrate the current passing between the shield case 3 and the base 2, but they are generally welded to each other in order to balance the conduction of heat due to electric resistance heating. The small protrusions 2b are formed on one of the members that easily dissipate heat, for example, a member having a large plate thickness.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の電気抵抗溶接の構造には、以下に列記する問題点が
あった。 (1)図13は、前記基台2とシールドケース3との突
き当て部を拡大断面図にて示している。図13では、肉
厚の大きい基台2側に小突起2bが形成されている。し
かし、シールドケース3の底面3aは平板であり、この
平板部に小突起2bが突き当てられているため、図13
にて等温線hで示すように、突き当て境界部の抵抗によ
り発せられた熱は、小突起2b内には溜りやすくなって
いるが、シールドケース3の底面3a内では熱が逃げや
すくなって、両部材でのヒートバランスがとりにくくな
っている。この熱伝導の違いにより等温線hの分布が相
違すると、小突起2bがシールドケース3よりも溶解し
やすくなり、溶接可能な電流の範囲が狭められ、また充
分な溶接強度を確保できなくなる。
However, the above-mentioned conventional electric resistance welding structure has the following problems. (1) FIG. 13 is an enlarged sectional view showing an abutting portion between the base 2 and the shield case 3. In FIG. 13, a small protrusion 2b is formed on the side of the base 2 having a large thickness. However, since the bottom surface 3a of the shield case 3 is a flat plate, and the small protrusion 2b is abutted against this flat plate portion,
As shown by the isotherm h, the heat generated by the resistance of the abutting boundary portion is likely to accumulate in the small protrusion 2b, but the heat easily escapes in the bottom surface 3a of the shield case 3. , It is difficult to balance the heat between both members. If the distribution of the isotherms h is different due to the difference in heat conduction, the small protrusions 2b are more easily melted than the shield case 3, the range of current that can be welded is narrowed, and sufficient welding strength cannot be secured.

【0005】上記ヒートバランスだけを見た場合、小突
起2bを大きくすれば改善できるが、小突起2bを大き
くすると、基台2側にて熱が逃げやすくなるために、溶
接のための電流を多くして発熱量を上げなくてはならな
い。発熱量を上げると、シールドケース3の溶接部以外
の部分が高温になり、内部のコアやコイルに熱による悪
影響を与え、また磁気テープの摺接面に歪みが生じるこ
とになる。そのため小突起2bの寸法を大きくできない
のが現状である。また、シールドケース3の板厚よりも
基台2の板厚の方が小さい場合には、本来板厚の大きい
シールドケース側に小突起を設けるべきであるが、シー
ルドケース3に小突起を加工するのは困難なため、基台
2側に小突起を設けなくてはならない。よってこの場合
には、小突起を有しないシールドケース側にて溶接部の
熱がさらに逃げやすくなり、ヒートバランスがとれなく
なり、溶接可能な電流範囲がさらに狭められることにな
る。
When looking only at the heat balance, it can be improved by enlarging the small protrusions 2b, but if the small protrusions 2b are enlarged, heat easily escapes on the base 2 side, and therefore the current for welding is increased. The amount of heat generation must be increased by increasing the amount. If the amount of heat generation is increased, the temperature of the portion of the shield case 3 other than the welded portion becomes high, the internal core and coil are adversely affected by the heat, and the sliding contact surface of the magnetic tape is distorted. Therefore, the size of the small protrusion 2b cannot be increased at present. Further, when the plate thickness of the base 2 is smaller than the plate thickness of the shield case 3, a small protrusion should be provided on the side of the shield case which is originally large in thickness, but the small protrusion is processed on the shield case 3. Since it is difficult to do so, a small protrusion must be provided on the base 2 side. Therefore, in this case, the heat of the welded portion is more likely to escape on the side of the shield case that does not have the small protrusions, the heat balance cannot be maintained, and the weldable current range is further narrowed.

【0006】(2)前記従来例では、基台2に設けられ
た小突起2bをシールドケース3の底面3aに平面的に
突き当てて溶接している。よって図13にてF1で示す
引っ張り方向の力に対してはある程度の強度を得ること
が可能であるが、F2で示す剪断方向への力に対しては
溶接強度が弱くなっている。
(2) In the above-mentioned conventional example, the small protrusion 2b provided on the base 2 is flatly butted against the bottom surface 3a of the shield case 3 and welded. Therefore, although it is possible to obtain a certain degree of strength with respect to the force in the pulling direction indicated by F1 in FIG. 13, the welding strength is weak with respect to the force in the shearing direction indicated by F2.

【0007】(3)溶接部が、シールドケース3の底面
3aと基台2との間に挟まれているため、溶接状態を外
から目視できず、溶接後の確認ができない。
(3) Since the welded portion is sandwiched between the bottom surface 3a of the shield case 3 and the base 2, the welded state cannot be visually inspected from outside, and confirmation after welding cannot be performed.

【0008】本発明は上記従来の課題を解決するもので
あり、ケースと基台とのヒートバランスをとりやすくし
て溶接可能な電流の範囲を広げることができ、また充分
な溶接強度を得ることができ、さらに溶接状態の確認も
容易となる電子機器部品の溶接構造を提供することを目
的としている。
The present invention solves the above-mentioned problems of the prior art by making it possible to easily balance the heat between the case and the base, to widen the range of current that can be welded, and to obtain sufficient welding strength. It is an object of the present invention to provide a welded structure for electronic equipment parts, which enables the welding process and makes it easy to confirm the welding state.

