JPH07286246A - High strength ferritic heat resistant steel - Google Patents

High strength ferritic heat resistant steel

Info

Publication number
JPH07286246A
JPH07286246A JP7854394A JP7854394A JPH07286246A JP H07286246 A JPH07286246 A JP H07286246A JP 7854394 A JP7854394 A JP 7854394A JP 7854394 A JP7854394 A JP 7854394A JP H07286246 A JPH07286246 A JP H07286246A
Authority
JP
Japan
Prior art keywords
strength
ferritic heat
resistant steel
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7854394A
Other languages
Japanese (ja)
Inventor
Hisashi Naoi
久 直井
Hiroyuki Mimura
裕幸 三村
Masahiro Ogami
正浩 大神
Toshio Fujita
利夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7854394A priority Critical patent/JPH07286246A/en
Publication of JPH07286246A publication Critical patent/JPH07286246A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a ferritic heat resistant steel having high strength and high toughness for boiler steel tube used under ultrahigh critical pressure conditions. CONSTITUTION:A boiler material improved in toughness after aging and steam oxidation characteristic can be obtained by the proper addition of Si and Al to a ferritic heat resistant steel excellent in high temp. strength, in which the additive quantities of Mo and W are properly regulated and Co and B are actively used. This boiler material has a chemical composition containing 0.21-0.50% Si, 0.002-0.050% Al, 0.02-<0.15% C, 0.05-1.50% Mn, 8.00-13.00% Cr, <=1.00% Ni, <0.50% Mo, 2.00-3.50% W, 0.10-0.30% V, 0.01-0.15% Nb, <=4.0% Co, and 0.01-0.10% N and satisfying Si+10Al<=0.80% and further containing, if necessary, 0.0010-0.0100% B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた高温クリープ強
度、十分な靱性と耐酸化特性の優れた高強度フェライト
系耐熱鋼に関し、さらに詳しくはボイラ用鋼管用鋼等に
係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength ferritic heat-resistant steel having excellent high-temperature creep strength, sufficient toughness and oxidation resistance, and more particularly to steel for steel tubes for boilers and the like.

【0002】[0002]

【従来の技術】最近、熱効率を向上させる観点から、火
力発電においては蒸気条件の高温高圧化が進められ、例
えば蒸気条件を現行の538℃/246kgf/cm2
から593℃/316kgf/cm2 、さらには649
℃/352kgf/cm2 に引き上げようとする計画が
推進されている。このような動向に伴い、ボイラ管など
の材料選択にあたっては、耐酸化性と高温強度の観点か
ら、現在使われている2・1/4Cr−Mo鋼は適用で
きなくなる。一方、18−8オーステナイト系耐熱鋼の
適用が考えられるが、コストアップなどの問題がある。
従って、この二者の間に位置する耐酸化特性を有し、か
つ高強度、高靱性のフェライト系耐熱鋼の開発が望まれ
ている。
2. Description of the Related Art Recently, from the viewpoint of improving thermal efficiency, in the thermal power generation, high temperature and high pressure steam conditions have been promoted. For example, the steam conditions are the current 538 ° C./246 kgf / cm 2
To 593 ° C./316 kgf / cm 2 , and even 649
A plan to raise the temperature to 352 kgf / cm 2 is being promoted. Due to these trends, the currently used 2/4 Cr-Mo steel cannot be applied to the material selection of boiler tubes and the like from the viewpoint of oxidation resistance and high temperature strength. On the other hand, application of 18-8 austenitic heat resistant steel is considered, but there is a problem such as cost increase.
Therefore, it is desired to develop a ferritic heat-resisting steel having an oxidation resistance property and a high strength and a high toughness which are located between the two.

