JPH07290078A - Three-phase fluidized biological treating device - Google Patents

Three-phase fluidized biological treating device

Info

Publication number
JPH07290078A
JPH07290078A JP6089458A JP8945894A JPH07290078A JP H07290078 A JPH07290078 A JP H07290078A JP 6089458 A JP6089458 A JP 6089458A JP 8945894 A JP8945894 A JP 8945894A JP H07290078 A JPH07290078 A JP H07290078A
Authority
JP
Japan
Prior art keywords
carrier
waste water
air
collision
collision member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6089458A
Other languages
Japanese (ja)
Inventor
Kenji Kazuma
数馬謙二
Hideyuki Kuwabara
桑原秀行
Shoichi Mori
省一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP6089458A priority Critical patent/JPH07290078A/en
Publication of JPH07290078A publication Critical patent/JPH07290078A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To hold a large number of high-activity microorganisms in a waste water treating tank and efficiently treat waste water with a small-sized equip ment by providing a collision member for a carrier to collide with in the waste water treating tank wherein the three phases of waste water, air and biological membrane carrier are fluidized in a mixed state. CONSTITUTION:A raw water feed pipe 2 and an air feed pipe 3 are connected to the lower part of a waste water treating tank 1, and a treated water discharge pipe 4 is connected to the upper part. Meanwhile, a precipitable carrier 5 to be deposited with a microbial membrane is packed in the tank 1, and two partition members 6 fixed in the shape of plate are furnished to form an upward passage 7 and a downward passage 8. In this case, many collision members 9 are set in plural stages at the upper part in the upward passage 7. Consequently, the treated water is forced upward, the three phases of treated water, air and carrier 5 are collided with the collision member 9, oxygen is more efficiently dissolved in the treated water, the microbial membrane deposited and propagated on the carrier 5 surface is released, and the waste water is efficiently treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石油、石油化学、食品
業、大型クリーニング業等の工場廃水および汚濁した河
川、湖沼水、下水等の一般廃水中の有機汚濁物質等を、
微生物を付着させた生物膜担体を利用して嫌気的もしく
は好気的作用により分解浄化する際に、衝突部材により
担体表面の微生物の付着量を制限して、有機汚濁物質等
の分解効率と高活性の微生物付着保有量を高く保持可能
とする三相流動生物処理装置に関する。
FIELD OF THE INVENTION The present invention relates to industrial wastewater of petroleum, petrochemical, food industry, large-scale cleaning industry, etc. and organic pollutants in general wastewater such as polluted rivers, lake water, sewage, etc.
When using a biofilm carrier to which microorganisms are attached to decompose and purify by anaerobic or aerobic action, the amount of microorganisms attached to the surface of the carrier is limited by a collision member to improve the decomposition efficiency and high efficiency of organic pollutants. The present invention relates to a three-phase fluid biological treatment device capable of maintaining a high active microbial adhesion holding amount.

【0002】[0002]

【従来の技術】三相流動生物処理方法は、処理する廃水
(液体)、空気(気体)および生物膜担体(固体)の三
相を混合状態で流動させ、廃水中の有機汚濁物質等を分
解除去する方法であるが、廃水処理運転とともに経時的
に担体表面で微生物が増殖して微生物付着量が増加する
結果、見かけの直径が増加した担体が処理装置の上方に
浮上して、装置本体内の担体保有量が減少したり、担体
が流出することがある。この問題を解決するために、従
来は、処理槽上部や処理槽の外部に機械的な剥離装置を
設けて、増殖する微生物膜の一部を剥離除去することに
より、担体表面の微生物付着量をコントロールし、処理
能力を維持するようにしている(例えば、特開昭62−
121697号公報)。
2. Description of the Related Art A three-phase fluid biological treatment method is a method in which three phases of waste water (liquid), air (gas) and biofilm carrier (solid) to be treated are mixed and flow to decompose organic pollutants in the waste water. Although it is a method of removing, the microorganisms on the surface of the carrier grow over time as the wastewater treatment operation increases, and the amount of microorganisms attached increases.As a result, the carrier with an increased apparent diameter floats above the treatment equipment and The carrier holding amount of the carrier may decrease or the carrier may flow out. In order to solve this problem, conventionally, a mechanical peeling device is provided on the upper part of the treatment tank or outside the treatment tank to remove a part of the growing microbial film by peeling to remove the amount of microorganisms attached to the carrier surface. It is controlled so that the processing ability is maintained (see, for example, Japanese Patent Laid-Open No. 62-
No. 121697).

