JPH07287816A - Magnetoresistive thin film head - Google Patents

Magnetoresistive thin film head

Info

Publication number
JPH07287816A
JPH07287816A JP7596394A JP7596394A JPH07287816A JP H07287816 A JPH07287816 A JP H07287816A JP 7596394 A JP7596394 A JP 7596394A JP 7596394 A JP7596394 A JP 7596394A JP H07287816 A JPH07287816 A JP H07287816A
Authority
JP
Japan
Prior art keywords
electrode layer
resist
upper electrode
ion milling
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7596394A
Other languages
Japanese (ja)
Inventor
Tomoo Ikeda
池田  智夫
Nobuhito Fukushima
信人 福島
Koji Fujii
浩司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP7596394A priority Critical patent/JPH07287816A/en
Publication of JPH07287816A publication Critical patent/JPH07287816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form electrodes of low resistance and to reduce the deterioration of an MR element or disconnection at the time of forming electrodes by ion milling, by using Au as the upper electrode layer which constitutes the electrodes. CONSTITUTION:A NiFe film as an MR element 1 is formed on a Al2O3-TiC substrate 3 to specified thickness by sputtering. A resist 6 is applied and patterned. Then the resist 6 is removed with an org. solvent or the like, on which a Ta film is formed by sputtering and an Au film is formed by the same procedure. Then a resist 7 is applied and patterned into a shape of an electrode by photolithography. Then Au and Ta not covered with the resist 7 is etched by ion milling method. Ion milling is stopped on the interface between the lower electrode layer 4 and the element 1. Then the resist 7 is removed by using an org. solvent or a resist removing soln. to obtain a magnetoresistive thin film head.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体に記録され
た磁気信号を安定して再生する磁気抵抗効果型薄膜ヘッ
ドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive thin film head for stably reproducing a magnetic signal recorded on a magnetic recording medium.

【0002】[0002]

【従来の技術】図4に従来の磁気抵抗効果型薄膜ヘッド
の断面図を示す。但し、図4では磁区制御を目的とする
縦バイアス層と磁気抵抗効果型素子(以下MR素子と称
する)1が線形的に磁界の検出する為に用いられる横バ
イアス層は本発明の主旨をよりわかりやすくするために
描かれていない。図4に示す如く、一般に磁気抵抗効果
型薄膜ヘッドは、基板3上に配置されたMR素子1の両
端に一対の電極2を積層して設け、MR素子1に検出電
流を流すことによってMR素子1の抵抗変化を検出して
いる。
2. Description of the Related Art FIG. 4 is a sectional view of a conventional magnetoresistive thin film head. However, in FIG. 4, the longitudinal bias layer for the purpose of controlling the magnetic domain and the lateral bias layer used for the linear detection of the magnetic field by the magnetoresistive effect element (hereinafter referred to as MR element) 1 have the gist of the present invention. Not drawn for clarity. As shown in FIG. 4, a magnetoresistive thin film head is generally provided by laminating a pair of electrodes 2 on both ends of an MR element 1 arranged on a substrate 3, and passing a detection current through the MR element 1 to form the MR element. The resistance change of 1 is detected.

【0003】従来MR素子が高い出力で検出できるよう
に、電極の材料には低抵抗材料であるAuやCuなどが
一般的に使用されてきた。またMR素子との密着性を上
げる為に、MR素子とAuもしくはCuとの間にCrや
Tiをはさんだ多層構造の電極も一般的である。
Conventionally, low resistance materials such as Au and Cu have been generally used as materials for electrodes so that MR devices can detect them with high output. Further, in order to improve the adhesion with the MR element, an electrode having a multilayer structure in which Cr or Ti is sandwiched between the MR element and Au or Cu is also common.

【0004】また特開平2−68706では、信号検出
の安定性を確保する目的で電極の材料にWを用いた場合
を開示している。また、Wの多孔性や密着性を改善する
為に、TiやTaを積層させる電極構造も開示してい
る。
Further, Japanese Patent Laid-Open No. 2-68706 discloses the case where W is used as the material of the electrode for the purpose of ensuring the stability of signal detection. In addition, an electrode structure in which Ti or Ta is laminated in order to improve the porosity and adhesion of W is also disclosed.