【0009】[0009]

【課題を解決するための手段】本発明は、導電性のケー
スを有する電子機器部品と、これを支持する導電性の基
台との溶接構造において、前記基台には、前記ケースの
折曲げ部表面の曲面部に当たる複数の突起が形成され、
この曲面部と突起とが電気抵抗溶接されていることを特
徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a welded structure of an electronic device component having a conductive case and a conductive base for supporting the same, in which the case is bent. A plurality of protrusions that correspond to the curved surface of the part surface are formed,
The curved surface portion and the projection are electrically resistance welded.

【0010】また、ケースの曲面部に当たる突起表面は
曲面であることが好ましく、さらに突起表面は円筒面で
あることが好ましい。
Further, it is preferable that the surface of the projection that is in contact with the curved surface of the case is a curved surface, and that the surface of the projection is a cylindrical surface.

【0011】[0011]

【作用】上記手段では、ケースの折曲げ部表面の曲面部
と、基台の突起とが突き当てられて電気抵抗溶接されて
いる。ケースの折曲げ部では、平面部に比べて熱が逃げ
にくくなり、よって突起を有する基台との間のヒートバ
ランスがとりやすくなって、溶接可能な電流値の範囲が
広くなり、また充分な溶接強度を得ることができる。ま
たケースの折曲げ部が基台の突起に溶接されるため、基
台の平面方向の剪断力に対する溶接強度も高くなる。
In the above means, the curved surface portion of the bent portion surface of the case and the projection of the base are butted against each other and are electric resistance welded. In the bent part of the case, heat is less likely to escape than in the flat part, which makes it easier to balance the heat with the base having protrusions, which widens the range of current values that can be welded and is sufficient. Welding strength can be obtained. Further, since the bent portion of the case is welded to the protrusion of the base, the welding strength against the shearing force in the plane direction of the base also becomes high.

【0012】また突起の表面を曲面とすることにより、
電気抵抗発熱による溶解時に突起表面のつぶれが生じに
くくなって溶解部の面積を安定させることができ、安定
した溶接強度を得ることができる。また突起表面を円筒
面にすれば、ケースの折曲げ部と突起との当接位置が各
突起ごとに異なっても、この当接部における突起の断面
積が各突起ごとに同じになる。よって全ての溶接部にお
いて均等な溶接状態を得ることができる。
Further, by making the surface of the protrusion a curved surface,
Crushing of the projection surface is less likely to occur during melting due to heat generation by electric resistance, the area of the melting portion can be stabilized, and stable welding strength can be obtained. If the protrusion surface is a cylindrical surface, the cross-sectional area of the protrusion at the contact portion will be the same even if the contact position between the bent portion of the case and the protrusion is different for each protrusion. Therefore, it is possible to obtain a uniform welded state in all welded portions.

【0013】[0013]

【実施例】以下、本発明の実施例を図面により説明す
る。図1では、図11に示したのと同じ磁気ヘッド1を
部分的に示している。この磁気ヘッド1は、コアとこれ
に巻かれたコイルとがシールドケース3内にて樹脂で固
定されているものである。磁気ヘッド1の前面は曲面形
状のテープ摺接面1aであり、このテープ摺接面1aに
はコア1bの一部およびコアに形成されたギャップ部が
現れている。磁気ヘッド1のシールドケース3は導電性
の板材により形成されたものであり、底面3aと側面3
bとの境界部が折曲げ部3cとなっている。図3(A)
はこの折曲げ部3cを斜視図にて示し、図2では断面図
にて示している。シールドケース3は平板材をプレスに
より折曲げ、または絞ることにより形成されるものであ
るが、平板から曲げられた前記折曲げ部3cの表面は曲
面部3dとなる。この曲面部3dは必ずしも正確な円筒
面になるとは限られないが、図2と図3(A)では便宜
上曲面部3dが一定の曲率半径rを有する円筒面として
記載し、また図3(A)ではその曲率中心軸を符号O1
で示している。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the same magnetic head 1 as shown in FIG. 11 is partially shown. In the magnetic head 1, a core and a coil wound around the core are fixed in a shield case 3 with resin. The front surface of the magnetic head 1 is a curved tape sliding contact surface 1a, and a part of the core 1b and a gap portion formed in the core appear on the tape sliding contact surface 1a. The shield case 3 of the magnetic head 1 is formed of a conductive plate material, and has a bottom surface 3a and side surfaces 3a.
The boundary with b is a bent portion 3c. Figure 3 (A)
Shows the bent portion 3c in a perspective view, and in FIG. 2, a sectional view. The shield case 3 is formed by bending or squeezing a flat plate material with a press, and the surface of the bent portion 3c bent from the flat plate is a curved surface portion 3d. The curved surface portion 3d is not necessarily an accurate cylindrical surface, but in FIG. 2 and FIG. 3A, the curved surface portion 3d is described as a cylindrical surface having a constant radius of curvature r for convenience, and in FIG. ), The central axis of the curvature is denoted by the symbol O1.
It shows with.

【0014】図1には、前記磁気ヘッド1を支持する基
台10が示されている。この基台10は導電性の金属板
であり、シールドケース3の板厚よりも厚い寸法のもの
となっている。この基台10の表面には、前記シールド
ケース3の曲面部3dが当たる小突起11が4ヶ所突出
形成されている。
FIG. 1 shows a base 10 for supporting the magnetic head 1. The base 10 is a conductive metal plate and has a thickness larger than that of the shield case 3. On the surface of the base 10, there are formed four small projections 11 which the curved surface portion 3d of the shield case 3 abuts.