【0003】[0003]

【発明が解決しようとする課題】一般的に生物膜付着担
体は、微生物が付着した状態での見かけの直径が小さめ
であれば、処理槽単位容積あたりの有効微生物保有量が
多くなり、処理槽内のトータルの微生物保有量を最大化
できる。また、運転処理時に機械的な剥離等で担体表面
の微生物付着量を一定量に制御できれば、担体表面を常
に日齢の若い高活性菌層で覆うことが可能となり、結果
的に汚濁物の分解活性を高く維持できる。即ち、装置本
体内に日齢の大きい年老いた微生物を多量に付着、保有
していても分解活性は低い。しかしながら、従来の機械
的に担体表面の微生物を剥離する方式では、剥離装置が
個別に必要であり、従って設備が複雑化して設備コスト
が増加するとともに、特に剥離に回転機構を用いる方法
ではメンテナンスコストが増大するという問題を有して
いる。
Generally, in a biofilm-adhering carrier, the effective microorganism holding amount per unit volume of the treating tank increases if the apparent diameter of the microorganism adhering to the treating tank is small. It is possible to maximize the total amount of microorganisms in the stock. Also, if the amount of adhered microorganisms on the carrier surface can be controlled to a fixed amount by mechanical peeling during operation processing, the carrier surface can always be covered with a highly active bacterial layer of young age, resulting in the decomposition of pollutants. High activity can be maintained. That is, even if a large amount of aged microorganisms having a large age are attached and retained in the main body of the apparatus, the decomposition activity is low. However, in the conventional method of mechanically removing the microorganisms on the surface of the carrier, a separate peeling device is required, so that the equipment becomes complicated and the equipment cost increases, and especially in the method using the rotation mechanism for peeling, the maintenance cost is high. Has the problem of increasing.

【0004】本発明は上記従来の問題を解決するもので
あって、廃水処理槽内の微生物を高活性で多量に保有で
き、小型設備で効率的な廃水処理が可能となる三相流動
生物処理装置を提供することを目的とする。
The present invention is to solve the above-mentioned conventional problems, and is capable of retaining a large amount of microorganisms in a wastewater treatment tank with high activity, and enables efficient wastewater treatment with a small-sized facility. The purpose is to provide a device.

【0005】[0005]

【課題を解決するための手段】そのために本発明の三相
流動生物処理装置は、廃水、空気および生物膜担体の三
相を混合状態で流動させる廃水処理槽と、該廃水処理槽
内に設けられ前記担体を衝突させる種々形状の衝突部材
とを備えたことを特徴とする。なお、本発明の実施態様
としては下記の構成が挙げられる。
Therefore, the three-phase fluidized biological treatment apparatus of the present invention is provided with a wastewater treatment tank for flowing three phases of wastewater, air and a biofilm carrier in a mixed state, and a wastewater treatment tank provided in the wastewater treatment tank. And a collision member having various shapes for colliding the carrier. In addition, as an embodiment of the present invention, the following configurations can be mentioned.

【0006】(1)廃水処理槽内に上昇流路と下降流路か
らなる循環流路が形成されており、上昇流路内に衝突部
材が配設された構成、(2)衝突部材は、多数の長方形の
プレートが多段に配設されており、各プレートが各段に
おいて傾斜して固定され、かつ、上下のプレートはその
配設方向が直角に、もしくは交差するように固定された
構成、(3)衝突部材は、プレートを上下方向に傾斜させ
て千鳥状に配設した構成、(4)衝突部材は、複数のパイ
プが多段に配設されており、上下のパイプはその配設方
向が直角に、もしくは交差するように固定された構成、
(5)衝突部材がスタティックミキサーである構成、(6)衝
突部材がプロペラ状の部材である構成、(7)衝突部材が
長方形の不織布や金属薄板等にひねりを加えた構成、
(8)衝突部材が上部開口を長円型で下部にいくに従い傘
状に広がる部材とし、この部材を多段に配設し、上下の
部材の長円の長軸が交差するように配設した構成、(9)
衝突部材がワカメ状にカットした複数本の不織布であ
り、不織布の下方又は両方を支持部材に支持した構成、
(10)下降流路に空気を供給する補助空気供給管を配設し
た構成、(11)空気捕捉格子と浮上性担体からなる後処理
濾過槽を付加した構成、(12)空気偏流板と沈降性担体か
らなる後処理濾過槽を付加した構成、(13)空気供給部の
下側に嫌気処理する層を設けた構成。
(1) A structure in which a circulation flow path consisting of an ascending flow path and a descending flow path is formed in a wastewater treatment tank, and a collision member is disposed in the ascending flow path, (2) the collision member is A structure in which a large number of rectangular plates are arranged in multiple stages, each plate is inclined and fixed in each stage, and the upper and lower plates are fixed so that their arrangement directions are orthogonal or intersect. (3) The collision member has a structure in which the plates are tilted in the vertical direction and arranged in a staggered manner. (4) The collision member has a plurality of pipes arranged in multiple stages, and the upper and lower pipes are arranged in the arrangement direction. Fixed at a right angle or crossing,
(5) a structure in which the collision member is a static mixer, (6) a structure in which the collision member is a propeller-shaped member, (7) a structure in which the collision member is a twisted rectangular non-woven fabric or a metal thin plate,
(8) The collision member is an ellipse-shaped member whose upper opening is an elliptical shape and spreads in an umbrella shape as it goes to the lower portion.The members are arranged in multiple stages, and the upper and lower members are arranged so that the major axes of the ellipses intersect. Composition, (9)
The collision member is a plurality of non-woven fabrics cut in a wakame shape, and a configuration in which the lower part or both of the non-woven fabrics are supported by a support member
(10) A structure in which an auxiliary air supply pipe for supplying air to the descending flow path is arranged, (11) A structure in which a post-treatment filtration tank consisting of an air trapping grid and a floating carrier is added, (12) an air deflector plate and sedimentation A structure in which a post-treatment filtration tank made of a permeable carrier is added, and (13) a structure in which an anaerobic treatment layer is provided below the air supply unit.

