JPH07284395A - Production of poly-l-malic acid - Google Patents

Production of poly-l-malic acid

Info

Publication number
JPH07284395A
JPH07284395A JP6080056A JP8005694A JPH07284395A JP H07284395 A JPH07284395 A JP H07284395A JP 6080056 A JP6080056 A JP 6080056A JP 8005694 A JP8005694 A JP 8005694A JP H07284395 A JPH07284395 A JP H07284395A
Authority
JP
Japan
Prior art keywords
malic acid
poly
producing
aureobasidium
yeast cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6080056A
Other languages
Japanese (ja)
Inventor
Toshiaki Nakajima
敏明 中島
Takeshi Tabuchi
武士 田淵
Tadaatsu Nakahara
忠篤 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6080056A priority Critical patent/JPH07284395A/en
Publication of JPH07284395A publication Critical patent/JPH07284395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the subject polymer being an in vivo decomposing and absorbing polymer compound in high yield by reacting a poly-L-malic aid- producing yeast cell belonging to the genus Aureobasidium or its immobilized material with a saccharide raw material under specific conditions by a method directly using the yeast cell in stationary state as an enzymatic catalyst. CONSTITUTION:This method for producing poly-L-malic acid comprises reacting a poly-L-malic acid-producing yeast cell belonging to the genus Aureobasidium, e.g. Aureobasidium sp. A-91 (FERM P-11966) or its immobilized material with an aqueous solution containing a saccharide raw material and iron ion by a method directly using the yeast cell in stationary state as an enzymatic catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、L−リンゴ酸重合物
(Poly-L-Malic Acid、以下これを「PMLA」と略称
することがある)の製造法に関し、更に詳しくは培養に
より得られた菌体を回収し、菌体が増殖し得ない組成の
水溶液に菌体を作用させることにより、休止状態の菌体
をそのまま酵素触媒として用いる(以下この方法を「休
止菌体法」と称することがある)L−リンゴ酸重合物の
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer of L-malic acid (Poly-L-Malic Acid, hereinafter sometimes abbreviated as "PMLA"), and more specifically, it is obtained by culturing. The microbial cells are recovered and the microbial cells are allowed to act on an aqueous solution of a composition in which the microbial cells cannot grow, so that the quiescent bacterial cells are used as they are as an enzyme catalyst (hereinafter, this method is referred to as “rest cell method”). Sometimes) L-malic acid polymer.

【0002】PMLAは、生体内分解吸収性高分子化合
物として、生体吸収性縫合糸、骨接合用材料、人工腱、
人工血管及びドラッグデリバリーの高分子キャリアー等
として、医薬及び医療の分野での用途が多いに期待され
ている。
[0002] PMLA is a biodegradable and absorbable polymer compound, which is a bioabsorbable suture, an osteosynthesis material, an artificial tendon,
It is expected to find many applications in the fields of medicine and medicine as a polymeric carrier for artificial blood vessels and drug delivery.

【0003】[0003]

【従来の技術】PMLAは、リンゴ酸モノベンジル又は
モノメチルエステルを原料とする化学合成法〔Reports
of the Faculty Engineering, Tottori University, 8,
124(1977)〕、ベンジルマロラクトネートを開環重合さ
せる化学合成法(米国特許第4265247号明細
書)、直接熱縮合法[高分子論文集、44, 701 (1987)]
等の化学合成法による製造法が報告されている。
2. Description of the Related Art PMLA is a chemical synthesis method using malic acid monobenzyl or monomethyl ester as a raw material [Reports
of the Faculty Engineering, Tottori University, 8,
124 (1977)], a chemical synthesis method of ring-opening polymerization of benzyl malolactonate (US Pat. No. 4,265,247), a direct thermal condensation method [Polymer Papers, 44, 701 (1987)].
A production method by a chemical synthesis method such as the above has been reported.