【0005】また特開平4−149812では、耐食性
や密着性が良く、低抵抗材料であるということから、電
極の材料にNbを利用する構造を開示している。
Further, Japanese Patent Laid-Open No. 4-149812 discloses a structure in which Nb is used as a material of an electrode because it is a low resistance material having good corrosion resistance and adhesion.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術におい
て、電極材料にAuやCuを利用する構造またはAuも
しくはCuにCrやTiを積層した構造では、Au,C
u,Cr,Tiともに熱反応温度が低いため、高温状態
下でMR素子との間に熱拡散が生じる。そのため磁気抵
抗効果型薄膜ヘッドの製造工程における加熱工程時にM
R素子の劣化もしくは破壊をもたらす。
In the above prior art, in the structure using Au or Cu for the electrode material or the structure in which Cr or Ti is laminated on Au or Cu, Au, C is used.
Since u, Cr, and Ti have low thermal reaction temperatures, thermal diffusion occurs with the MR element under high temperature conditions. Therefore, in the heating process in the manufacturing process of the magnetoresistive thin film head, M
This causes deterioration or destruction of the R element.

【0007】電極材料としてWもしくはWとTaとの積
層を使用する場合、熱反応温度が製造工程時にかかる温
度よりも高いため、MR素子との熱拡散を防ぐことはで
きるが、イオンミリングによる電極形成時にMR素子を
劣化もしくは断線させる可能性が大きく、MR素子の信
頼性が下がる。これは電極の膜厚分布と電極材料に使用
しているWやTaのスパッタ率(単位時間内にスパッタ
される割合)が小さいことによる影響である。電極はイ
オンミリングでエッチングされ電極形状に形成される。
その時、可能な限り電極下に配置しているMR素子はエ
ッチングされないでイオンミリングを終了しなくてはな
らない。但し膜厚分布が必ず生じるために多少MR素子
までもイオンミリングによってエッチングされることは
考慮しなくてはならない。しかしながら本従来例のよう
に、電極材料にWやTaを使用した場合、どちらの材料
もスパッタ率が小さいため膜厚のばらつきによってスパ
ッタ時間も非常にばらつき、電極の膜厚が薄い部分では
厚い部分に比べて、電極のエッチングは早く終了してし
まい、その分多くのMR素子をエッチングしてしまう。
膜厚のばらつきが大きければ大きいほど、この影響は顕
著にあらわれ、最悪の場合にはMR素子の断線につなが
る。
When W or a stack of W and Ta is used as the electrode material, since the thermal reaction temperature is higher than the temperature applied during the manufacturing process, thermal diffusion with the MR element can be prevented, but the electrode by ion milling is used. There is a high possibility that the MR element will be deteriorated or broken during formation, and the reliability of the MR element will be reduced. This is due to the fact that the film thickness distribution of the electrode and the sputtering rate of W or Ta used in the electrode material (the rate of sputtering in a unit time) are small. The electrode is etched by ion milling to form an electrode shape.
At that time, the MR element arranged under the electrode as much as possible must be etched and the ion milling must be completed. However, it must be taken into consideration that the MR element is etched to some extent by ion milling because the film thickness distribution is always generated. However, when W or Ta is used as the electrode material as in the conventional example, the sputtering rate of both materials is small, so the sputtering time also varies greatly due to the variation of the film thickness, and the thick portion of the electrode is thin. Compared with the above, the etching of the electrodes ends earlier, and more MR elements are etched accordingly.
The larger the variation in the film thickness, the more remarkable this effect is, and in the worst case, the MR element is disconnected.

【0008】電極材料にNbを使用する場合も、スパッ
タ率が小さいために、イオンミリングによる電極形成時
に上記と同様の理由からMR素子の劣化もしくは断線の
可能性が大きくなり、MR素子の信頼性が下がる。
Even when Nb is used as the electrode material, since the sputtering rate is small, the possibility of deterioration or disconnection of the MR element increases at the time of forming the electrode by ion milling, and the reliability of the MR element increases. Goes down.

【0009】[0009]

【課題を解決するための手段】本発明では、上記の課題
を解決するために、電極材料をを低抵抗材料でありスパ
ッタ率が非常に大きいAuで構成される上電極層と密着
性が高く熱反応温度の高いTaで構成される下電極層の
2層構造にし、且つ上電極層とMR素子の間に下電極層
を配置する構造にした。
According to the present invention, in order to solve the above-mentioned problems, the electrode material has high adhesion to the upper electrode layer made of Au having a low resistance and a very high sputter rate. A two-layer structure of a lower electrode layer made of Ta having a high thermal reaction temperature was adopted, and a lower electrode layer was arranged between the upper electrode layer and the MR element.

【0010】また本発明では、低抵抗で且つ上電極層材
料の熱拡散を防止するために下電極層の膜厚を10nm
以上50nm以下とし、また低抵抗で且つ加工時の信頼
性を安定させるために上電極層の膜厚を0.1μm以上
0.4μm以下にした。
In the present invention, the film thickness of the lower electrode layer is 10 nm in order to have low resistance and prevent thermal diffusion of the upper electrode layer material.
The thickness of the upper electrode layer is set to 50 μm or less and the film thickness of the upper electrode layer is set to 0.1 μm or more and 0.4 μm or less in order to achieve low resistance and stable reliability during processing.

【0011】[0011]

【作用】熱反応温度が350℃と高いTaをMR素子と
Auとの間に挟むことにより、磁気抵抗効果型薄膜ヘッ
ドの製造工程中の加熱工程時(加熱温度200℃程度)
にAuがMR素子に熱拡散するのを防ぐとともに、MR
素子との密着力を高める役目も果たす。Taの膜厚を1
0nm以上にすることによって、AuのMR素子への熱
拡散を防ぐことができる。但し、Taは高抵抗材料であ
るので、MR素子へ電流を流し易くするためにはTaの
膜厚は50nm以下にするのが望ましい。
By sandwiching Ta, which has a high thermal reaction temperature of 350 ° C., between the MR element and Au, during the heating step in the manufacturing process of the magnetoresistive thin film head (heating temperature of about 200 ° C.)
In addition to preventing Au from thermally diffusing into the MR element,
It also plays the role of increasing the adhesion to the element. Ta film thickness is 1
By setting the thickness to 0 nm or more, heat diffusion of Au into the MR element can be prevented. However, since Ta is a high-resistance material, it is desirable that the film thickness of Ta be 50 nm or less in order to make it easier to pass a current through the MR element.

【0012】Auはスパッタ率がWに比べて約3倍に大
きい値をもつので、膜厚のばらつきによるイオンミリン
グ時間のばらつきはWに比べて約1/3に少なくなり、
その結果MR素子を劣化もしくは断線する可能性が少な
くなる。Auの膜厚を0.4μm以下にすることによっ
て、MR素子の劣化及び断線は著しく減少する。またA
uの膜厚を0.1μm以上にすることによって、通電時
に生じる発熱による断線を防ぐことができる。以上の如
き構造にすることによって製造上の精度もそれほど必要
なくなると同時に製造時におけるMR素子の信頼性が向
上する。
Since Au has a sputtering rate that is about three times as large as W, variation in ion milling time due to variation in film thickness is reduced to approximately 1/3 that of W.
As a result, the possibility of deterioration or disconnection of the MR element is reduced. By setting the Au film thickness to 0.4 μm or less, deterioration and disconnection of the MR element are significantly reduced. Also A
By setting the film thickness of u to 0.1 μm or more, it is possible to prevent disconnection due to heat generation that occurs during energization. With the structure as described above, the manufacturing accuracy is not so much required, and the reliability of the MR element at the time of manufacturing is improved.

【0013】[0013]

【実施例】【Example】

(実施例1)図1に本発明の磁気抵抗効果型薄膜ヘッド
の第1の実施例を断面図で示す。非磁性で絶縁性の材質
から選ばれた基板3上に磁気抵抗効果をもつMR素子1
が構成される。MR素子1の両端部上に一対の電極2が
配置している。電極2はTaで形成された下電極層4と
その上にAuで形成された上電極層5の2層構造になっ
ている。
(Embodiment 1) FIG. 1 is a sectional view showing a first embodiment of the magnetoresistive thin film head of the present invention. An MR element 1 having a magnetoresistive effect on a substrate 3 selected from a non-magnetic and insulating material
Is configured. A pair of electrodes 2 are arranged on both ends of the MR element 1. The electrode 2 has a two-layer structure of a lower electrode layer 4 made of Ta and an upper electrode layer 5 made of Au thereon.

【0014】図2は第1の実施例の製造工程を示した図
である。まず初めに材質がAl23−TiCの基板3上
にMR素子1としてNiFeを40nmの厚みでスパッ
タにより成膜した。レジスト6を3μmの厚みでコーテ
ィングした後フォトリソグラフィとイオンミリングによ
りパターンニングを行い、図2(a)の状態にする。
FIG. 2 is a view showing the manufacturing process of the first embodiment. First material is deposited by sputtering to a thickness of 40nm of NiFe as the MR element 1 on the Al 2 0 3 substrate -TiC 3. After coating the resist 6 with a thickness of 3 μm, patterning is performed by photolithography and ion milling to obtain the state of FIG.

【0015】レジスト6を有機溶剤もしくはレジスト剥
離液を使って剥離させた後、Taを30nmの厚みでス
パッタにより成膜し、続けてAuを0.2μmの厚みで
スパッタで成膜し、その後レジスト7を3μmの厚みで
コーティングし、フォトリソグラフィによってレジスト
7を電極形状にパターンニングをし、図2(b)の状態
にする。
After stripping the resist 6 using an organic solvent or a resist stripping solution, Ta is sputter-deposited to a thickness of 30 nm, and Au is sputter-deposited to a thickness of 0.2 μm. 7 is coated to a thickness of 3 μm, and the resist 7 is patterned into an electrode shape by photolithography to obtain the state of FIG.

【0016】次に、イオンミリングを行うことによっ
て、図2(c)の如くレジスト7に覆われていないAu
とTaがエッチングされる。この時、下電極層4とMR
素子1との境界でイオンミリングを停止するのが最も望
ましい。またレジスト7もAuやTaと同じようにエッ
チングされるが、レジスト7の膜厚は上電極層5や下電
極層4の膜厚に比べて10倍以上厚いのでレジスト7が
エッチングによって無くなることはない。その後に、レ
ジスト7を有機溶剤もしくはレジスト剥離液を使って剥
離し、本第1の実施例の製造工程が完了する。
Next, by performing ion milling, Au not covered with the resist 7 as shown in FIG.
And Ta are etched. At this time, the lower electrode layer 4 and the MR
It is most desirable to stop the ion milling at the boundary with the element 1. The resist 7 is also etched in the same manner as Au or Ta, but the film thickness of the resist 7 is 10 times or more thicker than the film thickness of the upper electrode layer 5 or the lower electrode layer 4, so that the resist 7 is not lost by etching. Absent. After that, the resist 7 is stripped using an organic solvent or a resist stripping solution, and the manufacturing process of the first embodiment is completed.

【0017】本第1の実施例では、上電極層5にAuを
使用している。Auは500eVのAr雰囲気中でスパ
ッタ率が0.108μm/minと非常に高い。この値
はWの同条件におけるスパッタ率の約3倍である。その
ため、本第1の実施例における膜厚0.2μmの上電極
層5(材質Au)は110秒程度でイオンミリングが終
了し、上電極層5にWを利用したものに比べて約3倍早
い。ここで、仮にAuで構成した上電極層5の膜厚のば
らつきが0.2μm±10%(0.18μm〜0.22
μm)であった場合、イオンミリングにより上電極層5
が完全にエッチングし終わる時間は膜厚によって99秒
〜121秒とばらつく。これに対し、同等の膜厚のばら
つき(0.18μm〜0.22μm)でWを使用した上
電極層5を構成した場合では、上電極層5がエッチング
し終わる時間は297秒〜363秒となり、イオンミリ
ングの時間が長くなるばかりでなく、時間のばらつきも
大きくなる。その結果、上電極層5の下層に配置される
下電極層4のエッチング終了時間がばらつき、最終的に
は上電極層5の膜厚の薄い場所ではMR素子1が大量に
イオンミリングによってエッチングされることになる。
In the first embodiment, Au is used for the upper electrode layer 5. Au has a very high sputter rate of 0.108 μm / min in an Ar atmosphere of 500 eV. This value is about three times the sputter rate under the same W condition. Therefore, the ion milling of the upper electrode layer 5 (material Au) having a film thickness of 0.2 μm in the first embodiment is completed in about 110 seconds, which is about three times as large as that of the upper electrode layer 5 using W. early. Here, if the variation in the film thickness of the upper electrode layer 5 composed of Au is 0.2 μm ± 10% (0.18 μm to 0.22).
μm), the upper electrode layer 5 is formed by ion milling.
The time taken to completely etch the film varies from 99 seconds to 121 seconds depending on the film thickness. On the other hand, when the upper electrode layer 5 using W is formed with an equivalent film thickness variation (0.18 μm to 0.22 μm), the time when the upper electrode layer 5 finishes etching is 297 seconds to 363 seconds. Not only does the ion milling time take longer, but the time variations also increase. As a result, the etching end time of the lower electrode layer 4 disposed below the upper electrode layer 5 varies, and finally, in a place where the thickness of the upper electrode layer 5 is thin, the MR element 1 is etched in large quantities by ion milling. Will be.

【0018】Auで構成された上電極層5の膜厚が0.
6μm±10%、0.4μm±10%、0.2μm±1
0%である本第1の実施例で挙げた構造の磁気抵抗効果
型薄膜ヘッドを、一辺が2インチの正方形の基板3枚に
それぞれ1320個づつ作製し、素子1の断線を調べ
た。その実験結果を表1に示す。
The upper electrode layer 5 made of Au has a thickness of 0.
6 μm ± 10%, 0.4 μm ± 10%, 0.2 μm ± 1
The magnetoresistive effect thin film head having a structure of 0%, which is the structure described in the first embodiment, was formed on each of three square substrates each having a side of 2 inches, 1320 pieces each, and the breakage of the element 1 was examined. The experimental results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示す如く、上電極層5の膜厚が0.
4μmもしくは0.2μmでは断線は発生しなかった
が、0.6μmの場合では約40%の断線が発生した。
この結果からAuで構成された上電極層5の膜厚は0.
4μm以下にすることによってMR素子の断線を防ぐこ
とができることがわかる。但し、上電極5の膜厚を薄く
し過ぎると抵抗が大きくなり、通電時に発熱が生じ、そ
の熱によって電極自体が断線してしまう。一般に0.1
μm以下にすると断線が生じるので好ましくない。よっ
て、上電極層5の膜厚としては0.1μm〜0.4μm
が望ましい。
As shown in Table 1, the film thickness of the upper electrode layer 5 is 0.
The wire breakage did not occur at 4 μm or 0.2 μm, but about 40% of the wire breakage occurred at 0.6 μm.
From this result, the film thickness of the upper electrode layer 5 made of Au is 0.
It can be seen that disconnection of the MR element can be prevented by setting the thickness to 4 μm or less. However, if the film thickness of the upper electrode 5 is made too thin, the resistance becomes large and heat is generated during energization, which causes the electrode itself to be disconnected. Generally 0.1
If the thickness is less than μm, disconnection may occur, which is not preferable. Therefore, the thickness of the upper electrode layer 5 is 0.1 μm to 0.4 μm.
Is desirable.

【0021】上電極層5に使用する他の材料として、A
uよりも比抵抗が低く且つスパッタ率が大きい材料とし
てAgが挙げられるが、Agは耐食性が乏しいので上電
極層5として使用することはあまり好ましくない。よっ
て、上電極層5の材料としては、比抵抗が低く、スパッ
タ率が大きく、且つ耐食性にも優れるAuが最も適して
いる。
As another material used for the upper electrode layer 5, A
Although Ag is mentioned as a material having a lower specific resistance and a higher sputtering rate than u, it is not preferable to use Ag as the upper electrode layer 5 because Ag has poor corrosion resistance. Therefore, Au is most suitable as the material of the upper electrode layer 5 because it has a low specific resistance, a large sputtering rate, and excellent corrosion resistance.

