JPH07284882A - Twin roll type continuous casting apparatus - Google Patents

Twin roll type continuous casting apparatus

Info

Publication number
JPH07284882A
JPH07284882A JP8165894A JP8165894A JPH07284882A JP H07284882 A JPH07284882 A JP H07284882A JP 8165894 A JP8165894 A JP 8165894A JP 8165894 A JP8165894 A JP 8165894A JP H07284882 A JPH07284882 A JP H07284882A
Authority
JP
Japan
Prior art keywords
molten metal
temperature
casting
heat insulating
insulating cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8165894A
Other languages
Japanese (ja)
Inventor
Isao Mizuchi
功 水地
Masafumi Kirihara
端史 桐原
Yoshio Isobe
由男 礒辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8165894A priority Critical patent/JPH07284882A/en
Publication of JPH07284882A publication Critical patent/JPH07284882A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the stickiness of solidified metal caused by surface temp. drop of molten steel and to stably produce a cast strip without defect, such as surface crack, by restraining heat radiation of the molten carbon steel supplied into a molten steel pool part in a twin roll type continuous casting. CONSTITUTION:In a twin roll type continuous casting apparatus for casting the cast strip 4 by supplying the molten carbon steel into the molten steel pool part 3 formed with one pair of casting rolls 1a, 1b, a heat insulating cover 6 covering the upper part of the casting rolls 1a, 1b is arranged and a heating device 8 is arranged in the heat insulating cover 6. A thermometer 9 for detecting the temp. of the heat insulating cover 6 and a thermometer 12 for detecting the molten steel temp. in the molten steel pool part 3 are arranged, and a temp. control device 14 for controlling the heating device 8 is arranged so that the measured temp. with each thermometer 9, 12 corresponds to the setting temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素鋼の溶湯から直接に
薄帯鋳片を製造するための双ドラム式連続鋳造装置に関
し、特に湯溜まり部内溶湯の表面温度を所定範囲に制御
する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twin-drum type continuous casting apparatus for directly producing a strip cast from a molten carbon steel, and more particularly to an apparatus for controlling the surface temperature of the molten metal in a molten metal pool within a predetermined range. It is a thing.

【0002】[0002]

【従来の技術】双ドラム式連続鋳造法においては、パウ
ダーを使用しないために湯溜まり部内の溶湯表面温度が
低下し易く、特に炭素鋼の溶湯は融点が高いために表面
から凝固が進行して地金が生成する。この地金が鋳造ド
ラムと凝固シェル間に巻き込まれると、この部分の冷却
の不均一により鋳片に表面割れ及び板厚の不均一が発生
し、また地金差込み部は急激な板厚増加によりホットバ
ンドとなってブレークアウトが発生し鋳片が破断する場
合がある。また、地金が巻き込まれない場合でも溶湯表
面に地金が成長すると湯面レベル制御が困難になり、鋳
造を継続できない場合がある。
2. Description of the Related Art In the twin-drum type continuous casting method, the surface temperature of the molten metal in the molten metal pool tends to decrease because no powder is used. Particularly, since the molten metal of carbon steel has a high melting point, solidification proceeds from the surface. Bullion is generated. When this metal is caught between the casting drum and the solidified shell, surface unevenness and plate thickness unevenness occur in the slab due to non-uniform cooling of this part. It may become a hot band, breakout may occur, and the slab may be broken. Even if the metal is not caught, if the metal grows on the surface of the molten metal, it becomes difficult to control the level of the molten metal, and casting may not be continued.

【0003】湯溜まり部内溶湯温度の低下を防止する方
法として、図2に示すように湯溜まり部3の上方に反射
板15を設置することで溶湯の熱放射を抑制する方法
(特開平2−52148号公報)が知られている。しか
し、地金発生防止に十分な効果を得るには反射板表面温
度を約1000℃以上にする必要があり、1000℃以
上の高温に加熱されたとき、反射率が大きいことが必要
である。しかし反射板15は、溶湯中から発生するガス
等によって表面が汚れて反射率が小さくなるために、鋳
造中において反射板表面をクリーニングする必要があり
実用的でない。
As a method of preventing the temperature of the molten metal in the molten metal pool from decreasing, a reflector 15 is installed above the molten metal pool 3 as shown in FIG. No. 52148) is known. However, in order to obtain a sufficient effect of preventing the generation of metal, it is necessary to set the surface temperature of the reflection plate to about 1000 ° C. or higher, and it is necessary that the reflectance be large when heated to a high temperature of 1000 ° C. or higher. However, the reflection plate 15 is not practical because the surface of the reflection plate 15 is contaminated by gas or the like generated from the molten metal and the reflectance is reduced, and therefore it is necessary to clean the surface of the reflection plate during casting.