【0004】また、微生物を用いたPMLAの製造で
は、ペニシリウム・サイクロピウム(Penicillium cycl
opium)を用いた固体培養による製造例[Agricultural
Biological Chemistry, 33, 459 (1969)]、オウレオバ
セディウム(Aureobasidium)属微生物を用いた発酵法
(特開平4-211385)及び酵素法(特開平4-341189)によ
る製造例等が知られている。
In the production of PMLA using microorganisms, Penicillium cyclium is used.
Example of production by solid culture using opium [Agricultural
Biological Chemistry, 33, 459 (1969)], a fermentation method using a microorganism of the genus Aureobasidium (Japanese Unexamined Patent Publication No. 4-111385), and an enzymatic method (Japanese Unexamined Patent Publication No. 4-341189). ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、化学合
成法による製造では原料が高価であるばかりか、多数の
工程を必要とするため収率が低いという欠点を有してい
る。一方、前記したペニシリウム・サイクロピウムを用
いた固体培養法による製造では収率が低く、また精製に
多工程を要するため、実際的な方法とは言い難い。ま
た、オウレオバセディウム属菌を用いた発酵法及び酵素
法では、工業的製造を行う上で未だ収量が十分ではな
く、より高収量で安価に製造する方法の開発が望まれて
いた。
However, in the production by the chemical synthesis method, there are drawbacks that not only the raw materials are expensive, but also the yield is low because many steps are required. On the other hand, the production by the solid culture method using the above-mentioned penicillium-cyclopium has a low yield and requires multiple steps for purification, so it cannot be said to be a practical method. Further, in the fermentation method and the enzyme method using a bacterium of the genus Aureobasedium, the yield is not sufficient for industrial production, and it has been desired to develop a method for producing a higher yield at a lower cost.

【0006】[0006]

【課題を解決するための手段】本発明者らは、PMLA
を高収量で産生させる方法を鋭意検討した結果、オウレ
オバセディウム属に属するL−リンゴ酸重合物産生菌
を、少なくともグルコース等の糖質原料及び鉄イオンを
含有するが菌体が増殖し得ない組成の水溶液に作用させ
て酵素反応させることにより、PMLAが高収量に製造
可能なことを見出し、本発明を完成するに至った。
The present inventors have found that PMLA
As a result of diligent examination of a method for producing a high yield of L., L-malic acid polymer-producing bacteria belonging to the genus Aureobasedium, at least containing sugar raw materials such as glucose and iron ions The present inventors have found that PMLA can be produced in a high yield by acting on an aqueous solution of a composition which is not obtained to cause an enzymatic reaction, and have completed the present invention.

【0007】即ち本発明は、オウレオバセディウム属に
属するL−リンゴ酸重合物産生菌体又はその固定化物
を、少なくとも糖質原料および鉄イオンを含有し菌体増
殖必須成分の少なくとも一つの成分を含有しない水溶液
に作用させてL−リンゴ酸重合物を生成蓄積せしめ、該
水溶液よりL−リンゴ酸重合物を採取することを特徴と
するL−リンゴ酸重合物の製造法である。
That is, according to the present invention, the L-malic acid polymer-producing bacterium belonging to the genus Aureobasedium or an immobilized product thereof is used as at least one of the essential components for microbial growth containing at least a sugar raw material and iron ion. A method for producing an L-malic acid polymer, which comprises allowing an L-malic acid polymer to be produced and accumulated by acting on an aqueous solution containing no component, and collecting the L-malic acid polymer from the aqueous solution.