【0015】図3(A)はこの小突起11を拡大して示
している。この実施例では、小突起11におけるシール
ドケース3と当たる当接面11aが、点線で示す半径R
の仮想円筒の円筒面の一部となっている。図2と図3
(A)では、基台10の表面に沿う水平方向をH、基台
10の表面に対する垂直方向をVで示しているが、前記
仮想円筒の軸O2は、水平方向Hに対して45度の角度
にて立ち上がっている。したがって当接面11aの頂部
11bは、基台10の表面に対して45度の角度にて立
ち上がっていることになる。また図2と図3(A)に示
す実施例では、小突起11の端面11cが、基台10の
表面に対してV方向に延びる垂直面である。シールドケ
ース3の一対の折曲げ部3cの表面となる曲面部3d
は、それぞれの小突起11の当接面11aの頂部11b
に当接する。図2はその当接状態を断面図により示して
いる。
FIG. 3A shows the small protrusion 11 in an enlarged manner. In this embodiment, the contact surface 11a of the small protrusion 11 that abuts the shield case 3 has a radius R indicated by a dotted line.
It is a part of the cylindrical surface of the virtual cylinder. 2 and 3
In (A), the horizontal direction along the surface of the base 10 is indicated by H, and the vertical direction with respect to the surface of the base 10 is indicated by V. The axis O2 of the virtual cylinder is 45 degrees with respect to the horizontal direction H. Standing up at an angle. Therefore, the top portion 11b of the contact surface 11a stands up at an angle of 45 degrees with respect to the surface of the base 10. In the embodiment shown in FIGS. 2 and 3A, the end surface 11c of the small protrusion 11 is a vertical surface extending in the V direction with respect to the surface of the base 10. Curved surface portion 3d which is the surface of the pair of bent portions 3c of the shield case 3.
Is the top 11b of the contact surface 11a of each small projection 11.
Abut. FIG. 2 is a sectional view showing the contact state.

【0016】図2に示すように、当接面11aの頂部1
1bは基台10の表面から45度の角度で立ち上がって
いるため、磁気ヘッド1が基台10に対して垂直に設置
された状態では、シールドケース3の曲面部3dの中央
部Oaが前記頂部11bに当接する。このとき、図3
(A)に示す仮想円筒の軸O2と、シールドケース3の
曲面部3dの曲率中心軸O1とは互いに90度の角度に
て交叉することになり、また曲面部3dと頂部11bは
点接触となる。
As shown in FIG. 2, the top portion 1 of the contact surface 11a is
Since 1b rises from the surface of the base 10 at an angle of 45 degrees, the central portion Oa of the curved surface portion 3d of the shield case 3 is the top portion when the magnetic head 1 is installed vertically to the base 10. Contact 11b. At this time,
The virtual cylinder axis O2 shown in (A) and the curvature center axis O1 of the curved surface portion 3d of the shield case 3 intersect at an angle of 90 degrees, and the curved surface portion 3d and the top portion 11b are in point contact with each other. Become.

【0017】図2に示す当接状態にて、基台10とシー
ルドケース3との間に電気溶接のための電流を流すと、
シールドケース3の曲面部3dと、小突起11の頂部1
1bとの点接触部分の電気抵抗によりこの部分が発熱す
る。この熱はシールドケース3の折曲げ部3cに留まり
やすく、図13に示す底面3aが発熱点である場合に比
べてシールドケース3内への熱の逃げが生じにくくな
る。したがって、図2に等温線hで示すように、シール
ドケース3と小突起11とで熱の逃げに極端な差が生じ
にくくなり、ヒートバランスをとりやすくなる。図2に
示すようにシールドケース3と小突起11とで同じよう
な等温線が形成されてヒートバランスが良くなることに
より、接合される両部材間の溶解状態に極端な差が生じ
なくなり、溶接条件の範囲を広くでき、また溶接強度を
充分に確保できることになる。
When a current for electric welding is passed between the base 10 and the shield case 3 in the contact state shown in FIG.
The curved surface portion 3d of the shield case 3 and the top portion 1 of the small protrusion 11
Due to the electric resistance of the point contact portion with 1b, this portion generates heat. This heat easily stays in the bent portion 3c of the shield case 3, and the heat is less likely to escape into the shield case 3 as compared with the case where the bottom surface 3a shown in FIG. Therefore, as shown by the isotherm h in FIG. 2, an extreme difference in heat escape between the shield case 3 and the small protrusions 11 is unlikely to occur, and heat balance is facilitated. As shown in FIG. 2, the shield case 3 and the small protrusions 11 form similar isotherms to improve the heat balance, so that no extreme difference occurs in the melting state between the two members to be joined, The range of conditions can be widened and the welding strength can be sufficiently secured.