【0003】他方、このような用途には、これまで9C
r−1Mo鋼および9Cr−2Mo鋼などの高クロムフ
ェライト系耐熱鋼も用いられてきたが、これらは何れも
上記の蒸気条件ではクリープ破断強度が不足するので適
用できない。なお、その他の関連技術として、既に特開
昭62−297435号、特開昭62−297436
号、特開昭63−89644号の各公報等に記載のもの
がある。また、特開平4−371552号公報には、M
o、W、Nb、VおよびBの複合添加によりクリープ強
度の向上をはかる技術が提案されている。
On the other hand, 9C has hitherto been used for such applications.
High-chromium ferritic heat resistant steels such as r-1Mo steel and 9Cr-2Mo steel have also been used, but none of them can be applied due to insufficient creep rupture strength under the above steam conditions. Incidentally, as other related arts, Japanese Patent Laid-Open Nos. 62-297435 and 62-297436 have already been disclosed.
And Japanese Patent Application Laid-Open No. 63-89644. Further, in Japanese Patent Laid-Open No. 4-371552, M
A technique for improving creep strength by the combined addition of o, W, Nb, V and B has been proposed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上のよう
な要望に応えるために、超々臨界圧ボイラ用鋼管等の鋼
素材として使用できるような高強度、高靱性を有し、か
つ耐酸化特性に優れたフェライト系耐熱鋼を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION In order to meet the above demands, the present invention has high strength and high toughness and can be used as a steel material for steel pipes for ultra-supercritical boilers, and has oxidation resistance. The object is to provide a ferritic heat resistant steel having excellent characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、上述の目的を
達成するためになされたものであり、合金成分の最適化
をはかり、MoよりWを積極的に利用し、Coの添加な
どによって高温強度をを改善した高強度フェライト系耐
熱鋼において、SiとAlの適正なる添加により、靱性
および耐酸化特性に優れ、かつ高クリープ強度を維持し
た鋼を得るようにしたものである。
The present invention has been made in order to achieve the above-mentioned object, by optimizing the alloying components, positively utilizing W rather than Mo, and adding Co and the like. A high-strength ferritic heat-resistant steel with improved high-temperature strength is obtained by appropriately adding Si and Al to obtain a steel having excellent toughness and oxidation resistance and maintaining high creep strength.

【0006】すなわち、本発明の要旨とするところは、
下記のとおりである。 (1)重量%で、C:0.02〜0.15%未満、M
n:0.05〜1.50%、Cr:8.00〜13.0
0%、Ni:1.00%以下、Mo:0.50%未満、
W:2.00〜3.50%、V:0.10〜0.30
%、Nb:0.01〜0.15%、Co:4.0%以
下、N:0.01〜0.10%を含有し、さらにSi:
0.21〜0.50%、Al:0.002〜0.05
%、かつSi+10Alを0.80%以下含有し、残部
がFeおよび不可避的不純物からなる優れた高温強度と
十分な靱性と耐酸化特性を有する高強度フェライト系耐
熱鋼。
That is, the gist of the present invention is to
It is as follows. (1)% by weight, C: 0.02 to less than 0.15%, M
n: 0.05-1.50%, Cr: 8.00-13.0
0%, Ni: 1.00% or less, Mo: less than 0.50%,
W: 2.00 to 3.50%, V: 0.10 to 0.30
%, Nb: 0.01 to 0.15%, Co: 4.0% or less, N: 0.01 to 0.10%, and Si:
0.21-0.50%, Al: 0.002-0.05
%, And Si + 10Al 0.80% or less, the balance being Fe and unavoidable impurities, and the high temperature ferritic heat-resistant steel having excellent high temperature strength, sufficient toughness and oxidation resistance.

【0007】(2)B:0.0010〜0.0100%
を添加したことを特徴とする前項(1)記載の優れた高
温強度と十分な靱性と耐酸化特性を有する高強度フェラ
イト系耐熱鋼。
(2) B: 0.0010 to 0.0100%
A high-strength ferritic heat-resistant steel having the excellent high-temperature strength, sufficient toughness, and oxidation resistance as set forth in the preceding paragraph (1), characterized in that

【0008】[0008]

【作用】以下、本発明の各成分の限定理由について説明
する。Cは主にMC(Mは合金元素を指す、以下も同
じ)およびM236 型の炭化物として析出し、強度およ
び靱性に大きな影響を及ぼす。Cが0.02%未満では
析出量が少なく、強化に不十分であり、また0.15%
以上では靱性が低下するとともに、炭化物の凝集粗大化
が促進され、高温長時間側のクリープ破断強度を低下さ
せるので、0.02〜0.15%未満に限定する。
The reason for limiting each component of the present invention will be described below. C mainly precipitates as MC (M is an alloying element, the same applies below) and M 23 C 6 type carbides, and has a great influence on strength and toughness. When C is less than 0.02%, the amount of precipitation is small and it is insufficient for strengthening.
In the above case, the toughness is lowered, the coagulation and coarsening of carbides are promoted, and the creep rupture strength at the high temperature long time side is lowered, so the content is limited to less than 0.02 to 0.15%.