【0008】以下、本発明の方法について更に詳細に説
明する。本発明方法で用いるオウレオバセディウム属に
属する微生物には、従来プルラリア(Pullularia)属に
分類され、後にオウレオバセディウム属に再分類された
微生物も含まれる。これらの微生物は総括的に黒色酵母
(black yeast)とも言われている[Mycopathologia et
Mycologia Applicata, 12, 1 (1959), 同17, 1(196
2)]。従って、PMLAを産生し得る黒色酵母であれ
ば、これら微生物は全て本発明で用いるオウレオバセデ
ィウム属に属するL−リンゴ酸重合物産生菌の範囲に含
まれるものである。
The method of the present invention will be described in more detail below. The microorganisms belonging to the genus Aureobasedium used in the method of the present invention also include microorganisms conventionally classified into the genus Pullularia and later reclassified into the genus Aureobasedium. These microorganisms are also collectively called black yeast [Mycopathologia et
Mycologia Applicata, 12, 1 (1959), same 17, 1 (196
2)]. Therefore, as long as it is a black yeast capable of producing PMLA, all of these microorganisms are included in the range of L-malic acid polymer-producing bacteria belonging to the genus Aureobasedium used in the present invention.

【0009】上記微生物の具体例としては、例えば以下
のものを挙げる事ができる。オウレオバセディウム・プ
ルランス(Aureobasidium pullulans)IFO446
4、同IFO4465、同IFO4875、同IFO7
757、同ATCC7305、オウレオバセディウム・
マンソニー(Aureobasidium mansonii)IFO642
1、同IFO8194、同IFO9233、同ATCC
14249、オウレオバセディウム・ミクロステイクタ
ム(Aureobasidium microstictum)IFO32066、
同IFO32067、同IFO32068、同IFO3
2069、オウレオバセディウムsp.A−91。
Specific examples of the above microorganisms include the following. Aureobasidium pullulans IFO446
4, the same IFO4465, the same IFO4875, the same IFO7
757, ATCC7305, Aureobasedium
Man Sony (Aureobasidium mansonii) IFO642
1, the same IFO8194, the same IFO9233, the same ATCC
14249, Aureobasidium microstictum IFO32066,
Same IFO 32067, Same IFO 32068, Same IFO 3
2069, Aureobasedium sp. A-91.

【0010】上記菌株の中で、オウレオバセディウム
スピーシーズ(Aureobasidium sp.)A−91は、工業
技術院生命工学工業技術研究所に受託番号:FERM
P−11966として寄託されている。上記のオウレオ
バセディウム属に属するL−リンゴ酸重合物産生菌の培
養は、それ自体既知の通常用いられる方法に従い、炭素
源、窒素源、無機塩等の栄養分を含む培地を用いて行う
ことができる。
Among the above strains, aureobasedium
Species (Aureobasidium sp.) A-91 is entrusted by the Institute of Biotechnology, Institute of Industrial Science and Technology, Contract number: FERM
Deposited as P-11966. The above-mentioned L-malic acid polymer-producing bacterium belonging to the genus Aureobasedium is cultivated according to a commonly known method known per se using a medium containing nutrients such as a carbon source, a nitrogen source and an inorganic salt. be able to.

【0011】培地の炭素源としては、例えばグルコー
ス、フルクトース、シュークロース、マルトース等の糖
質原料、それらの中で特にグルコースが好適に用いら
れ、その添加濃度は1〜30重量%、好ましくは1〜2
0重量%が適当である。窒素源としては、微生物の培養
に際して通常使用される窒素含有の有機又は無機物質、
例えば、アンモニア、硫酸アンモニウム、塩化アンモニ
ウム、硝酸アンモニウム、コハク酸アンモニウムなどの
有機酸アンモニウム塩、尿素等を単独もしくは混合して
用いることができ、また、無機塩としては、例えば、リ
ン酸一水素カリウム、リン酸二水素カリウム、硫酸マグ
ネシウム等を用いることができる。
As the carbon source of the medium, for example, sugar raw materials such as glucose, fructose, sucrose and maltose, and among them, glucose is particularly preferably used, and the addition concentration thereof is 1 to 30% by weight, preferably 1 ~ 2
0 wt% is suitable. As the nitrogen source, a nitrogen-containing organic or inorganic substance usually used in culturing microorganisms,
For example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, organic acid ammonium salts such as ammonium succinate, urea and the like can be used alone or in combination, and as the inorganic salt, for example, potassium monohydrogen phosphate, phosphorus Potassium dihydrogen acid, magnesium sulfate and the like can be used.