【0004】また、湯溜まり部内溶湯の表面温度の低下
を防止する他の方法として、湯溜まり部に保温材を供給
する方法(特開平2−41741号公報)が知られてい
る。しかし、この方法では湯溜まり部内の溶湯からの熱
放射を十分に抑制することができにくく、保温材と溶湯
との反応によって溶湯が汚染され、また保温材の湯面高
さに合わせた厳密な位置制御が必要であり実用的でな
い。
As another method for preventing a decrease in the surface temperature of the molten metal in the basin, a method of supplying a heat insulating material to the basin (Japanese Patent Laid-Open No. 2-41741) is known. However, with this method, it is difficult to sufficiently suppress the heat radiation from the molten metal in the hot water pool part, the molten metal is contaminated by the reaction between the heat insulating material and the molten metal, and the strictness according to the level of the heat insulating material Position control is necessary and not practical.

【0005】[0005]

【発明が解決しようとする課題】本発明は双ドラム式連
続鋳造において、湯溜まり部に供給された炭素鋼の溶湯
の熱放射を抑制することで、溶湯の表面温度低下による
地金の生成を防止して表面割れ等の欠陥のない鋳片を安
定して製造することを課題とする。
SUMMARY OF THE INVENTION In the twin-drum type continuous casting, the present invention suppresses the heat radiation of the molten carbon steel supplied to the molten metal pool portion, so that the generation of the metal due to the decrease of the surface temperature of the molten metal is prevented. It is an object to prevent and stably produce a cast slab without defects such as surface cracks.

【0006】[0006]

【課題を解決するための手段】前記課題を解決する本発
明の双ドラム式連続鋳造装置は、一対の鋳造ドラムによ
って形成された湯溜まり部に炭素鋼の溶湯を供給して薄
帯鋳片を鋳造する双ドラム式連続鋳造装置において、前
記鋳造ドラムの上方を覆う保温カバーを設け、該保温カ
バーに加熱装置を設け、該保温カバーの温度を検出する
温度計及び前記湯溜まり部の溶湯温度を検出する温度計
を設け、前記各温度計による検出温度が設定温度と一致
するように前記加熱装置を制御する温度制御装置を設け
たことを特徴とする。
A twin-drum type continuous casting apparatus of the present invention which solves the above-mentioned problems supplies a molten steel of carbon steel to a molten metal pool portion formed by a pair of casting drums to form a thin strip slab. In a twin-drum type continuous casting device for casting, a heat insulating cover for covering the upper part of the casting drum is provided, a heating device is provided for the heat insulating cover, and a thermometer for detecting the temperature of the heat insulating cover and the molten metal temperature of the hot water pool portion are provided. A thermometer for detecting is provided, and a temperature control device for controlling the heating device is provided so that the temperature detected by each of the thermometers matches a set temperature.

【0007】[0007]