【0009】Mnはδフェライトの生成を抑制する効果
を有する。Mnは最低0.05%が必要であるが、1.
50%を超えると高温強度を低下させるので、上限を
1.50%とした。Crは高温耐酸化性を確保する上で
必要不可欠な元素であり、M236 型炭化物を析出させ
る効果もある。Crが8.00%未満では高温での耐酸
化性が不足し、高温強度も低下する。一方、Crが1
3.00%超ではδフェライトの抑制が困難で、強度と
靱性が損なわれるので、Crの範囲を8.00〜13.
00%に限定する。
Mn has the effect of suppressing the formation of δ ferrite. Mn must be at least 0.05%, but 1.
If it exceeds 50%, the high temperature strength decreases, so the upper limit was made 1.50%. Cr is an essential element for ensuring high temperature oxidation resistance, and also has an effect of precipitating M 23 C 6 type carbide. If Cr is less than 8.00%, the oxidation resistance at high temperature is insufficient and the high temperature strength is also reduced. On the other hand, Cr is 1
If it exceeds 3.00%, it is difficult to suppress δ ferrite and the strength and toughness are impaired. Therefore, the Cr range is 8.00 to 13.
Limited to 00%.

【0010】Niはオーステナイト生成元素であり、δ
フェライトを抑制する効果を有し、靱性にも有益な影響
を及ぼす。しかし、Niが1.00%超では析出物の凝
集粗大化をきたし、長時間側のクリープ破断強度が低下
するので、1.00%を上限とした。Moは固溶体強化
をもたらすと同時に、M236 を安定化させ、高温強度
を向上させる。Wの添加量と関連して、Moが0.50
%以上ではδフェライトの生成を促進すると同時に、M
6 CとLaves相の析出および凝集粗大化を促進する
ので、Mo量は0.50%未満とした。
Ni is an austenite forming element, and δ
It has the effect of suppressing ferrite and also has a beneficial effect on toughness. However, if Ni exceeds 1.00%, coarsening of precipitates will occur, and the creep rupture strength on the long-term side will decrease, so 1.00% was made the upper limit. Mo brings about solid solution strengthening and at the same time stabilizes M 23 C 6 and improves high temperature strength. Mo is 0.50 in relation to the added amount of W.
% Or more accelerates the formation of δ ferrite, and at the same time M
The amount of Mo was set to less than 0.50% because it promotes precipitation of 6 C and the Laves phase and coarsening of aggregation.

【0011】Wは固溶体強化とM236 の微細析出の効
果を奏すると同時に、炭化物の凝集粗大化を抑制し、高
温長時間側のクリープ破断強度の向上に極めて有効であ
る。Wは最低2.00%が必要であるが、3.50%を
超えるとδフェライトおよび粗大なLaves相が生成
しやすくなり、高温強度と靱性を低下させるため、2.
00〜3.50%の範囲とした。
W has the effects of solid solution strengthening and fine precipitation of M 23 C 6 , and at the same time suppresses coagulation and coarsening of carbides, and is extremely effective in improving creep rupture strength at high temperature and long time. W must be at least 2.00%, but if it exceeds 3.50%, δ ferrite and a coarse Laves phase are likely to be formed, and high temperature strength and toughness are reduced, so 2.
The range is from 00 to 3.50%.

【0012】Vは微細な炭窒化物として析出し、高温強
度を高める働きをする。Vが0.10%未満では効果が
小さく、0.30%超ではV(C、N)の粗大化を招く
だけではなく、M236 として析出し得るC量を減少さ
せ、逆に高温強度を低下させるので、0.10〜0.3
0%の範囲に限定する。Nbは炭窒化物として析出し、
強度を高めるのに有効な元素である。Nbは最低0.0
1%が必要であるが、0.15%を超えて添加すると焼
ならし温度ではマトリックスに完全に溶けきれず、十分
な強化効果が得られないので、0.01〜0.15%の
範囲に限定する。
V is deposited as a fine carbonitride and serves to enhance the high temperature strength. If V is less than 0.10%, the effect is small, and if it exceeds 0.30%, not only V (C, N) is coarsened, but also the amount of C that can be precipitated as M 23 C 6 is decreased, and conversely at high temperature. 0.10 to 0.3 because it reduces strength
Limit to 0% range. Nb is deposited as carbonitride,
It is an effective element for increasing strength. Nb is at least 0.0
1% is required, but if it is added in excess of 0.15%, it cannot be completely dissolved in the matrix at the normalizing temperature, and a sufficient strengthening effect cannot be obtained. Limited to