【0007】[0007]

【作用】本発明においては、廃水処理槽内で廃水(液
体)、空気(気体)および生物膜担体(固体)の三相を
混合状態で流動させるとき、流動する三相を衝突部材に
衝突させて酸素溶解効率を改善するとともに、担体表面
に付着する微生物膜の一部を剥離可能にする。
In the present invention, when the three phases of wastewater (liquid), air (gas) and biofilm carrier (solid) are made to flow in a mixed state in the wastewater treatment tank, the flowing three phases are collided with the collision member. Improve the oxygen dissolution efficiency, and also make it possible to peel off a part of the microbial film adhering to the surface of the carrier.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1から図6は、本発明の三相流動生物処理装
置の各実施例を示す断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 are cross-sectional views showing respective embodiments of the three-phase flow biological treatment apparatus of the present invention.

【0009】先ず、図1(A)に示す実施例について説
明する。平面視で矩形状の廃水処理槽1の下部には、原
水供給管2および空気供給管3が接続され、廃水処理槽
1の上部には、処理水排水管4が接続されている。廃水
処理槽1内には、微生物膜を付着させるための沈降性の
担体5が充填されている。また、廃水処理槽1内には、
上下方向にプレート状の2枚の仕切部材6が固定され、
これら仕切部材6により上昇流路7と下降流路8が形成
され、担体5が上昇流路7と下降流路8との間を循環し
て流動することができるように構成されている。そし
て、上昇流路7の下部に原水供給管2および空気供給管
3から原水および空気が供給されるようになっている。
First, the embodiment shown in FIG. 1A will be described. A raw water supply pipe 2 and an air supply pipe 3 are connected to a lower portion of a wastewater treatment tank 1 having a rectangular shape in a plan view, and a treated water drainage pipe 4 is connected to an upper portion of the wastewater treatment tank 1. The wastewater treatment tank 1 is filled with a sedimentable carrier 5 for attaching a microbial membrane. In addition, in the wastewater treatment tank 1,
Two plate-shaped partition members 6 are fixed in the vertical direction,
The partition member 6 forms an ascending channel 7 and a descending channel 8 so that the carrier 5 can circulate between the ascending channel 7 and the descending channel 8 to flow. Then, raw water and air are supplied to the lower portion of the ascending flow path 7 from the raw water supply pipe 2 and the air supply pipe 3.

