JPH0728675Y2 - Circuit breaker trip device - Google Patents
Circuit breaker trip deviceInfo
- Publication number
- JPH0728675Y2 JPH0728675Y2 JP11568787U JP11568787U JPH0728675Y2 JP H0728675 Y2 JPH0728675 Y2 JP H0728675Y2 JP 11568787 U JP11568787 U JP 11568787U JP 11568787 U JP11568787 U JP 11568787U JP H0728675 Y2 JPH0728675 Y2 JP H0728675Y2
- Authority
- JP
- Japan
- Prior art keywords
- armature
- plunger
- coil
- tubular body
- circuit breaker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Breakers (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、配線用遮断器の引外し装置に用いられてい
る電磁石であって、非磁性材からなり少なくとも一方端
に底面を有する筒状に形成され内側に軸線方向を同じく
して挿入された強磁性材からなる棒状のプランジャと、
このプランジャを前記底面に押圧する復帰スプリングと
を収容するとともに、前記プランジャの軸線方向移動速
度を制御する緩衝液が充填されかつ他方端に接極子を備
えた筒状体と;この筒状体の外側でこの筒状体に接する
前記プランジャ半径方向の磁路を形成するとともに前記
接極子に吸引されるアーマチュアを支承するマグネット
ヨークと;前記マグネットヨークのプランジャ半径方向
の磁路と前記接極子との間で前記筒状体を取り巻きこの
筒状体の軸線方向の磁束を発生させるコイルと;を備え
たものに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an electromagnet used in a trip device for a circuit breaker for wiring, which is made of a non-magnetic material and has a cylindrical shape having at least one bottom surface. A rod-shaped plunger made of a ferromagnetic material and formed in the same direction and inserted in the same axial direction,
A tubular body that accommodates a return spring that presses the plunger against the bottom surface, is filled with a buffer solution that controls the axial movement speed of the plunger, and has an armature at the other end; A magnet yoke that forms the magnetic path in the radial direction of the plunger that contacts the cylindrical body on the outside and supports the armature that is attracted to the armature; and a magnetic path in the radial direction of the plunger of the magnet yoke and the armature. And a coil which surrounds the tubular body and generates a magnetic flux in the axial direction of the tubular body.
従来の配線用遮断器の引外し装置に用いられる電磁石の
構造例を第6図に示す。図において、4は非磁性材から
なる,一方端に底面4aを有する筒状体であって内側に軸
線方向を同じくして挿入された強磁性材からなる棒状の
プランジャ3と、このプランジャを前記底面4aに押圧す
る復帰スプリング7とを収容するとともに、プランジャ
3の軸線方向移動時にこの移動速度を制御するための緩
衝液としてシリコン油8が充填され、この筒状体の他方
端には接極子6が設けられている。また、筒状体4は、
L字状に曲げられた鋼板からなるマグネットヨーク1の
1辺を垂直に貫いてこれと一体化され、従ってこの筒状
体の外側には筒状体に接する,前記プランジャ3の半径
方向磁路が形成され、この磁路が筒状体4をとり巻くコ
イル5の軸方向一方端の位置を規制している。FIG. 6 shows a structural example of an electromagnet used in a conventional trip device for a circuit breaker. In the figure, 4 is a cylindrical body made of a non-magnetic material and having a bottom surface 4a at one end, and a rod-shaped plunger 3 made of a ferromagnetic material which is inserted inward in the same axial direction. A return spring 7 that presses against the bottom surface 4a is accommodated, and silicon oil 8 is filled as a buffer solution for controlling the moving speed of the plunger 3 when it moves in the axial direction. The other end of this cylindrical body has an armature. 6 is provided. Further, the tubular body 4 is
A radial magnetic path of the plunger 3 is formed by vertically penetrating one side of a magnet yoke 1 made of a steel plate bent in an L shape so as to be integrated with the magnet yoke 1 and contacting the cylindrical body on the outer side of the cylindrical body. Is formed, and this magnetic path regulates the position of one end in the axial direction of the coil 5 surrounding the tubular body 4.
L字状マグネットヨーク1の他方の1辺にはZ字状の支
持部材1aを介してアーマチュア2が支承され、このアー
マチュアはばね9により常時Z字の1辺に押圧されて接
極子6との間隔を一定に保たれている。An armature 2 is supported on the other one side of the L-shaped magnet yoke 1 via a Z-shaped supporting member 1a, and this armature is constantly pressed by the spring 9 to one side of the Z-shape to form an armature 6. The intervals are kept constant.