【作用】一般的に熱放射による伝熱はステファンボルツ
マンの法則により、熱放射物体(溶湯)の温度の4乗に
正比例し、熱放射率に反比例する。すなわち溶湯の放射
伝熱は、溶湯と受熱面との温度差が大きい程、大きくな
る。従って、湯溜まり部内の溶湯の熱放射を抑制するた
めには、湯溜まり部内の溶湯からの受熱面側の温度を高
くすることが効果的である。本発明は、湯溜まり部内の
溶湯から受熱面側の温度を高くするために、冷却ドラム
の上方を覆う保温カバーを設けることで、保温カバーの
内面温度(受熱面側)を高くする。これによって、溶湯
と保温カバーとの温度差を小さくして溶湯からの熱放射
を抑制することで、溶湯表面温度の低下を防止するもの
である。
According to Stefan-Boltzmann's law, heat transfer due to thermal radiation is generally directly proportional to the fourth power of the temperature of the thermal radiation object (molten metal) and inversely proportional to the thermal emissivity. That is, the radiant heat transfer of the molten metal increases as the temperature difference between the molten metal and the heat receiving surface increases. Therefore, in order to suppress the heat radiation of the molten metal in the molten metal pool, it is effective to increase the temperature on the heat receiving surface side from the molten metal in the molten metal pool. According to the present invention, in order to increase the temperature of the heat receiving surface side from the molten metal in the hot water pool portion, the heat insulating cover is provided above the cooling drum to increase the inner surface temperature (heat receiving surface side) of the heat insulating cover. Thereby, the temperature difference between the molten metal and the heat insulating cover is reduced to suppress the heat radiation from the molten metal, thereby preventing the surface temperature of the molten metal from decreasing.

【0008】鋳造ドラムの上方を覆う保温カバーを設け
ると、保温カバーを加熱しなくても鋳造の定常時では溶
鋼からの熱放射によって保温カバーの表面温度は充分に
高温になるが、湯溜まり部の溶湯量が少ない鋳造開始時
及び溶湯温度が低くなる鋳造末期等の非定常時では、保
温カバーの内面温度は低い。そこで、非定常時の温度補
償用として、保温カバーに加熱装置を設けて鋳造開始前
に保温カバーを1000℃以上に加熱しておく。鋳造開
始後は湯溜まり部内の溶湯温度を連続的に検出し、検出
された溶湯温度と湯溜まり部内溶湯表面に地金が生成し
ないための溶湯温度(設定温度)とを比較し、湯溜まり
部内溶湯温度が設定温度と一致するように保温カバーの
加熱装置を制御する。
If a heat insulating cover is provided to cover the upper part of the casting drum, the surface temperature of the heat insulating cover becomes sufficiently high due to heat radiation from the molten steel during normal casting without heating the heat insulating cover. The inner surface temperature of the heat insulating cover is low at the start of casting when the amount of molten metal is small and at a non-steady state such as the end of casting when the molten metal temperature becomes low. Therefore, for temperature compensation during non-steady state, a heating device is provided on the heat insulating cover to heat the heat insulating cover to 1000 ° C. or more before starting casting. After the start of casting, the molten metal temperature inside the pool is continuously detected, and the detected molten metal temperature is compared with the molten metal temperature (set temperature) to prevent the formation of metal on the molten metal surface inside the molten pool. The heating device of the heat insulating cover is controlled so that the molten metal temperature matches the set temperature.

【0009】双ドラム式連続鋳造装置においては、図1
に示すように互いに逆方向へ回転する一対の鋳造ドラム
1a,1bを対向して配置し、鋳造ドラム1a,1bの
両端面に一対のサイド堰2a,2b(手前側2bは図示
しない)を押し付けて配置し、鋳造ドラム1a,1bと
サイド堰2a,2bとによって区画された部分に湯溜ま
り部3を形成する。湯溜まり部3に供給された炭素鋼の
溶湯は鋳造ドラム1a,1bと接する部分が冷却されて
凝固シェルとなり、凝固シェルは鋳造ドラム1a,1b
の回転につれて移動し、各ドラムが最も接近する部分で
互いに圧着されて薄帯鋳片4となる。図中、5は溶湯の
注入ノズルを示す。
In the twin-drum type continuous casting apparatus, as shown in FIG.
As shown in Fig. 7, a pair of casting drums 1a and 1b that rotate in opposite directions are arranged to face each other, and a pair of side dams 2a and 2b (front side 2b is not shown) are pressed against both end surfaces of the casting drums 1a and 1b. The casting pools 1a, 1b and the side weirs 2a, 2b form the molten metal pool 3 in the section. The molten metal of carbon steel supplied to the molten metal pool portion 3 is cooled at the portions contacting the casting drums 1a and 1b to become solidified shells, and the solidified shells are cast drums 1a and 1b.
And the drums are pressed against each other at the portions where they are closest to each other to form the strip slab 4. In the figure, reference numeral 5 denotes a molten metal injection nozzle.