【0022】下電極層4に使用するTaは上電極層5と
MR素子1との密着性を向上させる役目と製造中の加熱
工程時に上電極層5に使用しているAuがMR素子1に
使用しているNiFeに拡散するのを防ぐ役目を持つ。
本来、Taは比抵抗の大きな材料であるので電極には不
適であるが、本第1の実施例では膜厚が30nmで非常
に薄い膜であるので電極として充分に使用可能である。
電極として使用可能な抵抗にするためには、Taの膜厚
は50nm以下にするのが望ましい。また、上電極層5
の材料であるAuがMR素子1のNiFe内に熱拡散す
るのを防止するには、Taの膜厚は最低でも10nm以
上必要である。以上の理由からTaの膜厚許容範囲は1
0nm〜50nmである。
The Ta used for the lower electrode layer 4 serves to improve the adhesion between the upper electrode layer 5 and the MR element 1, and the Au used for the upper electrode layer 5 in the MR element 1 during the heating step during manufacturing is used for the MR element 1. It has the role of preventing diffusion into the NiFe used.
Originally, Ta is not suitable as an electrode because it is a material having a large specific resistance, but in the first embodiment, since it is a very thin film having a film thickness of 30 nm, it can be sufficiently used as an electrode.
The film thickness of Ta is preferably 50 nm or less in order to obtain a resistance that can be used as an electrode. In addition, the upper electrode layer 5
In order to prevent Au, which is the material of (1), from thermally diffusing into NiFe of the MR element 1, the film thickness of Ta must be at least 10 nm or more. For the above reasons, the Ta film thickness allowable range is 1
It is 0 nm to 50 nm.

【0023】本発明では電極形成にイオンミリングを利
用しているが、イオンミリングはウェットエッチングに
比べて、高精度の加工が可能であり、またエッチング液
がMR素子に侵食しMR素子の性能劣化を及ぼす危険性
がないといった利点があるためである。
In the present invention, ion milling is used to form the electrodes. However, ion milling can be processed with higher precision than wet etching, and the etching solution corrodes the MR element, degrading the performance of the MR element. This is because there is no risk of causing

【0024】(実施例2)本発明の第2の実施例を図3
に示す。図3では磁気抵抗効果を有する細長い形状をし
たMR素子1を挟んで上下に一対の縦バイアス層8と横
バイアス層9を積層した構造となっている。縦バイアス
層8はMR素子1の長手方向に磁界を生じさせ、MR素
子1を単磁区化し、ノイズの低減をはかるためのもので
あり、反強磁性材料で構成される。本第2の実施例では
縦バイアス層8を構成する反強磁性材料としてFeMn
を使用し、膜厚は40nmとした。一方、横バイアス層
9はMR素子1の抵抗変化が外部磁界に対して線形性を
もつようにするためのものであり、MR素子1の幅方向
に磁界を生じさせる。本第2の実施例では横バイアス層
9としてTaとNiFeRhを積層する構造のソフト膜
バイアス法を用いた。但し、本発明において横バイアス
の方式はどの様な種類のものでも適用可能である。
(Embodiment 2) A second embodiment of the present invention is shown in FIG.
Shown in. In FIG. 3, a pair of vertical bias layers 8 and lateral bias layers 9 are vertically stacked with the elongated MR element 1 having a magnetoresistive effect interposed therebetween. The longitudinal bias layer 8 serves to generate a magnetic field in the longitudinal direction of the MR element 1 to make the MR element 1 into a single magnetic domain and reduce noise, and is made of an antiferromagnetic material. In the second embodiment, FeMn is used as the antiferromagnetic material forming the longitudinal bias layer 8.
Was used and the film thickness was 40 nm. On the other hand, the lateral bias layer 9 serves to make the resistance change of the MR element 1 linear with respect to the external magnetic field, and generates a magnetic field in the width direction of the MR element 1. In the second embodiment, a soft film bias method having a structure in which Ta and NiFeRh are laminated is used as the lateral bias layer 9. However, in the present invention, any type of lateral bias method can be applied.

【0025】本第2の実施例では、上電極層4及び下電
極層5と縦バイアス層8を同時にイオンミリングによっ
て形成する。但し、第1の実施例と同様に、縦バイアス
層8の下層に配置されるMR素子1はイオンミリングに
よってエッチングされてはいけない。縦バイアス層を余
分にイオンミリングしなくてはならないため、イオンミ
リングに要する時間の制御は第1の実施例と比べて多少
難しくなるが、縦バイアス層の膜厚が40nmと非常に
薄い膜厚であるため、特に問題はなかった。
In the second embodiment, the upper electrode layer 4 and the lower electrode layer 5 and the vertical bias layer 8 are simultaneously formed by ion milling. However, as in the first embodiment, the MR element 1 disposed below the vertical bias layer 8 should not be etched by ion milling. Since the vertical bias layer has to be additionally ion-milled, the control of the time required for ion milling is somewhat difficult as compared with the first embodiment, but the thickness of the vertical bias layer is 40 nm, which is extremely small. Therefore, there was no particular problem.

【0026】[0026]

【発明の効果】本発明によれば、電極を構成している上
電極層にAuを使用することによって、低抵抗の電極を
形成できるとともに、イオンミリングによる電極形成時
におけるMR素子の劣化もしくは断線を少なくすること
ができる。
According to the present invention, by using Au for the upper electrode layer forming the electrode, a low resistance electrode can be formed, and deterioration or disconnection of the MR element at the time of forming the electrode by ion milling. Can be reduced.

【0027】上記の上電極層の膜厚を0.1μm以上に
することによって、低抵抗が実現でき、通電時の発熱に
よる電極の断線を防止できる。また一方では0.4μm
以下にすることによってイオンミリングによる電極形成
時におけるMR素子の断線を著しく減少することができ
る。
By setting the film thickness of the upper electrode layer to 0.1 μm or more, low resistance can be realized, and disconnection of the electrode due to heat generation during energization can be prevented. On the other hand, 0.4 μm
By the following, the breakage of the MR element at the time of forming the electrode by ion milling can be significantly reduced.

【0028】また本発明によれば、電極を構成している
下電極層にTaを使用することによって、製造工程中に
おける加熱によって、上電極層材料のAuがMR素子中
に拡散するのを防止することができる。
Further, according to the present invention, by using Ta for the lower electrode layer constituting the electrode, it is possible to prevent Au of the upper electrode layer material from diffusing into the MR element due to heating during the manufacturing process. can do.

【0029】上記の下電極層の膜厚を10nm以上にす
ることによって、上電極材料のAuがMR素子中に拡散
するのを完全に防止できる。一方、下電極層は上電極層
からの電流をMR素子に流す役目もはたすため、高抵抗
材料であるTaの膜厚は可能な限り薄くした方が好まし
く、こうした理由からTaの膜厚は50nm以下にする
のが望ましい。
By setting the thickness of the lower electrode layer to 10 nm or more, it is possible to completely prevent Au of the upper electrode material from diffusing into the MR element. On the other hand, since the lower electrode layer also has a role of allowing the current from the upper electrode layer to flow to the MR element, it is preferable to make the film thickness of Ta, which is a high resistance material, as thin as possible. For this reason, the film thickness of Ta is 50 nm. The following is preferable.

【0030】本発明によれば、Auで形成された上電極
層とTaで形成された下電極層の2層構造にし、上電極
層とMR素子との間に下電極層を構成することによっ
て、製造工程中のMR素子の劣化を防ぐことができ、そ
の結果、信頼性の高い磁気抵抗効果型薄膜ヘッドを製造
することが可能となった。
According to the present invention, a two-layer structure of an upper electrode layer made of Au and a lower electrode layer made of Ta is formed, and the lower electrode layer is formed between the upper electrode layer and the MR element. The deterioration of the MR element during the manufacturing process can be prevented, and as a result, it is possible to manufacture a highly reliable magnetoresistive thin film head.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気抵抗効果型薄膜ヘッドの第1の実
施例の断面図である。
FIG. 1 is a sectional view of a first embodiment of a magnetoresistive effect thin film head of the present invention.

【図2】本発明の磁気抵抗効果型薄膜ヘッドの第1の実
施例の製造工程図である。
FIG. 2 is a manufacturing process diagram of a first embodiment of the magnetoresistive thin film head of the present invention.

【図3】本発明の磁気抵抗効果型薄膜ヘッドの第2の実
施例の断面図である。
FIG. 3 is a sectional view of a second embodiment of the magnetoresistive effect thin film head of the present invention.

【図4】従来の磁気抵抗効果型薄膜ヘッドの断面図であ
る。
FIG. 4 is a sectional view of a conventional magnetoresistive thin film head.

【符号の説明】[Explanation of symbols]

1 MR素子 2 電極 3 基板 4 下電極層 5 上電極層 6 レジスト 7 レジスト 8 縦バイアス層 9 横バイアス層 1 MR element 2 electrode 3 substrate 4 lower electrode layer 5 upper electrode layer 6 resist 7 resist 8 longitudinal bias layer 9 lateral bias layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果型素子と該磁気抵抗効果型
素子上の両端に形成された一対の電極とを具備してなる
磁気抵抗効果型薄膜ヘッドであって、前記電極はTaか
らなる下電極層とAuからなる上電極層とが順次積層し
てなることを特徴とする磁気抵抗効果型薄膜ヘッド。
1. A magnetoresistive effect thin film head comprising a magnetoresistive effect element and a pair of electrodes formed on both ends of the magnetoresistive effect element, wherein the electrode is made of Ta. A magnetoresistive thin-film head, characterized in that an electrode layer and an upper electrode layer made of Au are sequentially laminated.
【請求項2】 前記下電極層の膜厚が10nm以上50
nm以下であり、且つ前記上電極層の膜厚が0.1μm
以上0.4μm以下であることを特徴とする請求項1記
載の磁気抵抗効果型薄膜ヘッド。
2. The film thickness of the lower electrode layer is 10 nm or more and 50 or more.
nm or less and the film thickness of the upper electrode layer is 0.1 μm
2. The magnetoresistive effect thin film head according to claim 1, wherein the thickness is 0.4 μm or more.
JP7596394A 1994-04-14 1994-04-14 Magnetoresistive thin film head Pending JPH07287816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7596394A JPH07287816A (en) 1994-04-14 1994-04-14 Magnetoresistive thin film head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7596394A JPH07287816A (en) 1994-04-14 1994-04-14 Magnetoresistive thin film head

Publications (1)

Publication Number Publication Date
JPH07287816A true JPH07287816A (en) 1995-10-31

Family

ID=13591391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7596394A Pending JPH07287816A (en) 1994-04-14 1994-04-14 Magnetoresistive thin film head

Country Status (1)

Country Link
JP (1) JPH07287816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119716A1 (en) * 2005-05-09 2006-11-16 Bvt Technologies A.S. Nanostructured working electrode of an electrochemical sensor, method of manufacturing thereof and sensor containing this working electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119716A1 (en) * 2005-05-09 2006-11-16 Bvt Technologies A.S. Nanostructured working electrode of an electrochemical sensor, method of manufacturing thereof and sensor containing this working electrode

Similar Documents

Publication Publication Date Title
JP4065787B2 (en) Magnetic head and magnetic recording / reproducing apparatus
US7099125B2 (en) Easily manufactured exchange bias stabilization scheme
US5327313A (en) Magnetoresistance effect type head having a damage immune film structure
JP2613239B2 (en) Magnetoresistive head
US5641557A (en) Magnetoresistive element
US20060103991A1 (en) Magnetoresistive head using longitudinal biasing method with 90-degree magnetic interlayer coupling and manufacturing method thereof
JP4136261B2 (en) Method for manufacturing magnetoresistive effect element
JP3565163B2 (en) Oxide film formation method and manufacturing method of magnetic tunnel junction device
JPH0969210A (en) Magnetoresistance effect head, its manufacture and magnetic recorder
JP3130811B2 (en) Magnetoresistive thin film magnetic head
JPH07287816A (en) Magnetoresistive thin film head
JPH06349031A (en) Magneto-resistance effect type head
JPH0836717A (en) Magnetoresistance effect head
JPH10247305A (en) Production of composite type thin-film magnetic head
JP2504160B2 (en) Magnetoresistive head and method of manufacturing the same
JP3590768B2 (en) Manufacturing method of perpendicular conduction type magnetoresistive element
JPH09128712A (en) Magneto-resistive head
JP2000090420A (en) Magneto-resistive head and magnetic disk device
US6665154B2 (en) Spin valve head with a current channeling layer
JPH09305931A (en) Magnetoresistance effect type element, magneto-resistance effect type head and manufacture of the same
JPH03283477A (en) Magnetoresistance effect element and manufacture thereof
KR100203612B1 (en) Magnetoresistive effect head and method of manufacturing the same
JPH02301010A (en) Manufacture of thin film magnetic head
JP2866757B2 (en) Manufacturing method of magnetic bubble element
JP2000348311A (en) Magnetic sensor, its production and magnetic recording device