【0013】NはNb、VおよびCrなどと結合して窒
化物または炭窒化物を析出させ、高温強度を高める重要
な元素の一つである。Nは最低0.01%で有効である
が、0.10%を超えると窒化物の粗大化と靱性の低下
をもたらすだけではなく、製造上でも困難となるため、
0.01〜0.10%の範囲に限定する。Coの利用は
本発明の特徴の一つである。Coはオーステナイト生成
元素であり、機械的性質を損なうδフェライトの生成を
抑制する効果を有する。また、Coは鋼のAc1変態温度
を降下させる効果が小さいため、靱性と延性の確保のた
めの高い温度での焼もどしができる。一方、Co添加量
が4.0%を超えるとコストの面では不利となるので、
4.0%以下に限定する。
N is one of the important elements that combine with Nb, V, Cr and the like to precipitate nitrides or carbonitrides and enhance the high temperature strength. N is effective at a minimum of 0.01%, but if it exceeds 0.10%, not only does the nitride become coarse and the toughness deteriorates, but it also becomes difficult in manufacturing, so
It is limited to the range of 0.01 to 0.10%. Utilization of Co is one of the features of the present invention. Co is an austenite forming element and has an effect of suppressing the formation of δ ferrite which impairs mechanical properties. Further, since Co has a small effect of lowering the Ac 1 transformation temperature of steel, it can be tempered at a high temperature for ensuring the toughness and ductility. On the other hand, if the amount of Co added exceeds 4.0%, it is disadvantageous in terms of cost.
It is limited to 4.0% or less.

【0014】Bは粒界強化およびM23(C、B)6 など
として析出強化の効果があり、高温強度を向上する。B
が0.0010%未満では効果が小さく、また0.01
00%超では粗大なB含有相を生じさせる傾向にあり、
また脆化が起こりやすくなるため、0.0010〜0.
0100%の範囲に限定する。Siはフェライト系耐熱
鋼の脱酸に必要な元素であり、0.2%以下にSiを低
く抑えることはフェライト系耐熱鋼の精錬コストが上昇
し、0.2%を超えてSiを高くすればその精錬コスト
が低減することが明らかになったので、フェライト系耐
熱鋼の使用性能の観点から必要なSiの最小および最大
量について検討した。ボイラの使用性能としてクリープ
強度、靱性および溶接性および耐水蒸気酸化特性に及ぼ
すSiの影響を詳細に調べたところ、Siが0.21%
以上でかつ0.50%以下の範囲の成分を有するフェラ
イト系耐熱鋼の使用性能はSiが0.2%以下の範囲の
成分を有するフェライト系耐熱鋼の使用性能とほぼ同等
であり、ボイラ鋼管として必要な性能を確保できること
が判った。
B has the effect of strengthening the grain boundaries and precipitation strengthening as M 23 (C, B) 6, etc., and improves the high temperature strength. B
Is less than 0.0010%, the effect is small, and 0.01
If it exceeds 00%, a coarse B-containing phase tends to occur,
In addition, embrittlement easily occurs, so 0.0010 to 0.
It is limited to the range of 0100%. Si is an element necessary for deoxidizing ferritic heat-resistant steel, and controlling the Si to a low level of 0.2% or less increases refining costs for ferritic heat-resistant steel, and the Si content should be increased above 0.2%. Since it became clear that the refining cost would be reduced, the minimum and maximum amounts of Si required from the viewpoint of the use performance of the ferritic heat-resistant steel were examined. When the effect of Si on creep strength, toughness, weldability, and steam oxidation resistance as a use performance of the boiler was investigated in detail, Si was 0.21%.
The use performance of the ferritic heat-resisting steel having the above components in the range of 0.50% or less is almost the same as the use performance of the ferritic heat-resisting steel having the component of Si in the range of 0.2% or less. It has been found that the necessary performance can be secured.