【0010】保温カバー6は1000℃以上の高温に耐
えられる耐火物7によって作られており、耐火物7はカ
バー内面(受熱面)への放射伝熱を低減するために、例
えば気孔率が50%以上のものが用いられている。保温
カバー6には電気熱ヒーターまたは誘導加熱装置を用い
た加熱装置8及び保温カバー6の内面温度を検出する温
度計9さらには湯溜まり部3内の溶湯の湯面レベルを検
出する湯面レベル計13が設置されている。タンディッ
シュ10にはタンディッシュ内溶湯温度を検出する温度
計11が設置されており、湯溜まり部3には湯溜まり部
内の溶湯表面温度を検出する温度計12が保温カバー6
に支持されて設置されている。温度計11及び12は、
例えば熱電対あるいは放射温度計が用いられる。14は
温度制御装置であり、湯溜まり部3内溶湯の目標湯面レ
ベル及び湯溜まり部3内の溶湯表面に地金が生成しない
ための溶湯表面温度及びタンディッシュ10内の溶湯温
度さらには保温カバーの内面温度の各設定値が設定され
ている。
The heat insulating cover 6 is made of a refractory 7 which can withstand a high temperature of 1000 ° C. or more. The refractory 7 has a porosity of, for example, 50 in order to reduce radiative heat transfer to the inner surface (heat receiving surface) of the cover. % Or more is used. The heat insulating cover 6 has a heating device 8 using an electric heater or an induction heating device, a thermometer 9 for detecting the inner surface temperature of the heat insulating cover 6, and a metal surface level for detecting the metal surface level of the molten metal in the water pool 3. A total of 13 are installed. The tundish 10 is provided with a thermometer 11 for detecting the temperature of the molten metal in the tundish, and the hot pool 3 is provided with a thermometer 12 for detecting the surface temperature of the molten metal in the hot pool.
It is supported and installed by. The thermometers 11 and 12 are
For example, a thermocouple or a radiation thermometer is used. Reference numeral 14 denotes a temperature control device, which is a target level of the molten metal in the pool 3 and a surface temperature of the molten metal in the pool 3 so that no metal is generated and a temperature of the molten metal in the tundish 10 and a heat retention. Each set value of the inner surface temperature of the cover is set.

【0011】鋳造開始前においては、温度計9によって
測定された保温カバー6の内面温度が温度制御装置14
に設定された設定温度と比較され、温度制御装置14は
測定温度が設定温度と一致するように加熱装置8に供給
する電力を制御し、保温カバー6は加熱装置8によって
1000℃以上に加熱される。鋳造初期においては、湯
溜まり部3の湯面レベルは低く、また湯溜まり部3内溶
湯の表面温度は低い。そこで、温度計12によって連続
的に検出された湯溜まり部3内の溶湯温度および湯面レ
ベル計13によって連続的に検出された湯面レベルは、
温度制御装置14において、各設定値と比較され、温度
制御装置14からは湯溜まり部3内溶湯表面温度が設定
温度に上昇するに必要な電力が加熱装置8に供給され
る。鋳造の定常時においては、前記制御が継続される
が、湯溜まり部3の湯面レベルは高く、また湯溜まり部
3内溶湯の表面温度は設定値に近いために、湯面レベル
計13及び保温カバー6の温度計9による制御は殆ど作
動しない。鋳造の末期においては、湯面レベルが低くな
るとともに、湯溜まり部3の溶湯温度よりも先にタンデ
ィッシュ10内の溶湯温度が低下する。そこで温度計1
1及び湯面レベル計13によって連続的に検出されたタ
ンディッシュ10内の溶湯温度及び湯面レベルは、温度
制御装置14において、各設定値と比較され、温度制御
装置14からは湯溜まり部3内溶湯の表面温度が設定温
度に上昇するに必要な電力が加熱装置8に供給される。
Before the start of casting, the inner surface temperature of the heat insulating cover 6 measured by the thermometer 9 is the temperature control device 14.
The temperature control device 14 controls the electric power supplied to the heating device 8 so that the measured temperature matches the set temperature, and the heat insulating cover 6 is heated to 1000 ° C. or more by the heating device 8. It At the initial stage of casting, the level of the molten metal in the pool 3 is low, and the surface temperature of the molten metal in the pool 3 is low. Therefore, the molten metal temperature in the molten metal pool 3 continuously detected by the thermometer 12 and the molten metal level continuously detected by the molten metal level meter 13 are:
In the temperature control device 14, each set value is compared, and the temperature control device 14 supplies the heating device 8 with the electric power required for raising the surface temperature of the molten metal in the pool 3 to the set temperature. In the steady state of casting, the above control is continued, but the level of the molten metal in the pool 3 is high, and the surface temperature of the molten metal in the pool 3 is close to the set value. The control of the heat insulating cover 6 by the thermometer 9 hardly operates. At the final stage of casting, the molten metal level in the tundish 10 decreases before the molten metal temperature in the tundish 3 as well as the molten metal level decreases. So thermometer 1
1 and the molten metal temperature and the molten metal level in the tundish 10 which are continuously detected by the molten metal level gauge 13 are compared with each set value in the temperature control device 14, and the molten metal pool 3 from the temperature control device 14. Electric power required to raise the surface temperature of the inner molten metal to the set temperature is supplied to the heating device 8.