【0018】図10は、上記実施例の小突起11を使用
してシールドケース3を電気抵抗溶接した場合と、図1
1ないし図13に示す従来の小突起2bを使用して電気
抵抗溶接した場合とでの、供給電流と引っ張り力(F
1)に対する溶接強度との関係を示している。電気抵抗
溶接では、供給電流量を増加させていくと、溶接強度は
ほぼ比例的に上昇していくが、ある電流量となると、図
10にて点線で示すように爆飛により溶接強度は一気に
低下する。この爆飛は、小突起2bまたは11の内部熱
が高くなりすぎてこの小突起が溶接不能な状態にまで溶
解してしまうことにより生じるものである。
FIG. 10 shows a case where the shield case 3 is electrically resistance-welded by using the small projection 11 of the above embodiment, and FIG.
1 to FIG. 13, the current supplied and the pulling force (F
The relationship between 1) and welding strength is shown. In electric resistance welding, the welding strength increases almost proportionally as the supply current amount is increased, but at a certain current amount, the welding strength is suddenly increased due to the bombing as shown by the dotted line in FIG. descend. This bombing occurs because the internal heat of the small protrusions 2b or 11 becomes too high and the small protrusions melt to a state in which they cannot be welded.

【0019】図10に示すように、従来例ではβで示す
ように、爆飛に至る電流値I1が低い。よって必要強度
を得る電流値I0と爆飛電流値I1との範囲が非常に狭
くなっている。一方前記実施例では、αで示すように爆
飛に至る電流値I2が高く、必要強度を得る電流値I0
からの範囲が広くなっている。このことは前記実施例で
は従来例よりも溶接条件を広くすることができ、電流値
の設定などが容易であり、また溶接強度を従来例よりも
高くすることが可能であることを意味している。
As shown in FIG. 10, in the conventional example, as indicated by β, the current value I1 leading to bombardment is low. Therefore, the range between the current value I0 and the blast current value I1 for obtaining the required strength is very narrow. On the other hand, in the above-described embodiment, the current value I2 to the bombing is high as indicated by α, and the current value I0 for obtaining the required strength is obtained.
The range from is wide. This means that in the above-mentioned embodiment, the welding conditions can be made wider than in the conventional example, the current value can be easily set, and the welding strength can be made higher than in the conventional example. There is.

【0020】また、シールドケース3の板厚が基台10
の板厚よりも大きい場合であっても、シールドケース3
の折曲げ部3cにおいて熱の逃げを抑制できるため、従
来に比べ溶接条件を広くできまた溶接強度を高くするこ
とが同様に可能となる。さらに前記実施例では例えば4
ヶ所に設けられた小突起11が、シールドケース3を両
側から挟む状態で溶接されているため、引っ張り方向F
1に対する溶接強度だけでなくF2で示す剪断方向の力
に対する強度も高くなる。また溶接部がシールドケース
3の側方から目視できるため、溶接状態を目視にて確認
しやすくなる。小突起11の形状は、必ずしも図3
(A)に示すものに限られない。例えば図3(A)にお
いて仮想円筒の軸O2と水平方向Hとの成す角度を45
度未満あるいは45度以上にしてもよい。
The thickness of the shield case 3 depends on the base 10.
Shield case 3 even if it is thicker than
Since the heat escape can be suppressed at the bent portion 3c, the welding conditions can be broadened and the welding strength can be increased as compared with the conventional case. Further, in the above embodiment, for example, 4
Since the small protrusions 11 provided at various locations are welded with the shield case 3 sandwiched from both sides, the pulling direction F
Not only the welding strength for No. 1 but also the strength for the force in the shearing direction indicated by F2 is increased. Further, since the welded portion can be visually observed from the side of the shield case 3, it becomes easy to visually confirm the welded state. The shape of the small protrusions 11 is not always the shape shown in FIG.
It is not limited to that shown in (A). For example, in FIG. 3A, the angle between the axis O2 of the virtual cylinder and the horizontal direction H is 45.
It may be less than 45 degrees or more than 45 degrees.

【0021】また図4(A)に示すように、円筒形状の
小突起11の端面11cを基台10の表面に対して垂直
とせず、端面11cを仮想円筒の軸O2に対して垂直面
となる向きに形成してもよい。また図5(A)に示すよ
うに、小突起11を球面形状にしてもよいし、図6
(A)に示すように円錐形状にしてもよい。さらに図7
(A)に示すように、小突起11が三角錐形状であって
もよい。上記各形状の小突起11の成形方法であるが、
図3(A)、図5(A)、図6(A)、および図7
(A)に示すものでは、小突起11の外形形状に一致し
た凹部を有するダイスを基台10の材料の表面に当て、
基台材料の裏側からポンチなどにより加圧することによ
り、容易に加圧成形することが可能である。ただし、図
4(A)に示すように基台10の表面に円筒が突出した
形状では、ダイスによる加圧成形後にダイスの凹部内か
ら小突起11が抜き出せないため、加圧成形が困難であ
る。しかしながら、同図にて仮想線Fで示すように、シ
ールドケース3が当たる頂部11b部分のみを円筒形状
にし、他の部分は基台10の表面に向かって裾が広がる
ような形状とすることによりダイスを使用した加圧成形
が可能になる。
Further, as shown in FIG. 4A, the end surface 11c of the cylindrical small projection 11 is not perpendicular to the surface of the base 10, but the end surface 11c is a surface perpendicular to the axis O2 of the virtual cylinder. It may be formed in any direction. Further, as shown in FIG. 5 (A), the small protrusion 11 may have a spherical shape.
A conical shape may be used as shown in FIG. Furthermore, FIG.
As shown in (A), the small protrusions 11 may have a triangular pyramid shape. In the method of forming the small protrusions 11 having the above-mentioned shapes,
FIG. 3A, FIG. 5A, FIG. 6A, and FIG.
In the case shown in (A), a die having a recess matching the outer shape of the small projection 11 is applied to the surface of the material of the base 10,
By pressurizing from the back side of the base material with a punch or the like, pressure molding can be easily performed. However, as shown in FIG. 4 (A), in the shape in which the cylinder is projected on the surface of the base 10, the small protrusions 11 cannot be pulled out from the concave portion of the die after the pressure molding by the die, and thus the pressure molding is difficult. . However, as shown by an imaginary line F in the figure, by making only the top portion 11b that the shield case 3 hits a cylindrical shape, the other portions have a shape in which the hem expands toward the surface of the base 10. It becomes possible to perform pressure molding using a die.