【0010】本実施例においては、上昇流路7内の上部
に、2枚の仕切部材6間に多数の衝突部材9が複数段に
わたって配設されている。衝突部材9は長方形のプレー
トからなり、各プレートが各段において傾斜して固定さ
れ、かつ、上下のプレートは、その配設方向が直角に、
もしくは交差するように固定されている。上昇流路7の
上部には、金網10を設けた排水路11が形成され、金
網10により担体5の流出を防ぎながら、剥離された微
生物を含んだ処理水を処理排水管4から排出可能にして
いる。なお、長方形のプレートには表面の凹凸を増加し
たり、種々形状の開口部を設けてもよい。また、平板に
種々形状の開口部を設けて複数枚積層しても同様の衝突
効果を得る。また、金網10に代えてスリットやパンチ
ング板でもよい。
In this embodiment, a large number of collision members 9 are arranged in a plurality of stages between the two partition members 6 in the upper part of the ascending flow path 7. The collision member 9 is formed of a rectangular plate, each plate is inclined and fixed in each stage, and the upper and lower plates are arranged at right angles in the disposing direction.
Or they are fixed so that they intersect. A drainage channel 11 provided with a metal net 10 is formed in the upper part of the ascending flow path 7, and the treated water containing the separated microorganisms can be discharged from the treatment drainage pipe 4 while preventing the carrier 5 from flowing out by the metal mesh 10. ing. The rectangular plate may be provided with unevenness on the surface or may be provided with openings of various shapes. Further, the same collision effect can be obtained by laminating a plurality of flat plates having openings of various shapes. Further, instead of the wire net 10, a slit or a punching plate may be used.

【0011】前記沈降性の担体5としては、粒状活性
炭、多孔性高分子濾材、砂、アンスラサイト、セラミッ
クボール等を球形、ペレット型、星型等の形状に成形し
たもので、濾材径(0.1〜20mm程度)、細孔含有
率と表面凹凸密度、比重を変えることにより、処理性能
を調整している。また、脱燐効率改善のために、濾材中
に炭酸カルシウム成分を混入してもよい。
The sedimentable carrier 5 is formed by molding granular activated carbon, porous polymer filter material, sand, anthracite, ceramic balls or the like into a spherical shape, a pellet shape, a star shape, etc. The processing performance is adjusted by changing the pore content rate, the surface unevenness density, and the specific gravity. Further, in order to improve the dephosphorization efficiency, a calcium carbonate component may be mixed in the filter medium.

【0012】上記構成からなる本実施例の作用について
説明する。処理すべき原水および空気を廃水処理槽1内
に供給すると、処理廃水中の汚濁物質の分解処理ととも
に、微生物が増殖して担体5の直径が大きくなり、空
気、処理水の上昇に伴い上昇流路7を上方へ押しやられ
る。上方へ押しやられる途中で、処理水、空気および担
体5の三相が衝突部材9に衝突するため、処理水中の酸
素溶解効率が高まるとともに、担体5の表面に付着増殖
した微生物膜の一部が剥離され、上昇流路7を出ると担
体5は下降流路8を通って下降し、再度、上昇流路7内
に供給され接触酸化に供される。その結果、担体5の見
かけの直径を系特有の平衡値に制限して、循環液中の担
体密度を高く保持することができ、廃水処理槽1内の微
生物を高活性で多量に保有できることになり、小型設備
での効率的な廃水処理が可能となる。
The operation of this embodiment having the above structure will be described. When raw water and air to be treated are supplied into the wastewater treatment tank 1, the decomposition of pollutants in the treated wastewater causes the microorganisms to proliferate and the diameter of the carrier 5 to increase. Road 7 is pushed upwards. While being pushed upward, the three phases of the treated water, air and carrier 5 collide with the collision member 9, so that the oxygen dissolution efficiency in the treated water is increased and a part of the microbial film adhered and grown on the surface of the carrier 5 is removed. When the carrier 5 is peeled off and exits the ascending flow path 7, the carrier 5 descends through the descending flow path 8 and is again supplied into the ascending flow path 7 and used for catalytic oxidation. As a result, the apparent diameter of the carrier 5 can be limited to an equilibrium value peculiar to the system, the carrier density in the circulating liquid can be kept high, and a large amount of microorganisms in the wastewater treatment tank 1 can be retained with high activity. As a result, efficient wastewater treatment with small equipment becomes possible.

【0013】次に、図1(B)〜図6(C)により本発
明の他の実施例について説明する。なお、図1(A)の
実施例と同一の構成については同一番号を付けて説明を
省略する。
Next, another embodiment of the present invention will be described with reference to FIGS. 1 (B) to 6 (C). The same components as those in the embodiment of FIG. 1A are designated by the same reference numerals and the description thereof will be omitted.

【0014】図1(B)に示す実施例においては、廃水
処理槽1内に上下方向に4枚の仕切部材6を固定し、こ
れら仕切部材6により2つの上昇流路7と下降流路8を
形成し、担体5が上昇流路7と下降流路8との間を循環
して流動することができるように構成している。そし
て、上昇流路7内に多数のプレート状の衝突部材9を上
下方向に傾斜させて千鳥状に配設している。なお、本実
施例においては、原水および空気を一つの管で供給する
ようにしている。
In the embodiment shown in FIG. 1B, four partition members 6 are vertically fixed in the wastewater treatment tank 1, and these partition members 6 provide two ascending passages 7 and descending passages 8. Is formed so that the carrier 5 can circulate and flow between the ascending flow path 7 and the descending flow path 8. Then, a large number of plate-shaped collision members 9 are arranged in a zigzag manner in the upward flow path 7 while being inclined in the vertical direction. In this embodiment, raw water and air are supplied by one pipe.