【0012】なお、前記のように鋳造の定常時において
は、湯溜まり部3の湯面レベルは高く、また湯溜まり部
3内溶湯の表面温度は設定値に近いために、湯溜まり部
3内溶湯温度のみによって加熱装置8を制御すればよい
が、鋳造の末期においては、湯溜まり部3内溶湯の表面
温度が低下するために、この温度低下をより早くとらえ
て制御遅れを防止する必要がある。このためには、タン
ディッシュ内溶湯温度を検出し、検出温度に応じて加熱
装置8を制御することが望ましい。また、湯溜まり部3
の湯面レベルが低下すると、溶湯の熱容量が小さくなる
ために、例え溶湯温度が低下しなくても地金が生成し易
くなる。このため、湯面レベルが低い鋳造初期や末期で
は、湯面レベルを検出し、検出した湯面レベルに応じて
加熱装置8を制御することが望ましい。
As described above, in the steady state of casting, the level of the molten metal in the pool 3 is high, and the surface temperature of the molten metal in the pool 3 is close to the set value. The heating device 8 may be controlled only by the temperature of the molten metal, but at the end of casting, the surface temperature of the molten metal in the pool 3 decreases, so it is necessary to catch this temperature decrease earlier and prevent a control delay. is there. For this purpose, it is desirable to detect the temperature of the molten metal in the tundish and control the heating device 8 according to the detected temperature. Also, the hot water pool 3
When the level of the molten metal decreases, the heat capacity of the molten metal decreases, so that even if the temperature of the molten metal does not decrease, metal is likely to be generated. Therefore, it is desirable to detect the molten metal level and control the heating device 8 in accordance with the detected molten metal level at the early stage or the final stage of casting when the molten metal level is low.

【0013】[0013]

【実施例】双ドラム式連続鋳造装置にSS400の溶湯
を供給して、厚さ3mm、幅1330mmの炭素鋼鋳片を鋳
造した。この炭素鋼の液相線温度は1530℃
(TLL)、固相線温度は1510℃(TSL)であり、湯
溜まり部内溶湯表面の設定温度は1540〜1560℃
とした。図3に各実施例における湯溜まり部内溶湯表面
の温度推移を示しており、表1に鋳造条件及び鋳造結果
を示している。
Example A molten steel of SS400 was supplied to a twin-drum type continuous casting apparatus to cast a carbon steel slab having a thickness of 3 mm and a width of 1330 mm. Liquidus temperature of this carbon steel is 1530 ℃
(T LL ), the solidus temperature is 1510 ° C (T SL ), and the set temperature of the molten metal surface in the molten metal pool is 1540 to 1560 ° C.
And FIG. 3 shows the temperature transition of the surface of the molten metal in the molten metal pool in each Example, and Table 1 shows the casting conditions and casting results.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例1は、保温カバーを設置しないで鋳
造した場合の比較例である。この場合は、鋳造初期に溶
湯表面からの放熱により、湯溜まり部溶湯表面に地金が
生成した。この地金は定常時においても再溶解しなかっ
た。鋳造末期では、湯面レベルが低下して湯溜まり部の
溶湯体積が減少するとともに、供給された溶湯温度も低
下しているために、地金は更に成長した。この結果、地
金の鋳片への巻込みによって鋳片に表面割れが発生し
た。
Example 1 is a comparative example in the case of casting without installing a heat insulating cover. In this case, the metal was generated on the surface of the molten metal at the molten metal pool due to the heat radiation from the surface of the molten metal in the early stage of casting. This metal did not redissolve even in the steady state. At the end of casting, the level of the molten metal decreased, the volume of the molten metal in the pool decreased, and the temperature of the supplied molten metal also decreased. As a result, surface cracks occurred in the slab due to the inclusion of the metal in the slab.