【0022】図3(A)ないし図7(A)に示すよう
に、小突起11の形状は種々考えられるが、実際の抵抗
溶接では、図7(A)に示すものよりも図5(A)と図
6(A)に示す形状の方が好ましく、また図3(A)と
図4(A)に示す円筒形状はさらに好ましい。まず図7
(A)に示す三角錐形状では、シールドケース3の曲面
部3dに当たる頂部11bが角ばったエッジであるた
め、抵抗発熱により溶解した後に冷却されて硬化したと
きにシールドケース3との溶着面積が極端に変化しやす
くなる。すなわち溶解したときにエッジ状の頂部11b
がつぶれやすくなるため、シールドケースとの溶着面積
がそれぞれの小突起ごとにばらついて、溶接強度を一定
に維持できなくなる。その点、図5(A)と図6(A)
に示す球形状または円錐形状の小突起11ではシールド
ケースに当たる部分の断面が曲面であるため、溶解時の
つぶれが生じにくく、シールドケースとの溶着面積の差
が生じにくくなり、溶接強度が安定する。
As shown in FIGS. 3 (A) to 7 (A), various shapes of the small protrusions 11 are conceivable, but in actual resistance welding, the shape shown in FIG. 5 (A) is larger than that shown in FIG. 7 (A). ) And the shape shown in FIG. 6A are more preferable, and the cylindrical shapes shown in FIGS. 3A and 4A are more preferable. First, Fig. 7
In the triangular pyramid shape shown in (A), since the apex portion 11b that abuts the curved surface portion 3d of the shield case 3 has an angled edge, the welded area with the shield case 3 is extremely large when melted by resistance heating and then cooled and hardened. It becomes easy to change to. That is, the edge-shaped top portion 11b when melted
Since it becomes easy to collapse, the welding area with the shield case varies for each small protrusion, and it becomes impossible to maintain the welding strength constant. In that respect, FIG. 5 (A) and FIG. 6 (A)
In the spherical or conical small projection 11 shown in FIG. 3, the portion corresponding to the shield case has a curved cross-section, so crushing during melting is unlikely to occur, a difference in welding area with the shield case is less likely to occur, and welding strength is stabilized. .

【0023】また、図3(A)と図4(A)に示す円筒
面を有する小突起11は図5(A)と図6(A)に示す
ものよりもさらに優れた機能を発揮する。すなわち例え
ば4ヶ所に形成される小突起11の成形位置は、当然に
交差内のばらつきが生じることになり、またシールドケ
ース3を基台10上に設置するときに、シールドケース
3の底面3aと基台10の表面とが高精度に平行となる
ことは困難であり、底面3aが基台10の表面に対し傾
いて設置されることは避けられない。この場合、シール
ドケース3の曲面部3dが小突起11の頂部に当接する
高さ位置が各小突起11ごとにばらつくことになる。図
3ないし図7の(A)では、曲面部3dと小突起11と
の当接位置のばらつきを例えば(イ)(ロ)(ハ)で示
している。さらに図3ないし図7の(B)では、各図
(A)に示した(イ)(ロ)(ハ)の位置での小突起1
1の当接部の断面を示している。図3ないし図7の
(B)では、それぞれ図3(A)に示す仮想円筒の軸O
2に対して直交する平面で切断した状態を示している。
Further, the small projection 11 having the cylindrical surface shown in FIGS. 3A and 4A exerts an even more excellent function than that shown in FIGS. 5A and 6A. That is, for example, the molding positions of the small projections 11 formed at four places naturally have variations in the intersection, and when the shield case 3 is installed on the base 10, the molding positions of the bottom surface 3a of the shield case 3 and It is difficult for the surface of the base 10 to be parallel to the surface of the base 10 with high accuracy, and it is inevitable that the bottom surface 3a is inclined with respect to the surface of the base 10. In this case, the height position where the curved surface portion 3d of the shield case 3 abuts on the top of the small protrusion 11 varies for each small protrusion 11. In FIGS. 3 to 7A, variations in the contact position between the curved surface portion 3d and the small protrusion 11 are indicated by, for example, (a), (b), and (c). Further, in FIGS. 3 to 7B, the small protrusions 1 at the positions of (a), (b), and (c) shown in each figure (A).
The cross section of the contact part 1 of FIG. In FIGS. 3 to 7B, the axis O of the virtual cylinder shown in FIG.
2 shows a state cut along a plane orthogonal to 2.