【0012】この他に菌の生育に必要であれば、酵母エ
キス、コーンステイープリカー、ペプトン、肉エキス、
カザミノ酸、各種ビタミン等の栄養素を培地に添加する
ことができる。培養は、振とう、通気撹拌等の好気的条
件下で行われ、培養温度は通常20〜40℃、好ましく
は22〜35℃とする事ができる。培養pHは通常2〜
10、好ましくは3〜9、更に好ましくは3〜7であ
る。
In addition to the above, yeast extract, corn stay liquor, peptone, meat extract,
Nutrients such as casamino acids and various vitamins can be added to the medium. Culturing is performed under aerobic conditions such as shaking and aeration stirring, and the culturing temperature can be usually 20 to 40 ° C, preferably 22 to 35 ° C. Culture pH is usually 2
10, preferably 3 to 9, more preferably 3 to 7.

【0013】本発明の方法を実施する場合、上記のよう
に培養して得られた培養物から菌体を集め、水や適当な
緩衝液で洗浄したのち、そのまま使用することができ
る。あるいは該菌体をそれ自体既知の方法で固定化し、
固定化物として使用することができる。微生物菌体の固
定化法としては、例えば、アクリルアミド等の重合体モ
ノマーを用いる方法、アルギン酸塩やカラギーナン等の
適当な担体を用いて不溶化させる方法等が挙げられる。
When carrying out the method of the present invention, cells can be collected from the culture obtained by culturing as described above, washed with water or an appropriate buffer, and then used as it is. Alternatively, the cells are immobilized by a method known per se,
It can be used as an immobilized product. Examples of the method for immobilizing microbial cells include a method using a polymer monomer such as acrylamide and a method of insolubilizing using a suitable carrier such as alginate or carrageenan.

【0014】かくして得られる菌体又はその固定化物
を、少なくとも糖質原料および鉄イオンを含有し菌体増
殖必須成分の少なくとも一つの成分を含有しない水溶液
(以下これを「水性反応液」と略称することがある)に
作用させることにより、該水性反応液中にL−リンゴ酸
重合物を生成蓄積せしめることができる。該水性反応液
は、糖質原料と鉄イオンを含有し菌体増殖必須成分であ
る窒素源、リン酸、ビタミン等のうち少なくとも一つの
成分が欠如し、実質的に菌体が増殖し得ない水溶液であ
れば特に制限はなく、通常、糖質原料及び鉄イオンを含
有する水又はリン酸若しくはトリス塩酸等の緩衝液であ
ることができる。
The bacterium or the immobilized product thus obtained is an aqueous solution containing at least a sugar raw material and iron ions and not containing at least one component essential for microbial growth (hereinafter referred to as "aqueous reaction solution"). Sometimes, the L-malic acid polymer can be produced and accumulated in the aqueous reaction solution. The aqueous reaction liquid contains a sugar raw material and iron ions and lacks at least one component such as a nitrogen source, which is an essential component for cell growth, phosphoric acid, vitamins, etc., and the cells cannot be substantially grown. There is no particular limitation as long as it is an aqueous solution, and it is usually water containing a sugar raw material and iron ions, or a buffer solution such as phosphoric acid or tris hydrochloric acid.

【0015】水性反応液中に添加される糖質原料として
は、本発明に使用する微生物が資化するものであれば特
に制限されるものではなく、例えばグルコース、フルク
トース、シュークロース、マルトース等を挙げることが
でき、それらの中でグルコースが好適に用いられる。糖
質原料の添加濃度は、特に制限はないが、一般には0.
1〜30重量%、好ましくは0.2〜15重量%の範囲
内が適当である。
The sugar raw material added to the aqueous reaction solution is not particularly limited as long as it can be assimilated by the microorganism used in the present invention, and examples thereof include glucose, fructose, sucrose, maltose and the like. Mention may be made, of which glucose is preferably used. The concentration of the sugar raw material added is not particularly limited, but is generally 0.
A range of 1 to 30% by weight, preferably 0.2 to 15% by weight is suitable.