このような電磁石の構成において、コイルに流れる電流
が定格電流以下では、プランジャ3−接極子6−アーマ
チュア2−マグネットヨーク1−プランジャ3と形成さ
れる磁路を通る磁束が少なく、プランジャ3を復帰スプ
リング7に打ち勝って接極子6の方向へ移動させること
ができない。しかし、コイルに流れる電流が定格電流を
超えると、前記磁路を通る磁束が増し、プランジャ3は
復帰スプリング7に打ち勝って接極子6の方向へ吸引さ
れて移動する。この移動とともに前記磁路の磁気抵抗は
小さくなって行くから磁束が増加し、プランジャ3の移
動行程のほぼ終端近傍でアーマチュア2がばね9に打ち
勝って接極子6に吸引され配線用遮断器を引外し動作さ
せる。このときの電磁石の状態を第7図に示す。また、
プランジャ3が接極子6方向へ吸引されて移動する速さ
は、プランジャ3の最大外径と筒状体4の内径との間に
形成された,シリコン油8が通過する間隙の大きさによ
りほぼ左右され、この間隙を適当に設定することによ
り、コイルに流れる過電流の大きさとこの過電流の流れ
はじめの時点からアーマチュア2の動作開始または動作
完了時点までの時間との間に所望の関係を得ることがで
きる。一般に、このような電磁石構成においては、緩衝
液としてのシリコン油の粘性のため、前記の動作時間と
コイル電流との関係は第9図に示すような反限時特性と
なる。In such an electromagnet configuration, when the current flowing through the coil is less than or equal to the rated current, the amount of magnetic flux passing through the magnetic path formed by the plunger 3, the armature 6, the armature 2, the magnet yoke 1 and the plunger 3 is small, and the plunger 3 is restored. It is impossible to overcome the spring 7 and move it toward the armature 6. However, when the current flowing through the coil exceeds the rated current, the magnetic flux passing through the magnetic path increases, and the plunger 3 overcomes the return spring 7 and is attracted and moved toward the armature 6. With this movement, the magnetic resistance of the magnetic path decreases and the magnetic flux increases, and the armature 2 overcomes the spring 9 and is attracted to the armature 6 to pull the circuit breaker of the wiring near the end of the moving stroke of the plunger 3. Remove and operate. The state of the electromagnet at this time is shown in FIG. Also,
The speed at which the plunger 3 is sucked and moved in the direction of the armature 6 is almost dependent on the size of the gap formed between the maximum outer diameter of the plunger 3 and the inner diameter of the tubular body 4 through which the silicone oil 8 passes. By appropriately setting this gap, a desired relationship can be established between the magnitude of the overcurrent flowing through the coil and the time from the beginning of this overcurrent to the start or end of the operation of the armature 2. Obtainable. Generally, in such an electromagnet configuration, the relationship between the operating time and the coil current has an anti-time limit characteristic as shown in FIG. 9 because of the viscosity of silicon oil as a buffer solution.
配線用遮断器が配置された回路に短絡事故が発生する
と、この短絡電流によって電磁石の磁路(第6図の3−
6−2−1−3)に生ずる磁束は、第8図のように、プ
ランジャ3がほとんど移動しない状態でアーマチュア2
を急速に接極子6の方向へ吸引せしめるに十分な大きさ
になり、瞬時に遮断器を引き外す。なお、遮断器の引外
しは、配線用遮断器の構成を示す第4図および第5図に
おいて、電磁石のコイル5に過電流が流れ、筒状体4に
設けられた接極子6の方向へアーマチュア2が吸引さ
れ、操作機構との掛合い部2aが外れて、遮断器を投入状
態に保持していたトグルリンク11がくずれることによっ
て行われる。なお、12はトグルリンク11が開放されたと
きに遮断ばねによって開放される可動接触子である。When a short-circuit accident occurs in the circuit where the circuit breaker for wiring is arranged, this short-circuit current causes the magnetic path of the electromagnet (see 3-
The magnetic flux generated in 6-2-1-3) is generated by the armature 2 with the plunger 3 hardly moving as shown in FIG.