【0024】図5(A)と図6(A)に示す球形状また
は円錐形状では、基台10からの高さ位置が(イ)ない
し(ハ)で示すように変わると、図5(B)と図6
(B)に示すように、それぞれの位置(イ)(ロ)
(ハ)における小突起11の当接部での断面(ナゲット
断面)の面積が変化してしまう。すなわちシールドケー
ス3の曲面部3dが当たる位置が変化するとそのナゲッ
ト断面の面積が変わり、熱の逃げ状態および電流の集中
状態が変化することになる。よってそれぞれの小突起1
1においてシールドケース3の曲面部3dの当たる位置
での溶接条件が変化し、したがって溶接後の強度が小突
起11ごとに異なることになる。またシールドケース3
の曲面部3dが球形状や円錐形状の小突起11の先端付
近に当たると、小突起11内での熱の逃げが生じにくく
なって、爆飛に至る電流値が低くなって、溶接不能な状
態になる場合もある。この問題は図7(A)に示す三角
錐形状の小突起においても同じであり、図7(B)に示
すように、曲面部3dが当たる高さ位置が(イ)(ロ)
(ハ)で示すように変化すると、ナゲット断面の面積が
変化してしまう。
In the spherical or conical shape shown in FIGS. 5 (A) and 6 (A), when the height position from the base 10 changes as shown in (a) to (c), FIG. ) And FIG. 6
As shown in (B), each position (a) (b)
The area of the cross section (nugget cross section) at the contact portion of the small protrusion 11 in (c) changes. That is, when the position where the curved surface portion 3d of the shield case 3 hits changes, the area of the nugget cross section changes, and the heat escape state and the current concentration state change. Therefore, each small protrusion 1
In No. 1, the welding condition changes at the position where the curved surface portion 3d of the shield case 3 hits, and therefore the strength after welding differs for each small protrusion 11. Shield case 3
When the curved surface portion 3d hits the vicinity of the tip of the spherical or conical small protrusion 11, it becomes difficult for heat to escape inside the small protrusion 11, and the current value leading to bombing becomes low, making it impossible to weld. It may be. This problem also applies to the triangular pyramid-shaped small protrusions shown in FIG. 7A. As shown in FIG. 7B, the height position at which the curved surface portion 3d hits is (a) (b).
If it changes as shown in (c), the area of the nugget cross section changes.

【0025】これに対し図3(A)と図4(A)に示す
ようにシールドケース3の曲面部3dが当たる部分が円
筒面である場合には、曲面部3dが当たる高さ位置が
(イ)(ロ)(ハ)のいずれの場合であっても、それぞ
れの箇所での小突起11のナゲット断面の面積は変わら
ない(図3(B)と図4(B)参照)。よってそれぞれ
の小突起11において曲面部3dが当たる位置にばらつ
きがあっても、溶接条件が変わることがなく、また溶接
強度も一定になる。
On the other hand, as shown in FIGS. 3A and 4A, when the portion of the shield case 3 which is in contact with the curved surface portion 3d is a cylindrical surface, the height position in which the curved surface portion 3d is in contact is ( In any of the cases of (a), (b), and (c), the area of the nugget cross section of the small protrusion 11 at each location does not change (see FIGS. 3B and 4B). Therefore, even if the position where the curved surface portion 3d abuts on each small protrusion 11 varies, the welding conditions do not change and the welding strength also becomes constant.

【0026】次に上記のいずれかの形状の小突起11を
有する基台10とシールドケース3との抵抗溶接方法に
ついて述べる。電気抵抗溶接の方法としては、まず図1
2に示した従来例と同様に、磁気ヘッド1のシールドケ
ース3と基台10とを突き当てた状態で、シールドケー
ス3の全体と基台10とを上下から電極4と5とで挟
み、電流を与えてシールドケース3の曲面部3dと小突
起11とを溶接することが可能である。
Next, a method of resistance welding between the base 10 having the small protrusion 11 having any of the above shapes and the shield case 3 will be described. As a method of electric resistance welding, first, refer to FIG.
Similarly to the conventional example shown in FIG. 2, with the shield case 3 and the base 10 of the magnetic head 1 abutting each other, the entire shield case 3 and the base 10 are vertically sandwiched between the electrodes 4 and 5, It is possible to weld the curved surface portion 3d of the shield case 3 and the small protrusion 11 by applying an electric current.

【0027】また図8と図9に示す溶接方法も可能であ
る。この方法では、基台10において例えば4ヶ所の小
突起11の配列中心位置に円形の穴12が穿設されてい
る。磁気ヘッド1は上下逆さにして図示しない作業テー
ブル上に治具を用いて安定状態に保持する。そして基台
10を小突起11を下向きにしてシールドケース3の底
面3a上に設置し、各小突起11の頂部11bをシール
ドケース3の折曲げ部3cの曲面部3dに突き当てる。
そして、電極21を前記穴12内に入れてシールドケー
ス3の底面3aに当て、また電極22を基台10の裏面
(図8と図9では図示上面)の好ましくは小突起11の
真上位置に当てる。そして電極21と22間に電流を流
すと、この電流はシールドケース3の底面3aから折曲
げ部3cを経て、小突起11および基台10を通過して
電極22に至る。この方法では、底面3a以外のシール
ドケース3内に電流が流れないため、シールドケース3
全体が発熱することがなく、内部のコアやコイルに熱の
影響を与えることがなくなり、また熱によりテープ摺接
面に歪みなどが生じるのを防止できるようになる。
The welding method shown in FIGS. 8 and 9 is also possible. In this method, circular holes 12 are formed in the base 10 at, for example, four central positions of the small protrusions 11 arranged in the center. The magnetic head 1 is turned upside down and held in a stable state by using a jig on a work table (not shown). Then, the base 10 is set on the bottom surface 3a of the shield case 3 with the small protrusions 11 facing downward, and the top portions 11b of the small protrusions 11 are abutted against the curved surface portions 3d of the bent portions 3c of the shield case 3.
Then, the electrode 21 is put in the hole 12 and abutted on the bottom surface 3a of the shield case 3, and the electrode 22 is located on the back surface of the base 10 (top surface shown in FIGS. 8 and 9), preferably right above the small protrusion 11. Apply to. When an electric current is passed between the electrodes 21 and 22, the electric current reaches the electrode 22 from the bottom surface 3a of the shield case 3 through the bent portion 3c, the small protrusion 11 and the base 10. In this method, since no current flows in the shield case 3 other than the bottom surface 3a, the shield case 3
As a whole, heat is not generated, the internal core and the coil are not affected by heat, and it is possible to prevent distortion of the tape sliding contact surface due to heat.