【0015】Alは脱酸材として使用されるが、その残
留量は結晶粒径や機械的性質に大きな影響を及ぼす。A
lが0.002%未満では脱酸には不十分であり、また
0.05%超ではクリープ破断強度が低下するので、
0.002〜0.05%の範囲に限定する。Alが0.
05%以下、Siが0.50%以下であっても、両者が
複合して多量に添加されると時効後靱性が悪化するた
め、Si+10Alを0.80%以下に制限した。
Al is used as a deoxidizing material, but the residual amount thereof has a great influence on the crystal grain size and mechanical properties. A
If 1 is less than 0.002%, it is insufficient for deoxidation, and if it exceeds 0.05%, the creep rupture strength decreases, so
It is limited to the range of 0.002 to 0.05%. Al is 0.
Even if the amount of Si is 0.5% or less and the amount of Si is 0.50% or less, the toughness after aging deteriorates when both are added in a large amount, so Si + 10Al was limited to 0.80% or less.

【0016】[0016]

【実施例】表1に示す化学組成を有する本発明鋼(N
o.8〜11)と比較鋼(No.1〜7)を真空誘導溶
解炉にて各20kgのインゴットに溶製し、熱延によっ
て厚さ15mmの板とした後、1060℃×60min
の焼ならし、780℃×60minの焼もどしを施し
た。このように用意した試料を600℃、25kgf/
mm2 の条件においてクリープ破断試験を行い、また6
00℃にて3000時間時効後20℃においてシャルピ
ー衝撃試験を行い、650℃で500時間の水蒸気酸化
試験を行った。その結果を表2に示す。
EXAMPLES Steels of the present invention (N having the chemical composition shown in Table 1)
o. 8 to 11) and comparative steels (No. 1 to 7) were melted into ingots of 20 kg each in a vacuum induction melting furnace and hot rolled into a plate having a thickness of 15 mm, and then 1060 ° C. × 60 min
And normalizing at 780 ° C. × 60 min. The sample prepared in this manner was used at 600 ° C. and 25 kgf /
Creep rupture test was conducted under the condition of mm 2
After aging at 00 ° C. for 3000 hours, a Charpy impact test was performed at 20 ° C., and a steam oxidation test was performed at 650 ° C. for 500 hours. The results are shown in Table 2.

【0017】表2から明らかなように、本発明鋼は、6
00℃、25kgf/mm2 のクリープ破断時間、60
0℃、3000時間時効後20℃でのシャルピー吸収エ
ネルギーおよび水蒸気酸化特性のバランスが比較鋼に対
し良好になっている。
As is clear from Table 2, the steel of the present invention is 6
00 ° C, creep rupture time of 25 kgf / mm 2 , 60
The balance between Charpy absorbed energy and steam oxidation property at 20 ° C. after aging at 0 ° C. for 3000 hours is better than that of the comparative steel.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上の如く、本発明により優れたクリー
プ破断強度と良好な靱性を有する高強度フェライト系耐
熱鋼の供給が可能となり、火力発電の分野のみならず、
原子力発電、化学工業など多くの分野への適用が期待さ
れ、産業界に対し貢献するところが極めて大きい。
As described above, according to the present invention, it becomes possible to supply high-strength ferritic heat-resistant steel having excellent creep rupture strength and good toughness, and not only in the field of thermal power generation,
It is expected to be applied to many fields such as nuclear power generation and chemical industry, and it will make a great contribution to the industrial world.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大神 正浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 藤田 利夫 東京都文京区向丘1丁目14の4 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Ogami 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division (72) Inventor Toshio Fujita 1-14-14, Mukooka, Bunkyo-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C:0.02〜0.15%未満 Mn:0.05〜1.50% Cr:8.00〜13.00% Ni:1.00%以下 Mo:0.50%未満 W:2.00〜3.50% V:0.10〜0.30% Nb:0.01〜0.15% Co:4.0%以下 N:0.01〜0.10% を含有し、さらに Si:0.21〜0.50% Al:0.002〜0.05%、かつ Si+10Alを0.80%以下含有し、残部がFeお
よび不可避的不純物からなる優れた高温強度と十分な靱
性と耐酸化特性を有する高強度フェライト系耐熱鋼。
1. By weight%, C: 0.02 to less than 0.15% Mn: 0.05 to 1.50% Cr: 8.00 to 13.00% Ni: 1.00% or less Mo: 0.0. Less than 50% W: 2.00 to 3.50% V: 0.10 to 0.30% Nb: 0.01 to 0.15% Co: 4.0% or less N: 0.01 to 0.10% And further contains Si: 0.21 to 0.50%, Al: 0.002 to 0.05%, and Si + 10Al: 0.80% or less, and the balance is excellent in high temperature strength consisting of Fe and unavoidable impurities. And high-strength ferritic heat resistant steel with sufficient toughness and oxidation resistance.
【請求項2】 B:0.0010〜0.0100%を添
加したことを特徴とする請求項1記載の優れた高温強度
と十分な靱性と耐酸化特性を有する高強度フェライト系
耐熱鋼。
2. A high-strength ferritic heat-resistant steel having excellent high-temperature strength, sufficient toughness, and oxidation resistance according to claim 1, wherein B: 0.0010 to 0.0100% is added.
JP7854394A 1994-04-18 1994-04-18 High strength ferritic heat resistant steel Pending JPH07286246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7854394A JPH07286246A (en) 1994-04-18 1994-04-18 High strength ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7854394A JPH07286246A (en) 1994-04-18 1994-04-18 High strength ferritic heat resistant steel