【0016】実施例2は、保温カバーを設置したが加熱
しないで鋳造した比較例である。この場合は、鋳造開始
前の保温カバーの温度は室温であり保温カバーの温度が
上昇するまでに溶湯表面からの放熱量が大きいために、
鋳造初期に溶湯表面に地金が生成した。定常時は初期に
生成した地金は徐々に再溶解したが完全ではなく、鋳造
末期では溶湯の湯面レベルが低下するとともに、供給さ
れる溶湯の温度も低下したために再び地金が生成した。
この結果、鋳片に表面割れが発生した。
Example 2 is a comparative example in which a heat insulating cover was installed but was cast without heating. In this case, the temperature of the heat insulating cover before the start of casting is room temperature, and the amount of heat released from the surface of the molten metal is large before the temperature of the heat insulating cover rises.
Metal was formed on the surface of the molten metal at the beginning of casting. In the steady state, the initially formed metal gradually remelted, but it was not perfect, and at the end of casting, the level of the molten metal decreased, and the temperature of the supplied molten metal also decreased, so that the metal again formed.
As a result, surface cracks occurred in the cast piece.

【0017】実施例3は、図1に示した装置を用いて鋳
造開始前に保温カバーの内面温度を1000℃に加熱
し、湯溜まり部の溶湯表面温度を制御しながら鋳造した
本発明例である。事前に保温カバーが十分に加熱されて
いるために、鋳造開始から鋳造終了まで地金は生成しな
かった。この結果、表面品質の良好な鋳片を安定して製
造できた。
Example 3 is an example of the present invention in which the inner surface temperature of the heat insulating cover was heated to 1000 ° C. before the start of casting by using the apparatus shown in FIG. 1 and the molten metal surface temperature in the pool was controlled while casting. is there. Since the heat insulating cover was sufficiently heated in advance, no metal was generated from the start of casting to the end of casting. As a result, a slab having a good surface quality could be stably manufactured.

【0018】実施例4は、図1に示した装置を用いて鋳
造開始前に保温カバー内面温度を1100℃に加熱し、
湯溜まり部の溶湯表面温度を制御しながら鋳造した本発
明例である。本例においても事前に保温カバーが十分に
加熱されているために、鋳造開始から鋳造終了まで地金
は生成しなかった。この結果、表面品質の良好な鋳片を
安定して製造できた。
Example 4 uses the apparatus shown in FIG. 1 to heat the inner surface temperature of the heat insulating cover to 1100 ° C. before starting casting.
It is an example of the present invention cast while controlling the surface temperature of the molten metal in the pool. Also in this example, since the heat insulating cover was sufficiently heated in advance, no metal was generated from the start of casting to the end of casting. As a result, a slab having a good surface quality could be stably manufactured.

【0019】実施例5は、図1に示した装置を用いて鋳
造開始前に保温カバーの内面温度を1000℃に加熱
し、鋳造中は温度制御をしないで鋳造した比較例であ
る。鋳造開始から定常時までは地金は生成しなかった
が、鋳造末期に湯溜まり部の溶湯体積が減少するととも
に、湯溜まり部に供給された溶湯温度も低下したため
に、湯溜まり部の溶湯表面温度が低下して地金が生成し
た。この結果、鋳片に表面割れが発生した。
Example 5 is a comparative example in which the inner surface temperature of the heat insulating cover was heated to 1000 ° C. before the start of casting by using the apparatus shown in FIG. 1 and the temperature was not controlled during casting. No metal was generated from the start of casting to the steady state, but at the end of casting, the volume of the molten metal in the pool decreased and the temperature of the molten metal supplied to the pool also decreased, so the surface of the molten metal in the pool The temperature dropped and metal was formed. As a result, surface cracks occurred in the cast piece.