【0028】また本発明の溶接構造は、磁気ヘッドに限
られるものではなく、折曲げ部を有するケースを備えた
種々の部品と基台との溶接作業において実施することが
可能である。
Further, the welding structure of the present invention is not limited to the magnetic head, but can be carried out in the welding operation of various parts having a case having a bent portion and the base.

【0029】[0029]

【発明の効果】以上のように請求項1記載の発明では、
ケースの折曲げ部表面の曲面部と、基台の突起とが突き
当てられて電気抵抗溶接されるため、ケースの折曲げ部
にて熱が逃げにくくなり、ケースと突起を有する基台と
の間のヒートバランスがとりやすくなって、溶接可能な
電流値の範囲を広げることができ、また充分な溶接強度
を得ることができる。またケースの折曲げ部が基台の突
起に溶接されるため、基台の平面方向の剪断力に対する
溶接強度も高くなる。また溶接部を目視しやすくなる。
As described above, according to the invention of claim 1,
The curved surface of the bent part of the case and the projection of the base are abutted against each other for electrical resistance welding, so it is difficult for heat to escape at the bent part of the case, and the case and the base having the projection are It becomes easier to balance the heat between them, the range of current value that can be welded can be widened, and sufficient welding strength can be obtained. Further, since the bent portion of the case is welded to the protrusion of the base, the welding strength against the shearing force in the plane direction of the base also becomes high. In addition, it becomes easier to see the welded part.

【0030】請求項2記載の発明では、突起の表面を曲
面とすることにより、電気抵抗発熱による溶解時に突起
表面のつぶれが生じにくくなって溶着面積を安定させる
ことができる。
According to the second aspect of the present invention, by forming the surface of the protrusion into a curved surface, the protrusion surface is less likely to be crushed during melting due to heat generation by electric resistance, and the welded area can be stabilized.

【0031】請求項3記載の発明では、突起表面を円筒
面にしているため、ケースの折曲げ部と突起との当接位
置が各突起ごとに異なっても、この当接部における突起
の断面積が一定になって、全ての溶接部において均等な
溶接状態を得ることができる。
According to the third aspect of the present invention, since the projection surface is a cylindrical surface, even if the contact position between the bent portion of the case and the projection differs for each projection, the disconnection of the projection at this contact portion Since the area is constant, it is possible to obtain a uniform welded state in all welded parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例として磁気ヘッドと基台との
溶接構造を示す分解斜視図、
FIG. 1 is an exploded perspective view showing a welding structure of a magnetic head and a base as one embodiment of the present invention,

【図2】図1の実施例における溶接部を示す拡大断面
図、
FIG. 2 is an enlarged sectional view showing a welded portion in the embodiment of FIG.

【図3】(A)はケースの折曲げ部および基台の小突起
を示す拡大斜視図、(B)は小突起のそれぞれの位置に
おけるナゲット断面を示す断面図、
FIG. 3A is an enlarged perspective view showing a bent portion of a case and a small protrusion of a base, and FIG. 3B is a sectional view showing a nugget cross section at each position of the small protrusion;

【図4】(A)は他の実施例による円筒面を有する小突
起を示す斜視図、(B)は小突起のそれぞれの位置にお
けるナゲット断面を示す断面図、
FIG. 4A is a perspective view showing a small protrusion having a cylindrical surface according to another embodiment, and FIG. 4B is a sectional view showing a nugget cross section at each position of the small protrusion.

【図5】(A)は球面を有する小突起を示す斜視図、
(B)は小突起のそれぞれの位置におけるナゲット断面
を示す断面図、
FIG. 5A is a perspective view showing a small projection having a spherical surface;
(B) is a sectional view showing a nugget section at each position of the small protrusions,

【図6】(A)は円錐形状の小突起を示す斜視図、
(B)は小突起のそれぞれの位置におけるナゲット断面
を示す断面図、
FIG. 6A is a perspective view showing a conical small protrusion,
(B) is a sectional view showing a nugget section at each position of the small protrusions,

【図7】(A)は三角錐形状の小突起を示す斜視図、
(B)は小突起のそれぞれの位置におけるナゲット断面
を示す断面図、
FIG. 7A is a perspective view showing a triangular pyramid-shaped small protrusion;
(B) is a sectional view showing a nugget section at each position of the small protrusions,

【図8】溶接作業の一例を示す斜視図、FIG. 8 is a perspective view showing an example of welding work,

【図9】図8の溶接作業を示す断面図、9 is a sectional view showing the welding operation of FIG. 8;