Is large enough to quickly attract the magnet to the armature 6 and the circuit breaker is instantly removed. The tripping of the circuit breaker is carried out in the direction of the armature 6 provided on the tubular body 4 by the overcurrent flowing through the coil 5 of the electromagnet in FIGS. 4 and 5 showing the configuration of the circuit breaker for wiring. This is performed by sucking the armature 2, disengaging the engaging portion 2a with the operating mechanism, and breaking the toggle link 11 that has held the circuit breaker in the closed state. Reference numeral 12 is a movable contactor which is opened by a blocking spring when the toggle link 11 is opened.
以上のように構成された電磁石における問題点はつぎの
通りである。すなわち、電磁石を動作せしめうる最小コ
イル電流すなわち第5図においてアーマチュア2と操作
機構との掛合い部2aを引き外しうる力をアーマチュアに
作用せしめる最小コイル電流いわゆる最小動作電流Itに
対し、プランジャ3がほとんど移動しない状態で瞬時に
アーマチュア2を吸引せしめる瞬時引外し動作電流値I
stは従来8倍程度のものが製作されていたが、この程度
の倍率では、この種の配線用遮断器を変圧器1次側のよ
うな、大きな突入電流の流れる回路に使用した場合、投
入時に不要に遮断動作を行うおそれがあり、このような
動作を避けるためこの倍率を調節しようとしても、以下
に述べる理由から困難であった。The problems with the electromagnet configured as described above are as follows. That is, for minimum coil current, that is the minimum coil current so-called minimum operating current I t to exerting a force capable tripping the fitting part 2a of the armature 2 and the operating mechanism to the armature in FIG. 5 may caused to operate the electromagnet, the plunger 3 Momentary tripping operation current value I that allows the armature 2 to be instantly attracted while the
Conventionally, st has been manufactured to be about 8 times, but at this magnification, when using this type of circuit breaker in a circuit with a large inrush current, such as the transformer primary side, it is closed. At times, there is a risk that the shut-off operation will be performed unnecessarily, and even if an attempt is made to adjust this magnification in order to avoid such an operation, it has been difficult for the reasons described below.
すなわち、第6図に示す電磁石の構成では、プランジャ
3を復帰スプリング7に抗して接極子位置まで移動せし
めるのに必要なコイル電流は復帰スプリングの力が弱い
ため小さい値ですむが、アーマチュア2と遮断器操作機
構との掛合いを引き外すにはアーマチュアと接極子との
間に所定の磁束密度を生ぜしめる必要があり、このた
め、プランジャが接極子に接触した状態でコイルに流す
べき電流すなわち最小動作電流は、プランジャを接極子
までもたらすのに必要とした前記電流に等しいがこれよ
りも大きくなる。That is, in the configuration of the electromagnet shown in FIG. 6, the coil current required to move the plunger 3 against the return spring 7 to the armature position is small because the force of the return spring is weak, but the armature 2 In order to release the engagement between the armature and the circuit breaker operating mechanism, it is necessary to generate a predetermined magnetic flux density between the armature and the armature.Therefore, the current that should flow in the coil with the plunger in contact with the armature. That is, the minimum operating current is equal to, but greater than, the current required to bring the plunger to the armature.
一方、瞬時引外し動作電流値は、プランジャ3がほとん
ど移動しない状態でアーマチュア2と接極子6との間に
アーマチュアを操作機構から引き外すのに必要な磁束密
度を生ぜしめなければならないから、この電流値を大き
くして前記最小動作電流に対する倍率を高めようとする
と、プランジャ3と接極子6との間の空隙を大きくして
磁路:プランジャ3−接極子6−アーマチュア2−マグ
ネットヨーク1−プランジャ3の磁気抵抗を大きくする
必要があり、このため電磁石が軸方向に長くなり、この
電磁石を内蔵する遮断器が大形化するという問題点があ
った。On the other hand, the instantaneous tripping operating current value must generate a magnetic flux density required for tripping the armature from the operating mechanism between the armature 2 and the armature 6 while the plunger 3 hardly moves. When the current value is increased to increase the multiplication factor with respect to the minimum operating current, the air gap between the plunger 3 and the armature 6 is increased, and the magnetic path: the plunger 3-the armature 6-the armature 2-the magnet yoke 1-. It is necessary to increase the magnetic resistance of the plunger 3, which lengthens the electromagnet in the axial direction, resulting in an increase in the size of the circuit breaker incorporating the electromagnet.