【0020】上記実施例からも明らかなように、本発明
においては鋳造開始前の保温カバーの加熱温度は、好ま
しくは1000〜1100℃であり、かつ、湯溜まり部
の溶湯表面温度を制御しながら鋳造するものである。こ
の制御には前述のごとく電熱ヒーターまたは誘導加熱装
置等により保温カバーを加熱して行うものであり、特に
加熱手段を限定するものではなく、要は溶湯と保温カバ
ーの各温度計による検出温度が設定温度と一致するよう
に、制御可能であって、カバーの機械的または熱的特性
に見合った加熱手段であればよい。また、保温カバーの
形状および配置は特に限定されるものではないが、好ま
しくは内面が曲率を有し、放射伝熱に有利な形状であっ
て、湯面全体を覆うものであればよく、さらにカバー内
部の加熱装置はカバー内表面を均一に加熱できる配列で
あればよい。
As is clear from the above examples, in the present invention, the heating temperature of the heat insulating cover before the start of casting is preferably 1000 to 1100 ° C., and while controlling the surface temperature of the molten metal in the pool. It is a casting. This control is performed by heating the heat retaining cover with an electric heater or an induction heating device as described above, and does not limit the heating means in particular, the point is that the temperature detected by each thermometer of the molten metal and the heat retaining cover is Any heating means that can be controlled to match the set temperature and that matches the mechanical or thermal characteristics of the cover may be used. Further, the shape and arrangement of the heat insulating cover are not particularly limited, but preferably the inner surface has a curvature, is a shape advantageous for radiative heat transfer, and covers the entire molten metal surface, and further The heating device inside the cover may be any array that can uniformly heat the inner surface of the cover.

【0021】[0021]

【発明の効果】この発明によれば、湯溜まり部に供給さ
れた炭素鋼の溶湯の表面温度が常に液相線温度以上にな
るように制御されるために、溶湯表面に地金が生成しな
い。このため地金が鋳造ドラムと凝固シェル間に巻き込
まれることで生じる凝固シェル冷却の不均一による鋳片
の表面割れ及び板厚不均一を防止でき、さらにはホット
バンドによる鋳片破断を防止して表面品質の良好な鋳片
を安定して製造することができる。
According to the present invention, since the surface temperature of the molten carbon steel supplied to the molten metal pool is controlled so as to always be higher than the liquidus temperature, no metal is formed on the surface of the molten metal. . Therefore, it is possible to prevent surface cracks and uneven plate thickness of the slab due to non-uniform cooling of the solidified shell caused by the metal being caught between the casting drum and the solidified shell, and further prevent slab rupture due to hot bands. It is possible to stably produce a slab having a good surface quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための双ドラム式連続鋳造装
置を示す側断面図である。
FIG. 1 is a side sectional view showing a twin-drum type continuous casting apparatus for carrying out the present invention.

【図2】従来の双ドラム式連続鋳造装置を示す側断面図
である。
FIG. 2 is a side sectional view showing a conventional twin-drum type continuous casting apparatus.

【図3】実施例における湯溜まり部内溶湯表面温度の推
移を示す図である。
FIG. 3 is a diagram showing a transition of a molten metal surface temperature in a molten metal pool portion in an example.

【符号の説明】[Explanation of symbols]

1a,1b…鋳造ドラム 2a,2b…サイド堰 3…湯溜まり部 4…薄帯鋳片 5…注入ノズル 6…保温カバー 7…保温カバーの耐火物 8…加熱装置 9…保温カバー温度計 10…タンディッシュ 11…タンディッシュ温度計 12…湯溜まり部温度計 13…湯面レベル計 14…温度制御装置 15…反射板 1a, 1b ... Casting drum 2a, 2b ... Side weir 3 ... Hot water pool portion 4 ... Thin strip slab 5 ... Injection nozzle 6 ... Insulating cover 7 ... Insulating cover refractory 8 ... Heating device 9 ... Insulating cover thermometer 10 ... Tundish 11 ... Tundish thermometer 12 ... Hot water pool thermometer 13 ... Level gauge 14 ... Temperature control device 15 ... Reflector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の鋳造ドラムによって形成された湯
溜まり部に炭素鋼の溶湯を供給して薄帯鋳片を鋳造する
双ドラム式連続鋳造装置において、前記鋳造ドラムの上
方を覆う保温カバーを設け、該保温カバーに加熱装置を
設け、該保温カバーの温度を検出する温度計及び前記湯
溜まり部の溶湯温度を検出する温度計を設け、前記各温
度計による検出温度が設定温度と一致するように前記加
熱装置を制御する温度制御装置を設けたことを特徴とす
る双ドラム式連続鋳造装置。
1. A twin-drum type continuous casting apparatus for casting a thin strip slab by supplying a molten metal of carbon steel to a basin formed by a pair of casting drums, wherein a heat insulating cover for covering the upper part of the casting drum is provided. A heating device is provided on the heat retaining cover, and a thermometer for detecting the temperature of the heat retaining cover and a thermometer for detecting the molten metal temperature of the hot water pool are provided, and the temperature detected by each of the thermometers matches the set temperature. Thus, a twin-drum type continuous casting apparatus is provided with a temperature control device for controlling the heating device.
JP8165894A 1994-04-20 1994-04-20 Twin roll type continuous casting apparatus Withdrawn JPH07284882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8165894A JPH07284882A (en) 1994-04-20 1994-04-20 Twin roll type continuous casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8165894A JPH07284882A (en) 1994-04-20 1994-04-20 Twin roll type continuous casting apparatus

Publications (1)

Publication Number Publication Date
JPH07284882A true JPH07284882A (en) 1995-10-31

Family

ID=13752434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8165894A Withdrawn JPH07284882A (en) 1994-04-20 1994-04-20 Twin roll type continuous casting apparatus

Country Status (1)

Country Link
JP (1) JPH07284882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650600B1 (en) * 2004-12-28 2006-11-29 주식회사 포스코 Method of the melt temperature control in twin roll strip casting
CN112222392A (en) * 2020-09-07 2021-01-15 东北大学 Cloth bag with continuous temperature measurement function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650600B1 (en) * 2004-12-28 2006-11-29 주식회사 포스코 Method of the melt temperature control in twin roll strip casting
CN112222392A (en) * 2020-09-07 2021-01-15 东北大学 Cloth bag with continuous temperature measurement function

Similar Documents

Publication Publication Date Title
JP4809847B2 (en) Molten copper casting rod
AU653399B2 (en) Temperature measurement ingot mould
RU2459684C2 (en) Continuous casting of reactive metals in using glass coat
JP2003501265A (en) Operating method and system for high-speed continuous casting equipment
JPH07284882A (en) Twin roll type continuous casting apparatus
JPS62110841A (en) Continuous casting device for thin sheet
JPH01170551A (en) Mold for continuously casting steel
KR100650604B1 (en) Apparatus and method for edge dam preheating in twin roll strip caster
JPH07227660A (en) Centrifugal casting machine
JPS62224454A (en) Mold for continuous casting
JPS643590B2 (en)
JP7234768B2 (en) Preheating method of immersion nozzle
JPH05277648A (en) Method for controlling temperature at edge parts in cast slab in twin roll continuous casting
JPH11320038A (en) Method for starting continuous casting of thin cast piece
JPH0390250A (en) Method for controlling roll temperature in twin roll type continuous casting machine
JP2024013397A (en) Twin-roll type continuous-casting side weir and method of producing thin-walled slab
JPS6213248A (en) Continuous casting machine
JPH07290202A (en) Heat insulating cover for molten metal pool part in twin roll type strip continuous casting apparatus
JPS6319265B2 (en)
SU564337A1 (en) Device for obtaining metal ingots
JP2004188469A (en) Twin-drum type continuous casting method and apparatus
JPH0631408A (en) Dummy bar chuck and starting method for casting hollow cast billet
JPS6153143B2 (en)
JPS6142076Y2 (en)
JP2000202583A (en) Continuous casting method and mold for continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703