【0015】図1(C)の実施例においては、上昇流路
7内の上部に、2枚の仕切部材6間に多数の衝突部材9
が複数段にわたって配設されている。衝突部材9は複数
のパイプからなり、上下のパイプは、その配設方向が直
角にもしくは交差するように固定されている。また、2
枚の仕切部材6の上部は漏斗形状に開口が狭くなるよう
に形成され、開口部の上方には、空気偏流板12が設け
られている。本実施例の場合、三相が衝突部材9に衝突
した後、パイプの上部で渦が形成されるため、剥離効果
と酸素溶解効率が大きくなるというメリットを有する。
なお、衝突部材9は円形断面パイプの他、多角形断面
や、X型またはY型断面のもの、およびこれらの表面に
凹凸を設けたものも良い。
In the embodiment shown in FIG. 1C, a large number of collision members 9 are provided between the two partition members 6 in the upper part of the ascending flow path 7.
Are arranged in a plurality of stages. The collision member 9 is composed of a plurality of pipes, and the upper and lower pipes are fixed so that the arrangement directions thereof are orthogonal or intersect. Also, 2
The upper part of the partition member 6 is formed in a funnel shape so that the opening is narrowed, and an air distribution plate 12 is provided above the opening. In the case of the present embodiment, after the three phases collide with the collision member 9, a vortex is formed in the upper part of the pipe, so that there is an advantage that the separation effect and the oxygen dissolution efficiency are increased.
The collision member 9 may have a circular cross section, a polygonal cross section, an X-shaped or Y-shaped cross section, or an uneven surface.

【0016】図2の各実施例は、三相を衝突させるとき
に回転力を付加して衝突による酸素溶解と剥離の両効果
をさらに高める例を示している。なお、本実施例におい
ては、廃水処理槽1および仕切部材6は筒状であるが、
廃水処理槽1の上部は開放型としてもよい。
Each of the embodiments shown in FIG. 2 shows an example in which a rotational force is applied when the three phases are collided to further enhance both the effect of oxygen dissolution and the separation due to the collision. Although the wastewater treatment tank 1 and the partition member 6 are cylindrical in this embodiment,
The upper part of the wastewater treatment tank 1 may be an open type.

【0017】図2(A)においては、上昇流路7内に設
ける衝突部材9にスタティックミキサーを採用してい
る。スタティックミキサーは、内部に複数の旋回板9
a、9bが固定された構造であり、旋回板9a、9b
は、例えば矩形状の板を180゜右または左に捻って形
成され、捻りの方向が互いに同じ又は逆の旋回板9a、
9bが、交互にかつ端部が互いに直交するように配置さ
れている。図2(B)においては、衝突部材9をプロペ
ラ状の部材とドーナツ状の邪魔板で構成し、図2(C)
においては、長方形の不織布や金属薄板等にひねりを加
えて並べている。この実施例においては、不織布等で衝
突部材9自体が動くように構成すれば、三相の接触効果
をさらに高めることができる。
In FIG. 2 (A), a static mixer is adopted as the collision member 9 provided in the ascending flow path 7. The static mixer has multiple swivel plates 9 inside.
It has a structure in which a and 9b are fixed, and swivel plates 9a and 9b.
Is formed, for example, by twisting a rectangular plate 180 ° to the right or left, and the swiveling plates 9a having the same or opposite twist directions.
9b are arranged alternately and with their ends orthogonal to each other. In FIG. 2 (B), the collision member 9 is composed of a propeller-shaped member and a donut-shaped baffle plate, and FIG.
In the above, the rectangular non-woven fabric and the metal thin plate are arranged with a twist. In this embodiment, if the collision member 9 itself is made of a non-woven fabric or the like to move, the three-phase contact effect can be further enhanced.

【0018】図3は、本発明のさらに他の実施例を示
し、図3(A)は要部断面図、図3(B)は図3(A)
のB−B線に沿って矢印方向に見た断面図である。本実
施例においては、衝突部材9として上部開口が長円形状
で下部にいくに従い傘状に広がる部材を用い、この部材
を上下方向に多段に配設し、上下の衝突部材9の長円の
長軸が直角または交差するように配設して衝突効果を高
めている。なお、衝突部材9の代わりに、横方向の流動
を制限する縦方向仕切部材を設けたり、その表面に凹凸
を設けたり、空隙の多い充填接触部材で構成しても同様
の衝突効果を得ることができる。
3A and 3B show still another embodiment of the present invention. FIG. 3A is a sectional view of an essential part and FIG. 3B is FIG. 3A.
FIG. 4 is a sectional view taken along line BB in FIG. In this embodiment, as the collision member 9, a member having an elliptical shape with an upper opening that spreads in an umbrella shape as it goes to the lower side is used. The long axes are arranged at right angles or intersect to enhance the collision effect. In addition, instead of the collision member 9, a vertical partition member that restricts the flow in the horizontal direction may be provided, unevenness may be provided on the surface, or a filling contact member having many voids may be provided to obtain the same collision effect. You can

【0019】図4は、本発明のさらに他の実施例を示す
要部断面図である。図4(A)の実施例においては、衝
突部材9としてワカメ状にカットした複数本の不織布を
採用し、不織布の下端のみ又は両方を支持部材13に支
持して衝突効果を得るようにしている。本実施例におい
ては、不織布が揺動するため、三相の接触効率面での改
善効果がさらに高まる。図4(B)の実施例において
は、衝突部材9として縦方向のシャフトに円形やプロペ
ラ形等の多数の部材を保持している。なお、コイル状や
カールした紐状濾材を保持するようにしてもよい。
FIG. 4 is a cross-sectional view of an essential part showing still another embodiment of the present invention. In the embodiment of FIG. 4 (A), a plurality of non-woven fabrics cut in a wakame shape are used as the collision member 9, and only the lower end of the non-woven fabric is supported by the support member 13 to obtain the collision effect. . In the present embodiment, the nonwoven fabric oscillates, so that the effect of improving the contact efficiency of the three phases is further enhanced. In the embodiment shown in FIG. 4 (B), as the collision member 9, a large number of members such as a circular shape and a propeller shape are held on a vertical shaft. Alternatively, a coil-shaped or curled string-shaped filter medium may be held.

【0020】図5は、本発明のさらに他の実施例を示す
断面図である。本実施例においては、下降流路8に空気
を供給する補助空気供給管15を配設している。本実施
例においては、補助空気を上昇流路7に供給する主空気
よりも少量とし、主空気による相対的に強い浮上力で三
相全体を循環させるようにし、下降流路8内で嫌気気味
になるのを防ぐとともに、2箇所で空気を注入ことによ
り、多量の酸素を供給することが可能となり処理能力を
さらに改善させている。なお、下降流路8内部にスパイ
ラル状の偏流板や少量の衝突部材を設けて気液接触効果
を改善することも可能である。
FIG. 5 is a sectional view showing still another embodiment of the present invention. In this embodiment, an auxiliary air supply pipe 15 for supplying air to the descending passage 8 is provided. In the present embodiment, the amount of auxiliary air is smaller than that of the main air supplied to the ascending flow path 7, the entire three phases are circulated by the relatively strong levitation force of the main air, and anaerobic in the descending flow path 8. It is possible to supply a large amount of oxygen by injecting air at two places and further improving the processing capacity. It is also possible to improve the gas-liquid contact effect by providing a spiral flow deflector or a small amount of collision member inside the descending flow path 8.

【0021】図6は、本発明のさらに他の実施例を示す
断面図である。本実施例においては、前記した処理槽に
後処理として濾過槽を組み合わせた例を示している。図
6(A)の実施例においては、空気捕捉格子16と浮上
性担体からなる後処理濾過槽17を設けている。図6
(B)の実施例においては、空気偏流板18と沈降性担
体からなる後処理濾過槽19を設けている。図6(C)
の実施例においては、原水供給管2と空気供給管3との
間に間隔を設け、空気供給管3の下側で担体5の流速を
低下させて嫌気処理する層20を設けた三段処理の例を
示している。なお、本例で、空気供給管3の下部に流動
制限仕切板を設けることにより、押し出し流れ層を構成
してもよく、また、三段以上の多段処理も可能である。
FIG. 6 is a sectional view showing still another embodiment of the present invention. In this embodiment, an example in which a filtration tank is combined with the above-mentioned processing tank as a post-treatment is shown. In the embodiment shown in FIG. 6A, a post-treatment filtration tank 17 including an air trapping grid 16 and a floating carrier is provided. Figure 6
In the embodiment of (B), a post-treatment filtration tank 19 composed of an air distribution plate 18 and a sedimentable carrier is provided. FIG. 6 (C)
In the embodiment, a three-stage treatment in which a space is provided between the raw water supply pipe 2 and the air supply pipe 3 and a layer 20 for reducing the flow velocity of the carrier 5 to reduce the flow velocity of the carrier 5 is provided below the air supply pipe 3. Shows an example of. In this example, a flow restricting partition plate may be provided at the bottom of the air supply pipe 3 to form an extruded flow layer, and a multi-stage treatment of three or more stages is also possible.

【0022】以上、本発明の各実施例について説明した
が、本発明は上記実施例に限定されるものではなく種々
の変形が可能である。例えば、縦方向の部材を横方向に
配置したりその逆も同様である。また、上記実施例にお
いては、担体5に微生物を自然に付着させる方法を採用
しているが、ゲル状物質を用いて担体表面または細孔中
に微生物を付着させる方法や、ゲル状物質中に微生物を
練り混んで粒状に成形する方法を採用してもよい。
Although the respective embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and various modifications can be made. For example, arranging members in the vertical direction in the horizontal direction and vice versa. In addition, although the method of naturally attaching the microorganisms to the carrier 5 is adopted in the above-mentioned examples, a method of attaching the microorganisms to the surface or the pores of the carrier using a gel-like substance, or to the gel-like substance You may employ | adopt the method of kneading and mixing a microorganism and shape | molding it in a granular form.

【0023】また、図1(B)や図6(A)に示した例
を変形して例えば仕切部材6を設けなくても上昇流路7
と下降流路8を形成できれば本発明の効果を得ることが
できる。
Further, the ascending flow path 7 can be obtained by modifying the examples shown in FIGS. 1B and 6A without providing the partition member 6, for example.
If the descending flow path 8 can be formed, the effect of the present invention can be obtained.

【0024】また、上記実施例においては、空気を供給
する好気性処理を主に説明しているが、空気を供給せ
ず、代わりに嫌気処理で発生する分解ガスを注入して原
水および担体を高速度で循環させることにより、衝突効
果を得て担体表面の微生物付着量を制限するように嫌気
処理プロセスに適用してもよい。
Further, in the above-mentioned embodiment, the aerobic treatment for supplying air is mainly explained, but instead of supplying air, the decomposition gas generated in the anaerobic treatment is injected to remove the raw water and the carrier. It may be applied to the anaerobic treatment process so as to obtain a collision effect and limit the amount of microorganisms adhering to the carrier surface by circulating at a high speed.

【0025】なお、本発明は、剥離した微生物等のSS
(Suspended Solid:懸濁粒子)分を後段で処理できる
ため、多段生物処理の前段階に効果的である。
In addition, the present invention is directed to SS of exfoliated microorganisms and the like.
(Suspended Solid: Suspended particles) can be treated in the latter stage, which is effective in the preceding stage of multi-stage biological treatment.

【0026】[0026]

【発明の効果】以上の説明から明らかなように本発明に
よれば、生物膜付着量を必要以上に付着することを防止
できるため、廃水処理槽単位容量当たりの高活性微生物
の保有量を高く維持することができ、結果的に小型設備
で高効率の廃水処理を実現させることができる。また、
廃水処理槽内に回転機等の剥離装置を設けないため、運
転および装置の維持管理が容易になる。さらに、廃水処
理槽全体で三相強制循環を通常のベースとするため、担
体閉塞等のプロセス的に不安定要素がなく安定的な廃水
浄化運転管理が容易となる。本発明では、装置本体の高
さを高く構成するほど衝突スピードの増加と酸素溶解効
率を改善でき、設置面積も小さくなるメリットを有す
る。
As is apparent from the above description, according to the present invention, it is possible to prevent the amount of attached biofilm from adhering more than necessary, so that the amount of highly active microorganisms retained per unit volume of the wastewater treatment tank is high. It can be maintained, and as a result, highly efficient wastewater treatment can be realized with a small facility. Also,
Since no peeling device such as a rotating machine is provided in the wastewater treatment tank, operation and maintenance of the device are facilitated. Further, since the three-phase forced circulation is used as the usual base in the entire wastewater treatment tank, there is no process instability element such as carrier clogging, and stable wastewater purification operation management becomes easy. According to the present invention, the higher the height of the apparatus body is, the more the collision speed can be increased, the oxygen dissolution efficiency can be improved, and the installation area can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の三相流動生物処理装置の各実施例を示
す断面図である。
FIG. 1 is a cross-sectional view showing each embodiment of a three-phase fluid biological treatment device of the present invention.

【図2】本発明の三相流動生物処理装置の各実施例を示
す断面図である。
FIG. 2 is a cross-sectional view showing each embodiment of the three-phase fluid biological treatment device of the present invention.