この考案の目的は、電磁石を軸方向に長くすることなく
最小動作電流に対する瞬時引外し動作電流の倍率を高
め、もって遮断器の大形化を避けうる電磁石の構成を提
供することである。An object of the present invention is to provide a structure of an electromagnet which can increase the ratio of the instantaneous tripping operating current to the minimum operating current without lengthening the electromagnet in the axial direction, thereby avoiding upsizing of the circuit breaker.
〔問題点を解決するための手段〕 上記目的を達成するために、本考案によれば、非磁性材
からなり少なくとも一方端に底面を有する筒状に形成さ
れ内側に軸線方向を同じくして挿入された強磁性材から
なる棒状のプランジャと、このプランジャを前記底面に
押圧する復帰スプリングとを収容するとともに、前記プ
ランジャの軸線方向移動速度を制御する緩衝液が充填さ
れかつ他方端に接極子を備えた筒状体と;この筒状体の
外側でこの筒状体に接する前記プランジャ半径方向の磁
路を形成するとともに前記接極子に吸引されるアーマチ
ュアを支承するマグネットヨークと;前記マグネットヨ
ークのプランジャ半径方向の磁路と前記接極子との間で
前記筒状体を取り巻きこの筒状体の軸線方向の磁束を発
生させるコイルと;を備えた電磁石を有する配線用遮断
器の引外し装置において、前記電磁石を、前記筒状体を
とり巻くコイルが前記マグネットヨークのプランジャ半
径方向磁路側に前記接極子とプランジャとの間の空隙を
ほぼ残す高さに巻かれている構成とするものとする。[Means for Solving the Problems] In order to achieve the above object, according to the present invention, a cylindrical shape is made of a non-magnetic material and has a bottom surface at least at one end, and is inserted inward in the same axial direction. A rod-shaped plunger made of a ferromagnetic material and a return spring that presses the plunger against the bottom surface, is filled with a buffer solution that controls the moving speed of the plunger in the axial direction, and has an armature at the other end. And a magnet yoke that forms a magnetic path in the radial direction of the plunger that is in contact with the cylindrical body outside the cylindrical body and that supports an armature attracted to the armature; A coil that surrounds the tubular body between the magnetic path in the radial direction of the plunger and the armature and that generates a magnetic flux in the axial direction of the tubular body. In the trip device for a circuit breaker for wiring, the electromagnet is set to a height such that a coil surrounding the tubular body substantially leaves a gap between the armature and the plunger on the magnetic path side of the magnet yoke in the plunger radial direction. It shall be rolled up.
電磁石をこのように構成することにより、従来は、第3
図に示すように、コイルに電流を流すことによりマグネ
ットヨークのプランジャ半径方向磁路を通過する磁束φ
c中の大きな割合が接極子とアーマチュアとの間の空隙
を通過し、このため瞬時引外し動作電流はさほど大きく
なくてもアーマチュアを遮断器の操作機構から引き外し
て接極子に吸引させることが可能であったのに対し、第
2図に示すように、前記磁束φcのうちコイルと接極子
との間でコイルから直接マグネットヨークへ向かう洩れ
磁束φLを生ずるため、接極子を通過してアーマチュア
へ向かう磁束φaが減少し、従来と同一の瞬時引外し動
作電流ではアーマチュアを操作機構から引き外すに足る
吸引力が得られなくなる。このため、コイルにはさらに
大きい電流を流す必要があり、これにより瞬時引外し動
作電流が従来より大きくなる。一方、最小動作電流は、
復帰スプリングの力が弱く、コイル電流は小さくても容
易にプランジャを接極子位置まで移動せしめうること、
また、プランジャが接極子に接触した状態ではコイルの
内側は強磁性材のみによる磁路となり、接極子とアーマ
チュアとの間に生じる磁束はコイルの高さには関係な
く、コイルの起磁力のみによってきまることから、コイ
ルの巻数が等しければ最小動作電流は変化しない。従っ
て、本考案のように、コイルをマグネットヨークのプラ
ンジャ半径方向磁路側に前記接極子とプランジャとの間
の空隙をほぼ残す高さに巻くことにより、電磁石を軸方
向に長くすることなく最小動作電流に対する瞬時引外し
動作電流の倍率を増すことができる。なお、この場合に
は、コイルの高さが従来より低くなるから、コイルが半
径方向に大きくなりうるが、この半径の増加分は通常、
コイルまわりのスペース内に収まり、遮断器の大形化を
招くことはない。By constructing the electromagnet in this way, the conventional three
As shown in the figure, the magnetic flux φ passing through the magnetic path in the plunger radial direction of the magnet yoke by passing a current through the coil.
A large proportion of c passes through the air gap between the armature and the armature, so that even if the instantaneous tripping operation current is not so large, the armature can be pulled out from the operating mechanism of the circuit breaker and attracted to the armature. On the other hand, as shown in FIG. 2, in the magnetic flux φ c , a leakage magnetic flux φ L directly flowing from the coil to the magnet yoke is generated between the coil and the armature, so that the magnetic flux passes through the armature. As a result, the magnetic flux φ a toward the armature is reduced, and with the same instantaneous tripping operation current as in the conventional case, it is no longer possible to obtain an attractive force sufficient to detach the armature from the operating mechanism. For this reason, it is necessary to flow a larger current through the coil, which results in a larger instantaneous trip operating current than in the conventional case. On the other hand, the minimum operating current is
The force of the return spring is weak, and even if the coil current is small, the plunger can be easily moved to the armature position.
Also, when the plunger is in contact with the armature, the inside of the coil is a magnetic path made only of ferromagnetic material, and the magnetic flux generated between the armature and armature is independent of the coil height and is only due to the magnetomotive force of the coil. Therefore, if the number of coil turns is equal, the minimum operating current does not change. Therefore, as in the present invention, by winding the coil on the magnetic path side of the magnet yoke in the radial direction of the plunger to a height that substantially leaves a gap between the armature and the plunger, the electromagnet is minimized in operation in the axial direction. It is possible to increase the ratio of the instantaneous trip operation current to the current. In this case, since the height of the coil is lower than that of the conventional one, the coil can be increased in the radial direction.
The circuit breaker fits in the space around the coil and does not increase the size of the circuit breaker.
〔実施例〕 第1図に本考案の一実施例による電磁石の構成を示す。
筒状体4をとり巻くコイル15は、マグネットヨーク1の
プランジャ半径方向の磁路の面から寸法hの高さまで巻
かれ、このコイルの左側端面と接極子6の右側端面との
間の軸方向間隔は、プランジャ3の左側端面と接極子6
の右側端面との間の間隔にほぼ等しい。このコイル15を
除いては電磁石の構成ならびに構成部材は従来のもの
(第6図)と全く同じである。[Embodiment] FIG. 1 shows the structure of an electromagnet according to an embodiment of the present invention.
The coil 15 that surrounds the tubular body 4 is wound from the surface of the magnetic path in the radial direction of the plunger of the magnet yoke 1 to a height h, and the axial direction between the left end surface of this coil and the right end surface of the armature 6 is increased. The distance between the left end surface of the plunger 3 and the armature 6
Is approximately equal to the distance from the right end face of the. Except for the coil 15, the construction and components of the electromagnet are exactly the same as the conventional one (FIG. 6).
このように、筒状体をとり巻くコイルを、マグネットヨ
ークのプランジャ半径方向磁路側に前記接極子とプラン
ジャとの間の空隙をほぼ残す高さに巻くことにより、コ
イルに電流を流したときに筒状体の内側に生ずる軸線方
向の磁束のうち、接極子とコイル端面との間を直接マグ
ネットヨーク方向へ向かう洩れ磁束を生じるため、接極
子からアーマチュアへ向かう磁束が減少し、アーマチュ
アを遮断器の操作機構から引き外す力が不足する。この
ため、コイルにはより大きい電流を流すことが必要とな
り、瞬時引外し動作電流が大きくなって最小動作電流に
対する倍率が大きくなる。In this way, by winding the coil surrounding the tubular body at a height which leaves a gap between the armature and the plunger on the plunger radial direction magnetic path side of the magnet yoke, when a current is applied to the coil. Of the magnetic flux in the axial direction generated inside the cylindrical body, a leakage magnetic flux that directly goes between the armature and the coil end face in the direction of the magnet yoke is generated. Insufficient force to remove from the operating mechanism. For this reason, it is necessary to flow a larger current through the coil, and the instantaneous tripping operating current becomes large and the multiplication factor with respect to the minimum operating current becomes large.
以上に述べたように、本考案によれば、非磁性材からな
り少なくとも一方端に底面を有する筒状に形成され内側
に軸線方向を同じくして挿入された強磁性材からなる棒
状のプランジャと、このプランジャを前記底面に押圧す
る復帰スプリングとを収容するとともに、前記プランジ
ャの軸線方向移動速度を制御する緩衝液が充填されかつ
他方端に接極子を備えた筒状体と;この筒状体の外側で
この筒状体に接する前記プランジャ半径方向の磁路を形
成するとともに前記接極子に吸引されるアーマチュアを
支承するマグネットヨークと;前記マグネットヨークの
プランジャ半径方向の磁路と前記接極子との間で前記筒
状体を取り巻きこの筒状体の軸線方向の磁束を発生させ
るコイルと;を備えた電磁石を有する配線用遮断器の引
外し装置において、前記電磁石を、前記筒状体をとり巻
くコイルが前記マグネットヨークのプランジャ半径方向
磁路側に前記接極子とプランジャとの間の空隙をほぼ残
す高さに巻かれている構成としたので、電磁石を大きく
することなく最小動作電流に対する瞬時引外し動作電流
の倍率を高めることができ、従来と同じ大きさであって
変圧器1次側に設置可能な配線用遮断器を提供すること
が可能となった。As described above, according to the present invention, a rod-shaped plunger made of a non-magnetic material and formed of a ferromagnetic material, which is formed into a cylindrical shape having a bottom surface at at least one end and is inserted inward in the same axial direction, A tubular body that accommodates a return spring that presses the plunger against the bottom surface, is filled with a buffer solution that controls the moving speed of the plunger in the axial direction, and has an armature at the other end; A magnet yoke that forms a magnetic path in the radial direction of the plunger that contacts the cylindrical body outside the magnet and supports an armature attracted to the armature; a magnetic path in the radial direction of the plunger of the magnet yoke and the armature. A tripping device for a circuit breaker having an electromagnet, the coil surrounding the tubular body and generating a magnetic flux in the axial direction of the tubular body; Since the electromagnet is configured such that the coil surrounding the tubular body is wound on the plunger radial direction magnetic path side of the magnet yoke at a height that substantially leaves a gap between the armature and the plunger, the electromagnet is It is possible to increase the ratio of the instantaneous trip operating current to the minimum operating current without increasing the size, and it is possible to provide a circuit breaker of the same size as the conventional one that can be installed on the primary side of the transformer. It was
第1図は本考案の一実施例による電磁石の構成を示す部
分断面図、第2図は本考案の電磁石における磁束の状況
を示す説明図、第3図は従来の電磁石における磁束の状
況を示す説明図、第4図および第5図は配線用遮断器に
おける電磁石の取付け状況を示すものであって、第4図
は配線用遮断器の部分断面平面図、第5図は縦断面図、
第6図は従来の電磁石の構成例を示す部分断面図、第7
図は第6図に示す電磁石の最小動作電流による動作時の
プランジャの位置を示す説明図、第8図は第6図に示す
電磁石の瞬時引外し動作電流による動作時のプランジャ
の位置を示す説明図、第9図はコイルに流れる電流と電
磁石の動作時間との関係を示す線図である。 1:マグネットヨーク、2:アーマチュア、3:プランジャ、
4:筒状体、4a:底面、5,15:コイル、6:接極子、7:復帰ス
プリング、8:シリコン油(緩衝液)。FIG. 1 is a partial sectional view showing the structure of an electromagnet according to an embodiment of the present invention, FIG. 2 is an explanatory view showing the state of magnetic flux in the electromagnet of the present invention, and FIG. 3 is showing the state of magnetic flux in a conventional electromagnet. Explanatory drawing, FIG. 4 and FIG. 5 show the mounting condition of the electromagnet in the circuit breaker for wiring, FIG. 4 is a partial sectional plan view of the circuit breaker for wiring, and FIG.
FIG. 6 is a partial sectional view showing a configuration example of a conventional electromagnet,
FIG. 8 is an explanatory view showing the position of the plunger when operating with the minimum operating current of the electromagnet shown in FIG. 6, and FIG. 8 is an explanatory view showing the position of the plunger when operating with the instantaneous trip operating current of the electromagnet shown in FIG. FIG. 9 is a diagram showing the relationship between the current flowing through the coil and the operating time of the electromagnet. 1: Magnet yoke, 2: Armature, 3: Plunger,
4: Cylindrical body, 4a: Bottom surface, 5,15: Coil, 6: Armature, 7: Return spring, 8: Silicon oil (buffer solution).