【図10】本発明の実施例と従来例とでの、供給電流と
溶接強度との関係を示す線図、
FIG. 10 is a diagram showing the relationship between the supply current and the welding strength in the example of the present invention and the conventional example;

【図11】従来の磁気ヘッドと基台との溶接構造を示す
分解斜視図、
FIG. 11 is an exploded perspective view showing a welding structure of a conventional magnetic head and a base,

【図12】従来の溶接作業を示す正面図、FIG. 12 is a front view showing a conventional welding operation,

【図13】従来の溶接部を示す拡大断面図、FIG. 13 is an enlarged cross-sectional view showing a conventional welded portion,

【符号の説明】[Explanation of symbols]

1 磁気ヘッド 3 シールドケース 3a 底面 3c 折曲げ部 3d 曲面部 10 基台 11 小突起 11a 当接面 11b 頂部 12 穴 21,22 溶接電極 DESCRIPTION OF SYMBOLS 1 magnetic head 3 shield case 3a bottom surface 3c bent portion 3d curved surface portion 10 base 11 small protrusion 11a contact surface 11b top 12 holes 21 and 22 welding electrodes

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性のケースを有する電子機器部品
と、これを支持する導電性の基台との溶接構造におい
て、前記基台には、前記ケースの折曲げ部表面の曲面部
に当たる複数の突起が形成され、この曲面部と突起とが
電気抵抗溶接されていることを特徴とする電子機器部品
の溶接構造。
1. In a welded structure of an electronic device component having a conductive case and a conductive base for supporting the electronic component, the base has a plurality of curved portions on the surface of the bent portion of the case. A welding structure for electronic device parts, wherein a projection is formed, and the curved surface portion and the projection are electrically resistance welded.
【請求項2】 ケースの曲面部に当たる突起表面が曲面
である請求項1記載の電子機器部品の溶接構造。
2. The welded structure for electronic device parts according to claim 1, wherein the surface of the protrusion that is in contact with the curved surface of the case is a curved surface.
【請求項3】 ケースの曲面部に当たる突起表面が円筒
面である請求項1記載の電子機器部品の溶接構造。
3. The welding structure for electronic device parts according to claim 1, wherein the surface of the projection that is in contact with the curved surface of the case is a cylindrical surface.
JP5194094A 1993-07-09 1993-07-09 Welding structure of electronic equipment parts Expired - Fee Related JP2980490B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5194094A JP2980490B2 (en) 1993-07-09 1993-07-09 Welding structure of electronic equipment parts
MYPI94001767A MY111113A (en) 1993-07-09 1994-07-07 Welding structure of electronic equipment part
CN94107827A CN1062366C (en) 1993-07-09 1994-07-08 Welding structure of electronic equipment part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5194094A JP2980490B2 (en) 1993-07-09 1993-07-09 Welding structure of electronic equipment parts

Publications (2)

Publication Number Publication Date
JPH0729111A true JPH0729111A (en) 1995-01-31
JP2980490B2 JP2980490B2 (en) 1999-11-22

Family

ID=16318853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5194094A Expired - Fee Related JP2980490B2 (en) 1993-07-09 1993-07-09 Welding structure of electronic equipment parts

Country Status (3)

Country Link
JP (1) JP2980490B2 (en)
CN (1) CN1062366C (en)
MY (1) MY111113A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146626A (en) * 1979-04-28 1980-11-15 Canon Inc Manufacture of magnetic head case
JPH04158985A (en) * 1990-10-19 1992-06-02 Ndc Co Ltd Resistance welding method for porous metallic members

Also Published As

Publication number Publication date
MY111113A (en) 1999-08-30
JP2980490B2 (en) 1999-11-22
CN1112705A (en) 1995-11-29
CN1062366C (en) 2001-02-21

Similar Documents

Publication Publication Date Title
JP2002239742A (en) Method for series spot welding
JPH0729111A (en) Structure for welding part of electronic apparatus
JP2006281278A (en) Resistance welding method
US8282432B2 (en) Weld terminal, switch assembly and methods of attachment
US20210344154A1 (en) Electronic device, inlet unit and welding method
JP2007331012A (en) Resistance welding method, and resistance-welded structure
JP3003902B2 (en) Dissimilar metal terminal welding method
JPH0825058A (en) Projection welding method
JP2798831B2 (en) Method of manufacturing magnetic head device
JP2005125397A (en) Spot welding machine
CN218799780U (en) Sensor support suitable for complex curved surface installation
JPH08132249A (en) Method and device for welding hemming part
TWI705865B (en) Contactor and contactor manufacturing method
JP6751519B1 (en) Electric resistance welding electrode
JP6722931B1 (en) Thermal welding tip and thermal welding unit
JP2019025504A (en) Resistance-welding device
US9893498B2 (en) Method for manufacturing tubular metal shell including ground electrode bar for spark plug, and method for manufacturing spark plug
JP3343051B2 (en) Method and apparatus for manufacturing welded H-section steel
KR950008884Y1 (en) A spot welding device
JPH0577053A (en) Resistance welding machine
JP3656687B2 (en) Resistance welding method for hollow frame
JPH01154880A (en) Resistance welding method
JP2000042730A (en) Induction heating soldering method, and its device
JPH08185833A (en) Manufacturing of bulb part and manufacturing equipment therefor
JPH0574262A (en) Fixing method of relay contact

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees