JPH07289947A - Composite rotator - Google Patents

Composite rotator

Info

Publication number
JPH07289947A
JPH07289947A JP8894794A JP8894794A JPH07289947A JP H07289947 A JPH07289947 A JP H07289947A JP 8894794 A JP8894794 A JP 8894794A JP 8894794 A JP8894794 A JP 8894794A JP H07289947 A JPH07289947 A JP H07289947A
Authority
JP
Japan
Prior art keywords
cylinder
reinforced resin
fiber
metal
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8894794A
Other languages
Japanese (ja)
Inventor
Hironori Maikuma
宏則 毎熊
Kenji Kubomura
健二 久保村
Osamu Yoshida
修 吉田
Toshiyuki Nakajima
利幸 中島
Jiyunsuke Okamura
淳輔 岡村
Masahiro Moriguchi
正宏 森口
Yasuhisa Tanaka
保寿 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Mitsubishi Kakoki Kaisha Ltd
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
IHI Corp
Mitsubishi Kakoki Kaisha Ltd
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Mitsubishi Kakoki Kaisha Ltd, Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical IHI Corp
Priority to JP8894794A priority Critical patent/JPH07289947A/en
Publication of JPH07289947A publication Critical patent/JPH07289947A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Abstract

PURPOSE:To provide a composite rotator composed of fiber reinforced resin and metal which can be used for a centrifugal separator for treating a large amount of liquid in the atmosphere and under a high centrifugal force. CONSTITUTION:A double cylindrical structure body is formed by bonding a fiber reinforced resin cylinder 2 comprising reinforced fiber oriented in the peripheral direction in the wall thickness of 0.1 mm or more and of 50% or less of the total wall thickness with the outer periphery of the metal cylinder 1 in a cylindrical outermost peripheral section 5 of a fiber reinforced resin cylinder 2. The number of revolutions of two times as much and the centrifugal force of four times as much can be provided by the arrangement compared with a conventional metal revolving body. Further, a container-shaped high speed composite revolving body can be manufactured by using a closed-end metal cylinder, and as a result, a centrifugal separator provided with high separation performance which can separate a large amount of liquid can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遠心分離機の回転部分
に用いることのできる繊維強化樹脂を用いた回転体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating body using a fiber reinforced resin which can be used in the rotating part of a centrifugal separator.

【0002】[0002]

【従来の技術】高強度・高弾性の炭素繊維強化樹脂を回
転部分に用いた遠心分離機は、比重差のある物質からな
る混合物の遠心力による分離のために用いられている。
例えば、原子力関係のウラン濃縮過程、船舶用燃料油の
清浄工程、バイオ分野での分離工程はその代表的な利用
例である。前述の原子力関係のウランガス分離に用いら
れる遠心分離機では、特開昭50−136378号公報
で開示されているように、炭素繊維強化樹脂円筒の内面
に金属箔のテープを巻いたり、特開昭50−56331
号公報にあるように、炭素繊維強化樹脂円筒の内面に耐
蝕性被膜層を設けて、繊維強化樹脂部分の保護を図る構
造のものが多い。一方、船舶用燃料油の清浄工程に用い
られる遠心分離機においては、従来からステンレス鋼等
の腐食を受けにくく、物理的にも耐摩耗性の高い金属材
料が用いられている。また、バイオの分野では、例え
ば、特開昭60−305952号公報で開示されている
ように、複数の試験管形状の容器を差し込めるソリッド
タイプの回転ローターに炭素繊維強化樹脂が用いられて
いる。
2. Description of the Related Art Centrifuges using high-strength and high-elasticity carbon fiber reinforced resin in a rotating portion are used for separating a mixture of substances having different specific gravities by centrifugal force.
For example, nuclear-related uranium enrichment process, marine fuel oil cleaning process, and separation process in the bio field are typical applications. In the centrifuge used for the separation of uranium gas related to nuclear power described above, as disclosed in Japanese Patent Application Laid-Open No. 50-136378, a metal foil tape is wound around the inner surface of a carbon fiber reinforced resin cylinder, and 50-56331
As disclosed in Japanese Patent Laid-Open Publication No. JP-A-2003-264, there is often a structure in which a corrosion resistant coating layer is provided on the inner surface of a carbon fiber reinforced resin cylinder to protect the fiber reinforced resin portion. On the other hand, in centrifugal separators used in the process of cleaning marine fuel oil, metallic materials such as stainless steel, which are hard to be corroded and have high physical abrasion resistance, have been conventionally used. Further, in the field of biotechnology, for example, as disclosed in JP-A-60-305952, a carbon fiber reinforced resin is used for a solid type rotary rotor into which a plurality of test tube-shaped containers can be inserted. .

【0003】これらの発明では、炭素繊維強化樹脂部分
の保護を図りつつ、高遠心力の遠心分離機に適用してい
るものの、原子力関係ではウランガス分離に用いられる
ものが主であり、液体の分離に対するものではない。ま
たバイオ分野においても、ソリッドタイプの炭素繊維強
化樹脂の試験管サイズの少量容器の固定治具として用い
られているものであり、大量の燃料油等の液体からの不
純物の分離に利用されるものではない。
In these inventions, although the carbon fiber reinforced resin portion is protected and applied to a centrifugal separator having a high centrifugal force, it is mainly used for uranium gas separation in relation to nuclear power, and is used for liquid separation. Not a thing. In the field of biotechnology, it is also used as a fixture for a small volume test tube size solid carbon fiber reinforced resin container and is used for separating impurities from a large amount of liquid such as fuel oil. is not.

【0004】さらに従来の技術では、燃料油等の大量の
液体から不純物を分離する性能を向上させるために遠心
分離機の高回転数運転を指向しても、比強度(強度/比
重)ならびに比剛性(剛性/比重)の低いステンレス鋼
等を材料とした回転体では、実現できる遠心力に限界が
あった。高回転数を実現する方策として、ステンレス鋼
に比べて比強度ならびに比剛性の高い材料を回転体の構
成材料に用いることが考えられる。例えば、特願平4−
147647号及び特願平4−147648号で開示さ
れているように、金属製円筒の外側に炭素繊維強化プラ
スチック円筒を配する複合管体が開発されている。
Further, in the prior art, even if the centrifugal separator is aimed at a high rotational speed operation in order to improve the performance of separating impurities from a large amount of liquid such as fuel oil, the specific strength (strength / specific gravity) and ratio With a rotating body made of stainless steel or the like having low rigidity (rigidity / specific gravity), there is a limit to the centrifugal force that can be realized. As a measure to realize a high rotation speed, it is conceivable to use a material having higher specific strength and higher specific rigidity than stainless steel as a constituent material of the rotating body. For example, Japanese Patent Application No. 4-
As disclosed in Japanese Patent Application No. 147647 and Japanese Patent Application No. 4-147648, a composite pipe body in which a carbon fiber reinforced plastic cylinder is arranged outside a metal cylinder has been developed.

【0005】これらの発明では、金属製円筒の外側に位
置する炭素繊維強化プラスチック円筒の強化繊維は、周
方向に対して斜に配向しており、円筒端部では強化繊維
が不連続になっている。そのため、真空中では何ら問題
なく高速回転が実現するが、大気中では、積層構造をな
す炭素繊維強化プラスチック円筒最外部の不連続繊維
が、層間の接着力より遠心力の方が大きい場合、円筒端
部より剥離することがあった。
In these inventions, the reinforcing fibers of the carbon fiber reinforced plastic cylinder located outside the metal cylinder are oriented obliquely with respect to the circumferential direction, and the reinforcing fibers are discontinuous at the ends of the cylinder. There is. Therefore, high-speed rotation can be achieved without any problems in vacuum, but in the atmosphere, when the outermost discontinuous fibers of the carbon fiber reinforced plastic cylinder forming a laminated structure have a centrifugal force greater than the adhesive force between layers, the cylinder It was sometimes peeled from the end.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決し、大気中、高遠心力下で、大量に液体を
処理できる遠心分離機に用いることが可能な繊維強化樹
脂と金属の複合回転体を提供するものである。
The object of the present invention is to solve the above-mentioned problems and to use a fiber reinforced resin and a metal which can be used in a centrifuge capable of treating a large amount of liquid in the atmosphere under a high centrifugal force. To provide a composite rotating body.

【0007】[0007]

【課題を解決するための手段】本発明は、繊維強化樹脂
製円筒の最外周部において、肉厚が0.1mm以上で、か
つ全肉厚の50%以下となる強化繊維を周方向に配向し
てなる繊維強化樹脂製円筒を、金属製円筒の外周に密着
してなる二重円筒構造体であることを特徴とする、複合
回転体である。
According to the present invention, in the outermost peripheral portion of a fiber-reinforced resin cylinder, reinforcing fibers having a wall thickness of 0.1 mm or more and 50% or less of the total wall thickness are oriented in the circumferential direction. A composite rotating body, characterized in that it is a double-cylindrical structure formed by closely adhering the fiber-reinforced resin cylinder to the outer periphery of a metal cylinder.

【0008】以下に本発明を詳細に説明する。図1に本
発明になる複合回転体の断面図の一例を示す。金属製容
器1の外周に繊維強化樹脂製円筒2を配し、両者は接着
剤3により一体化されている。また、繊維強化樹脂製円
筒2の最外部5は周方向に強化繊維を配しており、その
内側部4での強化繊維は任意の方向に配して構わない。
The present invention will be described in detail below. FIG. 1 shows an example of a sectional view of a composite rotating body according to the present invention. A fiber-reinforced resin cylinder 2 is arranged on the outer periphery of a metal container 1, and both are integrated by an adhesive 3. Further, the outermost portion 5 of the fiber-reinforced resin cylinder 2 has reinforcing fibers arranged in the circumferential direction, and the reinforcing fibers in the inner portion 4 may be arranged in any direction.

【0009】金属製円筒の外周にある繊維強化樹脂製円
筒2を、その最外部5で周方向に強化繊維を配さない
時、円筒端部で強化繊維が不連続になる。また、大気中
で高速回転する時は空気との摩擦熱が発生し、金属製円
筒の外周にある繊維強化樹脂製円筒の樹脂部が熱により
強度低下を起こす。このこととあいまって円筒端部の不
連続強化繊維は、遠心力により剥離が発生する懸念があ
る。このような理由から、繊維強化樹脂製円筒2の最外
部5は周方向に強化繊維を配するのである。
When the fiber-reinforced resin cylinder 2 on the outer circumference of the metal cylinder is not provided with the reinforcing fibers in the outermost direction 5 in the circumferential direction, the reinforcing fibers become discontinuous at the ends of the cylinder. Further, when rotating at a high speed in the atmosphere, frictional heat with air is generated, and the strength of the resin portion of the fiber-reinforced resin cylinder on the outer periphery of the metal cylinder decreases due to the heat. In combination with this, the discontinuous reinforcing fibers at the end of the cylinder may be peeled off by centrifugal force. For this reason, the outermost part 5 of the fiber-reinforced resin cylinder 2 has reinforcing fibers arranged in the circumferential direction.

【0010】繊維強化樹脂製円筒2の強化繊維は、使用
条件を満足するものならば何でもよく、炭素繊維、有機
繊維、ガラス繊維等が使用できる。母材である樹脂はエ
ポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂
及びポリプロピレン、ポリエーテルエーテルケトン等の
熱可塑性樹脂が使用できる。肉厚は使用条件を満足し、
機械加工が可能な最低肉厚を確保する必要がある。例え
ば、最低2.0mm以上である。また、肉厚の上限は特に
規定はないが、成形上の観点から50mm程度が最大であ
る。
The reinforcing fibers of the fiber-reinforced resin cylinder 2 may be any as long as they satisfy the use conditions, and carbon fibers, organic fibers, glass fibers and the like can be used. As the base resin, thermosetting resins such as epoxy resins and unsaturated polyester resins and thermoplastic resins such as polypropylene and polyether ether ketone can be used. The wall thickness satisfies the usage conditions,
It is necessary to secure the minimum wall thickness that can be machined. For example, it is at least 2.0 mm or more. The upper limit of the wall thickness is not particularly specified, but about 50 mm is the maximum from the viewpoint of molding.

【0011】繊維強化樹脂製円筒2の最外部5の肉厚は
特に規定はないが、0.1mm以上が好ましい。この最低
肉厚はフィラメントワインディング法等の成形条件から
自ずと決まるものであり、限りなく0mmに近付けること
は難しく、0.1mm程度が成形方法からくる限界であ
る。上限値は繊維強化樹脂製円筒2の肉厚の50%程度
である。これは、繊維強化樹脂製円筒2の、種々の方向
の剛性ならびに強度等のバランスから決まるが、成形上
の観点からも制約を受ける。すなわち、周方向巻を必要
以上に厚く成形した場合、熱応力等の影響で成形中に割
れが生ずるからである。最外部5の肉厚は繊維強化樹脂
製円筒2の肉厚の半分程度がよい。接着剤3の材質は、
使用条件を満足するものならば何でもよく、エポキシ系
接着剤等が使用できる。
The wall thickness of the outermost part 5 of the fiber-reinforced resin cylinder 2 is not particularly limited, but is preferably 0.1 mm or more. This minimum wall thickness is naturally determined by molding conditions such as the filament winding method, and it is difficult to approach 0 mm infinitely, and about 0.1 mm is the limit of the molding method. The upper limit is about 50% of the wall thickness of the fiber-reinforced resin cylinder 2. This is determined by the balance of rigidity, strength, etc. of the fiber-reinforced resin cylinder 2 in various directions, but is also restricted from the viewpoint of molding. That is, when the circumferential winding is formed thicker than necessary, cracks occur during the forming due to the influence of thermal stress and the like. The thickness of the outermost portion 5 is preferably about half the thickness of the fiber-reinforced resin cylinder 2. The material of the adhesive 3 is
Any material may be used as long as it satisfies the use conditions, and an epoxy adhesive or the like can be used.

【0012】金属製円筒の材質は、使用条件を満足する
ものならば何でもよく、ステンレス鋼、チタン合金等が
使用できる。肉厚は使用条件を満足し、機械加工が可能
な最低肉厚を確保する必要がある。例えば、最低2.0
mm以上である。また、肉厚の上限値は特に規定はない
が、必要以上に厚くすると回転する電動機に負担がかか
るため、20mm程度が最大である。
The metal cylinder may be made of any material as long as it satisfies the usage conditions, and stainless steel, titanium alloy or the like can be used. The wall thickness must satisfy the usage conditions and ensure the minimum wall thickness that can be machined. For example, at least 2.0
mm or more. The upper limit of the wall thickness is not particularly specified, but if it is made thicker than necessary, the rotating electric motor will be burdened, and therefore the maximum value is about 20 mm.

【0013】本発明になる複合回転体は、例えば次のよ
うな方法で製造することができる。まず金属製円筒を所
望の寸法・形状に加工する。つぎに繊維強化樹脂製円筒
を金属製円筒とは独立に作製する。作製法は、例えば以
下の方法が適用できる。連続繊維に液状樹脂を含浸しな
がら金属製マンドレルに巻きつけ、樹脂を硬化させた
後、マンドレルを引き抜くフィラメントワインディング
法、または樹脂をあらかじめ含浸させたストランドまた
はテープ状のものを、金属製マンドレルに巻きつけ、樹
脂を硬化させた後マンドレルを引き抜くワインディング
法、等がある。
The composite rotary body according to the present invention can be manufactured, for example, by the following method. First, a metal cylinder is processed into a desired size and shape. Next, a fiber-reinforced resin cylinder is produced independently of the metal cylinder. As the manufacturing method, for example, the following method can be applied. Wrap around a metal mandrel while impregnating a continuous fiber with a liquid resin, cure the resin, and then pull out the mandrel, or wind the metal mandrel with a strand or tape that is pre-impregnated with the resin. There is a winding method in which the mandrel is pulled out after the application and curing of the resin.

【0014】繊維強化樹脂製円筒の内面を金属製円筒と
嵌合できるように機械加工し、接着剤を用いて両者を一
体化する。この時、あらかじめ繊維強化樹脂製円筒の内
径寸法を、金属製円筒と嵌合できる寸法にしておけば、
円筒内面を機械加工する必要はない。また、金属製円筒
の外周に、例えばフィラメントワインディング法により
直接繊維強化樹脂製円筒を作製することも可能である。
この場合は、繊維強化樹脂製円筒の母材樹脂が、接着剤
の役割も果たすことになる。一体化の後、円筒端部を機
械加工し、所望の寸法・形状の回転体を得る。
The inner surface of the fiber reinforced resin cylinder is machined so that it can be fitted with the metal cylinder, and they are integrated by using an adhesive. At this time, if the inner diameter of the fiber-reinforced resin cylinder is set to a size that can fit with the metal cylinder,
There is no need to machine the inner surface of the cylinder. It is also possible to directly fabricate a fiber-reinforced resin cylinder on the outer periphery of the metal cylinder by, for example, the filament winding method.
In this case, the matrix resin of the fiber-reinforced resin cylinder also serves as an adhesive. After the integration, the cylindrical end is machined to obtain a rotating body having a desired size and shape.

【0015】[0015]

【実施例】複合回転体の一例として図2に示すような、
有底の金属製円筒6を用い、容器状の複合回転体を作製
した。実施例を以下に示す。 「実施例その1」金属製円筒は、チタン製とし、肉厚
5.0mm,外径235mm,長さ160mmに加工した。繊
維強化樹脂製円筒は、強化繊維に炭素繊維、母材はエポ
キシ樹脂を用いた。内径231mm,外径275mm,肉厚
22mm,長さ180mmの円筒をフィラメントワインディ
ング法により作製した。肉厚22mmのうち、内側部21
mmは軸方向に対して強化繊維は±80°に配し、最外部
1mmは周方向に強化繊維を配した。その後、内面を23
5mmに機械加工した。金属製円筒の外面及び繊維強化樹
脂製円筒の内面、すなわち接着面に、エポキシ系接着剤
(チバガイギー社,アラルダイト)を塗布し、両者を接
着させ、80℃で12時間保持した。金属製円筒と繊維
強化樹脂製円筒を一体化、長さ160mmに機械加工し容
器状の複合管体を得た。
EXAMPLE As shown in FIG. 2 as an example of a composite rotating body,
Using the bottomed metal cylinder 6, a container-shaped composite rotating body was produced. An example is shown below. [Example 1] A metal cylinder was made of titanium and processed into a thickness of 5.0 mm, an outer diameter of 235 mm, and a length of 160 mm. The fiber-reinforced resin cylinder used carbon fiber as the reinforcing fiber and epoxy resin as the base material. A cylinder having an inner diameter of 231 mm, an outer diameter of 275 mm, a wall thickness of 22 mm, and a length of 180 mm was produced by the filament winding method. Inner part 21 of the wall thickness of 22 mm
The reinforcing fibers were arranged at ± 80 ° with respect to the axial direction in mm, and the reinforcing fibers were arranged in the circumferential direction at the outermost 1 mm. Then, the inner surface 23
Machined to 5 mm. An epoxy adhesive (Chirageigy Inc., Araldite) was applied to the outer surface of the metal cylinder and the inner surface of the fiber reinforced resin cylinder, that is, the adhesive surface, and both were adhered and held at 80 ° C. for 12 hours. A metal cylinder and a fiber-reinforced resin cylinder were integrated and machined to a length of 160 mm to obtain a container-shaped composite pipe.

【0016】「実施例その2」金属製円筒は、チタン製
とし、肉厚5.0mm,外径235mm,長さ160mmに加
工した。繊維強化樹脂製円筒は、強化繊維に炭素繊維、
母材はエポキシ樹脂を用いた。内径231mm,外径27
7mm,肉厚23mm,長さ180mmの円筒をフィラメント
ワインディング法により作製した。肉厚23mmの全ての
強化繊維は軸方向に対して±80°に配した。その後、
外周を機械加工して外径を273mmにした。しかる後に
周方向巻を1mm厚フィラメントワインディング法により
行った。最外部1mm厚を硬化し、外径275mmの円筒を
得、その後、本円筒の内面を235mmに機械加工した。
金属製円筒の外面及び繊維強化樹脂製円筒の内面、すな
わち接着面に、エポキシ系接着剤(チバガイギー社,ア
ラルダイト)を塗布し、両者を接着させ、80℃で12
時間保持した。金属製円筒と繊維強化樹脂製円筒を一体
化、長さ160mmに機械加工し容器状の複合管体を得
た。
[Example 2] A metal cylinder was made of titanium and processed to have a thickness of 5.0 mm, an outer diameter of 235 mm and a length of 160 mm. The fiber reinforced resin cylinder is made of carbon fiber,
An epoxy resin was used as the base material. Inner diameter 231 mm, outer diameter 27
A cylinder having a thickness of 7 mm, a wall thickness of 23 mm and a length of 180 mm was manufactured by the filament winding method. All reinforcing fibers having a wall thickness of 23 mm were arranged at ± 80 ° with respect to the axial direction. afterwards,
The outer circumference was machined to an outer diameter of 273 mm. Thereafter, circumferential winding was performed by a 1 mm thick filament winding method. The outermost 1 mm thickness was hardened to obtain a cylinder having an outer diameter of 275 mm, and then the inner surface of this cylinder was machined to 235 mm.
Epoxy adhesive (Ciba Geigy, Araldite) is applied to the outer surface of the metal cylinder and the inner surface of the fiber reinforced resin cylinder, that is, the adhesive surface, and both are adhered to each other at 80 ° C. for 12 hours.
Held for hours. A metal cylinder and a fiber-reinforced resin cylinder were integrated and machined to a length of 160 mm to obtain a container-shaped composite pipe.

【0017】「比較例」金属製円筒は、チタン製とし、
肉厚5.0mm,外径235mm,長さ160mmに加工し
た。繊維強化樹脂製円筒は、強化繊維に炭素繊維、母材
はエポキシ樹脂を用いた。内径231mm,外径277m
m,肉厚23mm,長さ180mmの円筒をフィラメントワ
インディング法により作製した。肉厚23mmの全ての強
化繊維は軸方向に対して±80°に配した。その後、外
周を機械加工して外径を273mmにした。その後、内面
を235mmに機械加工した。金属製円筒の外面及び繊維
強化樹脂製円筒の内面、すなわち接着面に、エポキシ系
接着剤(チバガイギー社,アラルダイト)を塗布し、両
者を接着させ、80℃で12時間保持した。金属製円筒
と繊維強化樹脂製円筒を一体化、長さ160mmに機械加
工し容器状の複合管体を得た。
"Comparative Example" The metal cylinder is made of titanium,
The thickness was 5.0 mm, the outer diameter was 235 mm, and the length was 160 mm. The fiber-reinforced resin cylinder used carbon fiber as the reinforcing fiber and epoxy resin as the base material. Inner diameter 231 mm, outer diameter 277 m
A cylinder having m, a wall thickness of 23 mm and a length of 180 mm was manufactured by the filament winding method. All reinforcing fibers having a wall thickness of 23 mm were arranged at ± 80 ° with respect to the axial direction. Then, the outer circumference was machined to have an outer diameter of 273 mm. Then, the inner surface was machined to 235 mm. An epoxy adhesive (Chirageigy Inc., Araldite) was applied to the outer surface of the metal cylinder and the inner surface of the fiber reinforced resin cylinder, that is, the adhesive surface, and both were adhered and held at 80 ° C. for 12 hours. A metal cylinder and a fiber-reinforced resin cylinder were integrated and machined to a length of 160 mm to obtain a container-shaped composite pipe.

【0018】実施例、比較例の各容器状回転体を、大気
中において回転試験を供した。その結果を表1に示す。
本発明の実施例では回転体の損傷もなく、23000rp
m の回転数を安定して実現した。一方、比較例は、停止
状態から順次回転数を上昇させてゆき、23000rpm
の回転数で15分保持した。その後、回転体が停止後回
転体を観察すると、図3に示すように、繊維強化樹脂製
円筒端部より繊維剥離が生じていた。この状態ではもは
や回転を続けることは不可能である。すなわち、比較例
の容器状回転体は23000rpm の回転数を安定して実
現することができなかった。
The container-shaped rotating bodies of Examples and Comparative Examples were subjected to a rotation test in the atmosphere. The results are shown in Table 1.
In the embodiment of the present invention, there is no damage to the rotating body,
Achieved stable rotation speed of m. On the other hand, in the comparative example, the rotation speed is gradually increased from the stopped state to 23000 rpm.
The rotation speed was maintained for 15 minutes. After that, when the rotating body was observed after the rotating body stopped, as shown in FIG. 3, fiber peeling occurred from the end portion of the fiber reinforced resin cylinder. In this state, it is impossible to continue rotation. That is, the container-shaped rotating body of the comparative example could not stably realize the rotation speed of 23000 rpm.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明によれば、金属製円筒の外周に繊
維強化樹脂製円筒を配置し、外周にある繊維強化樹脂製
円筒の強化繊維を円筒最外部で周方向に強化した複合回
転体であるので、回転中に繊維強化樹脂製円筒端部で剥
離が発生することなく、従来の金属製回転体に比べて、
回転数で2倍、遠心力で4倍を実現することができる。
さらに有底の金属製円筒を用いることで容器状の高速複
合回転体を作製でき、その結果、大量の液体の分離処理
ができる高分離性能を備えた遠心分離機の製造が可能と
なる。
According to the present invention, a composite rotating body in which a fiber reinforced resin cylinder is arranged on the outer periphery of a metal cylinder, and the reinforcing fibers of the fiber reinforced resin cylinder on the outer periphery are reinforced in the circumferential direction at the outermost portion of the cylinder. Therefore, peeling does not occur at the end of the fiber reinforced resin cylinder during rotation, compared to conventional metal rotating bodies,
It is possible to achieve twice the number of rotations and four times the centrifugal force.
Furthermore, by using a metal cylinder having a bottom, a container-shaped high-speed composite rotating body can be produced, and as a result, it becomes possible to manufacture a centrifuge having a high separation performance capable of separating a large amount of liquid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる複合回転体の一部断面図。FIG. 1 is a partial cross-sectional view of a composite rotary body according to the present invention.

【図2】本発明の容器状の複合回転体断面図。FIG. 2 is a sectional view of the container-shaped composite rotating body of the present invention.

【図3】繊維剥離を生じた容器状の回転体の斜視説明
図。
FIG. 3 is a perspective explanatory view of a container-shaped rotating body in which fiber peeling has occurred.

【符号の説明】[Explanation of symbols]

1 金属製円筒 2 繊維強化樹脂製円筒 3 接着剤 4 繊維強化樹脂製円筒の内側部 5 繊維強化樹脂製円筒の最外部 6 有底の金属製円筒 7 回転体蓋 1 Metal Cylinder 2 Fiber Reinforced Resin Cylinder 3 Adhesive 4 Inner Part of Fiber Reinforced Resin Cylinder 5 Outermost Fiber Reinforced Resin Cylinder 6 Bottomed Metal Cylinder 7 Rotating Body Lid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 毎熊 宏則 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 久保村 健二 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 吉田 修 東京都江東区豊洲2−1−1 石川島播磨 重工業株式会社内 (72)発明者 中島 利幸 東京都江東区豊洲2−1−1 石川島播磨 重工業株式会社内 (72)発明者 岡村 淳輔 東京都江東区豊洲2−1−1 石川島播磨 重工業株式会社内 (72)発明者 森口 正宏 神奈川県川崎市川崎区大川町2−1 三菱 化工機株式会社内 (72)発明者 田中 保寿 神奈川県川崎市川崎区大川町2−1 三菱 化工機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hironori Kazuma Kuma 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Institute (72) Kenji Kubomura 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Address Nippon Steel Co., Ltd. Advanced Technology Research Laboratory (72) Inventor Osamu Yoshida 2-1-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. (72) Toshiyuki Nakajima 2-1 Toyosu, Koto-ku, Tokyo -1 Ishikawajima Harima Heavy Industries Co., Ltd. (72) Inventor Junsuke Okamura 2-1-1 Toyosu Koto-ku, Tokyo Inside 1-1 Ishikawajima Harima Heavy Industries Co., Ltd. (72) Masahiro Moriguchi 2-1 Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Mitsubishi Inside Kakoki Co., Ltd. (72) Inventor Yasutoshi Tanaka 2-1 Okawamachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Inside Mitsubishi Kakoki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化樹脂製円筒の最外周部におい
て、肉厚が0.1mm以上で、かつ全肉厚の50%以下と
なる強化繊維を周方向に配向してなる繊維強化樹脂製円
筒を、金属製円筒の外周に密着してなる二重円筒構造体
であることを特徴とする複合回転体。
1. A cylinder made of a fiber-reinforced resin, in which a reinforcing fiber having a wall thickness of 0.1 mm or more and 50% or less of the total wall thickness is orientated in the circumferential direction in the outermost peripheral portion of the fiber-reinforced resin cylinder. Is a double-cylinder structure in which the outer periphery of a metal cylinder is closely attached.
JP8894794A 1994-04-26 1994-04-26 Composite rotator Withdrawn JPH07289947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8894794A JPH07289947A (en) 1994-04-26 1994-04-26 Composite rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8894794A JPH07289947A (en) 1994-04-26 1994-04-26 Composite rotator

Publications (1)

Publication Number Publication Date
JPH07289947A true JPH07289947A (en) 1995-11-07

Family

ID=13957075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8894794A Withdrawn JPH07289947A (en) 1994-04-26 1994-04-26 Composite rotator

Country Status (1)

Country Link
JP (1) JPH07289947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129797A (en) * 2005-11-01 2007-05-24 Emaajii:Kk Rotator for flywheel, and flywheel for power storage using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129797A (en) * 2005-11-01 2007-05-24 Emaajii:Kk Rotator for flywheel, and flywheel for power storage using the same

Similar Documents

Publication Publication Date Title
JP5972170B2 (en) Fixed angle centrifugal rotor with tubular cavity and associated method
US5057071A (en) Hybrid centrifuge rotor
US5533644A (en) Hybrid centrifuge container
JP5980874B2 (en) Magnet holding member, rotor, rotating electric machine and machine tool used for rotating electric machine
US5382219A (en) Ultra-light composite centrifuge rotor
JP2872810B2 (en) Fixed-angle composite centrifuge rotor
EP0290686B1 (en) Composite material rotor
EP3219487A1 (en) Composite flywheel
JP6800323B2 (en) SPM motor rotor and its manufacturing method
EP0363227A1 (en) Yarn winding apparatus
EP0290687B1 (en) Hybrid centrifuge rotor
JPH07289947A (en) Composite rotator
KR101980405B1 (en) Vacuum pump
US5667755A (en) Hybrid composite centrifuge container with interweaving fiber windings
JPS6241070B2 (en)
JPH0942380A (en) Flywheel complex
JPS63319073A (en) Mixed centrifugal separator rotor and manufacture thereof
US10393224B2 (en) Cylindrical rotational body
CA1306986C (en) Hybrid centrifuge rotor
JP3189066B2 (en) Container rotating body
JPH05345151A (en) Hollow rotary body and production thereof
KR20020024509A (en) Fly Wheel with Pressure Resistant Liner
JP2005270924A (en) Rotor for centrifuge and its production method
JPS5840500B2 (en) Method for forming reinforced laminated materials using carbon fibers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703