Claims (1)
を有する筒状に形成され内側に軸線方向を同じくして挿
入された強磁性材からなる棒状のプランジャと、このプ
ランジャを前記底面に押圧する復帰スプリングとを収容
するとともに、前記プランジャの軸線方向移動速度を制
御する緩衝液が充填されかつ他方端に接極子を備えた筒
状体と;この筒状体の外側でこの筒状体に接する前記プ
ランジャ半径方向の磁路を形成するとともに前記接極子
に吸引されるアーマチュアを支承するマグネットヨーク
と;前記マグネットヨークのプランジャ半径方向の磁路
と前記接極子との間で前記筒状体を取り巻きこの筒状体
の軸線方向の磁束を発生させるコイルと;を備えた電磁
石を有する配線用遮断器の引外し装置において、前記筒
状体をとり巻くコイルが前記マグネットヨークのプラン
ジャ半径方向磁路側に前記接極子とプランジャとの間の
空隙をほぼ残す高さに巻かれていることを特徴とする配
線用遮断器の引外し装置。1. A rod-shaped plunger made of a non-magnetic material and made of a ferromagnetic material which is formed in a cylindrical shape having a bottom surface at least at one end and is inserted inward in the same axial direction, and the plunger is pressed against the bottom surface. And a return spring that accommodates a return spring, which is filled with a buffer solution for controlling the moving speed of the plunger in the axial direction and has an armature at the other end; and a tubular body outside the tubular body. A magnet yoke that forms a magnetic path in the radial direction of the plunger that is in contact with and supports an armature that is attracted to the armature; and the tubular body between the magnetic path in the radial direction of the plunger of the magnet yoke and the armature. In a tripping device for a circuit breaker for wiring, which has an electromagnet having a coil for generating a magnetic flux in the axial direction of the tubular body, a coil surrounding the tubular body. Le almost leave tripping of circuit breaker, characterized by being wound in height while supplying air gap between the armature and the plunger to the plunger radially path side of the magnet yoke.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11568787U JPH0728675Y2 (en) | 1987-07-28 | 1987-07-28 | Circuit breaker trip device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11568787U JPH0728675Y2 (en) | 1987-07-28 | 1987-07-28 | Circuit breaker trip device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6420655U JPS6420655U (en) | 1989-02-01 |
JPH0728675Y2 true JPH0728675Y2 (en) | 1995-06-28 |
Family
ID=31357570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11568787U Expired - Lifetime JPH0728675Y2 (en) | 1987-07-28 | 1987-07-28 | Circuit breaker trip device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0728675Y2 (en) |
-
1987
- 1987-07-28 JP JP11568787U patent/JPH0728675Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6420655U (en) | 1989-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8159807B2 (en) | Method and device for operating a switching device | |
JPH02189837A (en) | Magnetic tripping device | |
JP5248982B2 (en) | Release-type electromagnet device | |
US4504807A (en) | High inrush current circuit breaker | |
JPH02226634A (en) | Electric switch tripper and electric switch having the tripper | |
JPH0728675Y2 (en) | Circuit breaker trip device | |
US2690528A (en) | Delayed action magnetic circuit breaker | |
US2700711A (en) | Automatic circuit breaker | |
US4238749A (en) | High inrush current circuit breaker | |
US3081387A (en) | Circuit breaker | |
US3206578A (en) | Circuit breaker with adjustable third fluid flow time delay | |
US3740650A (en) | Electromagnetic switch | |
GB1559228A (en) | Electric automatic cut out for overload and short-circuit current tripping | |
US2937251A (en) | Circuit breaker | |
US1354881A (en) | Electromagnetically-operated device | |
JPS6346967B2 (en) | ||
JP2002056766A (en) | Over-current tripping equipment of circuit breaker | |
US1204510A (en) | Electrical protective device. | |
JPH0232850B2 (en) | KAIROSHADANKINOHIKIHAZUSHISOCHI | |
JPH0324009B2 (en) | ||
JPH04259723A (en) | Under-voltage tripping device for circuit breaker | |
JPS6051225B2 (en) | Electromagnetic overcurrent device | |
CA1105552A (en) | Solenoid coil surrounding magnetic circuit gap | |
GB917661A (en) | Improvements in automatic electric circuit breakers | |
US3307123A (en) | Tripping means for circuit breakers |