Publications (1)

Publication Number Publication Date
JPH07286246A true JPH07286246A (en) 1995-10-31

Family

ID=13664838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7854394A Pending JPH07286246A (en) 1994-04-18 1994-04-18 High strength ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JPH07286246A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892079A1 (en) * 1997-07-16 1999-01-20 Mitsubishi Heavy Industries, Ltd. Heat-resisting cast steel
EP1132489A2 (en) * 2000-03-07 2001-09-12 Hitachi, Ltd. Steam turbine rotor shaft
EP1770182A1 (en) * 2005-09-29 2007-04-04 Hitachi, Ltd. High-strenght heat resisting cast steel, method of producing the steel, and applications of the steel
CN106381441A (en) * 2016-08-31 2017-02-08 四川丰元机械制造有限公司 Smelting method for 10Cr11Co3W3NiMoVNbNB low-carbon low-silicon low-aluminum high-boron steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892079A1 (en) * 1997-07-16 1999-01-20 Mitsubishi Heavy Industries, Ltd. Heat-resisting cast steel
US5997806A (en) * 1997-07-16 1999-12-07 Mitsubishi Heavy Industries, Ltd. Heat-resisting cast steel
EP1001044A2 (en) * 1997-07-16 2000-05-17 Mitsubishi Heavy Industries, Ltd. Heat-resisting cast steel
EP1002885A2 (en) * 1997-07-16 2000-05-24 Mitsubishi Heavy Industries, Ltd. Heat-resisting cast steel
EP1001044A3 (en) * 1997-07-16 2000-09-06 Mitsubishi Heavy Industries, Ltd. Heat-resisting cast steel
EP1002885A3 (en) * 1997-07-16 2000-09-06 Mitsubishi Heavy Industries, Ltd. Heat-resisting cast steel
EP1132489A2 (en) * 2000-03-07 2001-09-12 Hitachi, Ltd. Steam turbine rotor shaft
EP1132489A3 (en) * 2000-03-07 2001-09-19 Hitachi, Ltd. Steam turbine rotor shaft
EP1770182A1 (en) * 2005-09-29 2007-04-04 Hitachi, Ltd. High-strenght heat resisting cast steel, method of producing the steel, and applications of the steel
CN106381441A (en) * 2016-08-31 2017-02-08 四川丰元机械制造有限公司 Smelting method for 10Cr11Co3W3NiMoVNbNB low-carbon low-silicon low-aluminum high-boron steel

Similar Documents

Publication Publication Date Title
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
JP2808048B2 (en) High-strength ferritic heat-resistant steel
JP2631250B2 (en) High-strength ferritic heat-resistant steel for steel tubes for boilers
JPH0885849A (en) High chromium ferritic heat resistant steel
JP2000248337A (en) Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2528767B2 (en) Ferritic heat resistant steel with excellent high temperature strength and toughness
JPH07286246A (en) High strength ferritic heat resistant steel
JPH05263196A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JPH07286247A (en) High strength ferritic heat resistant steel
JP3531228B2 (en) High Cr ferritic heat resistant steel
JP2734525B2 (en) Heat resistant steel with excellent toughness
JP3869908B2 (en) High chromium ferritic heat resistant steel with excellent high temperature creep strength
JP3866816B2 (en) High strength ferritic heat resistant steel with excellent high temperature creep strength and room temperature toughness
JPH0359135B2 (en)
JPH055891B2 (en)
JP2002180208A (en) Ferritic heat resistant steel
JP3368413B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
JP3787212B2 (en) High Cr ferritic heat resistant steel
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH05311346A (en) Ferritic heat resistant steel having high creep strength
JP3565155B2 (en) High strength low alloy heat resistant steel
JPH05311343A (en) Ferritic heat resistant steel having high creep strength