【図3】本発明のさらに他の実施例を示し、図3(A)
は要部断面図、図3(B)は図3(A)のB−B線に沿
って矢印方向に見た断面図である。
FIG. 3 shows still another embodiment of the present invention, and FIG.
Is a cross-sectional view of a main part, and FIG. 3B is a cross-sectional view taken along the line BB of FIG.

【図4】本発明のさらに他の実施例を示す要部断面図で
ある。
FIG. 4 is a sectional view of an essential part showing still another embodiment of the present invention.

【図5】本発明のさらに他の実施例を示す断面図であ
る。
FIG. 5 is a sectional view showing still another embodiment of the present invention.

【図6】本発明のさらに他の実施例を示す断面図であ
る。
FIG. 6 is a sectional view showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…廃水処理槽、2…原水供給管、3…空気供給管、4
…処理水排水管 5…担体、6…仕切部材、7…上昇流路、8…下降流
路、9…衝突部材
1 ... Wastewater treatment tank, 2 ... Raw water supply pipe, 3 ... Air supply pipe, 4
... Treated water drain pipe 5 ... Carrier, 6 ... Partition member, 7 ... Upflow passage, 8 ... Downflow passage, 9 ... Collision member

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】廃水、空気および生物膜担体の三相を混合
状態で流動させる廃水処理槽と、該廃水処理槽内に設け
られ前記担体を衝突させる衝突部材とを備えたことを特
徴とする三相流動生物処理装置。
1. A waste water treatment tank for flowing three phases of waste water, air and a biofilm carrier in a mixed state, and a collision member provided in the waste water treatment tank for colliding the carrier. Three-phase fluid biological treatment equipment.
JP6089458A 1994-04-27 1994-04-27 Three-phase fluidized biological treating device Pending JPH07290078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6089458A JPH07290078A (en) 1994-04-27 1994-04-27 Three-phase fluidized biological treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6089458A JPH07290078A (en) 1994-04-27 1994-04-27 Three-phase fluidized biological treating device

Publications (1)

Publication Number Publication Date
JPH07290078A true JPH07290078A (en) 1995-11-07

Family

ID=13971266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6089458A Pending JPH07290078A (en) 1994-04-27 1994-04-27 Three-phase fluidized biological treating device

Country Status (1)

Country Link
JP (1) JPH07290078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243181A (en) * 2003-02-12 2004-09-02 Furukawa Netsugaku Engineering Kk Human waste treatment device provided with stream diffusion plate
JP2006212636A (en) * 2006-05-16 2006-08-17 Maezawa Ind Inc Fluidized-bed waste water treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243181A (en) * 2003-02-12 2004-09-02 Furukawa Netsugaku Engineering Kk Human waste treatment device provided with stream diffusion plate
JP2006212636A (en) * 2006-05-16 2006-08-17 Maezawa Ind Inc Fluidized-bed waste water treating device

Similar Documents

Publication Publication Date Title
US7189323B2 (en) Method for biological purification of water using a carrier material
US4231863A (en) Method and apparatus for treating water
JP3989524B2 (en) Reactor and process for anaerobic wastewater treatment
US20130001161A1 (en) Biological Treatment and Compressed Media Filter Apparatus and Method
WO1986005770A1 (en) An apparatus for the purification of water, waste water in particular, by a biological oxidation method
JPS61274799A (en) Apparatus for treating waste water
JP2010264422A (en) Denitrification treatment apparatus
JPH07290078A (en) Three-phase fluidized biological treating device
JPS63248499A (en) Treatment of waste water
JPH0623382A (en) Biological filtering method and apparatus
JP2592356B2 (en) Organic sewage biological filtration equipment
CA2565052A1 (en) System for improved dissolved air floatation with a biofilter
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
JP2001276864A (en) Equipment and method for treating sewage water
CN207537208U (en) A kind of aeration biochemical filter tank
CN205710085U (en) A kind of water is processed with oxygen dense media activated sludge reactor of holding concurrently
CN218811247U (en) Deep purification device for refractory externally-discharged tail water
CN213327205U (en) Integrated biological filter sewage treatment equipment
JPH07136679A (en) Wastewater treatment tank
US6497819B1 (en) Method and apparatus for treating waste water
JPH0985273A (en) Rotary contact biological treatment apparatus
JP2564131B2 (en) Surface aeration immersion filter bed water treatment device
JP2002102885A (en) Water cleaning apparatus
JPH07290095A (en) Advanced intensive waste water treatment
JPH1170391A (en) Waste water treatment method and apparatus therefor