【0016】水性反応液中に添加される鉄イオンとして
は、通常使用される鉄の無機あるいは有機塩、例えば硫
酸鉄、塩化鉄、硝酸鉄、クエン酸鉄、シュウ酸鉄、フマ
ル酸鉄等を挙げることができる。その添加濃度は、特に
制限はないが、一般には鉄イオン濃度として0.01〜
50mM、好ましくは0.1〜3mMの範囲内が適当で
ある。
As the iron ions added to the aqueous reaction solution, there are commonly used inorganic or organic salts of iron, such as iron sulfate, iron chloride, iron nitrate, iron citrate, iron oxalate and iron fumarate. Can be mentioned. The addition concentration is not particularly limited, but in general, the iron ion concentration is 0.01 to
A range of 50 mM, preferably 0.1 to 3 mM is suitable.

【0017】本発明による休止菌体反応は、一般的に約
20〜50℃、好ましくは約25〜40℃の温度で、通
常約10〜170時間行うことができる。また、反応液
のpHは2〜10、好ましくは3〜9、更に好ましくは
3〜7の範囲内が適当である。
The resting cell reaction according to the present invention can be carried out generally at a temperature of about 20 to 50 ° C, preferably about 25 to 40 ° C, usually for about 10 to 170 hours. Further, the pH of the reaction solution is appropriately in the range of 2 to 10, preferably 3 to 9, and more preferably 3 to 7.

【0018】以上に述べた休止菌体法により水性反応液
中に生成蓄積されたPMLAの反応液からの採取は、そ
れ自体既知の通常用いられる分離・精製法に従い、例え
ば、イオン交換樹脂処理法、沈澱法、例えばアセトン、
メタノール、エタノール、n-プロパノール、メチルエチ
ルケトン等の有機溶媒沈澱法等を適宜組み合わせて行う
ことができる。
The PMLA produced and accumulated in the aqueous reaction solution by the above-mentioned resting cell method is collected from the reaction solution according to a commonly used separation / purification method known per se, for example, an ion exchange resin treatment method. , Precipitation methods such as acetone,
It can be carried out by appropriately combining an organic solvent precipitation method such as methanol, ethanol, n-propanol, and methyl ethyl ketone.

【0019】以上に述べた本発明の方法で製造されるP
MLAの物理学的性質は、以下の通りである。 (1)GPC法(ゲルろ過法)により測定した分子量
は、約2,000〜50,000の範囲内である。 (2)1N硫酸溶液による加水分解処理により、L−リ
ンゴ酸のみが生成する。
P produced by the method of the present invention described above
The physical properties of MLA are as follows. (1) The molecular weight measured by the GPC method (gel filtration method) is in the range of about 2,000 to 50,000. (2) Only L-malic acid is produced by the hydrolysis treatment with a 1N sulfuric acid solution.

【0020】[0020]

【発明の効果】本発明によれば、従来の発酵法、酵素法
に比べ高収量でPMLAを得ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, PMLA can be obtained in a higher yield than the conventional fermentation method and enzyme method.

【0021】[0021]

【実施例】次に参考例及び実施例を挙げて、本発明を更
に具体的に説明する。しかしながら、下記の実施例は、
本発明について具体的な認識を得る一助としてのみ挙げ
たものであり、これによって本発明はなんら限定される
ものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to Reference Examples and Examples. However, the example below
The present invention is given only as an aid to gain specific recognition, and the present invention is not limited thereto.

【0022】参考例 培地(グルコース 8%、NH4Cl 0.2%、KH2
PO4 0.05%、MgSO4・7H2O 0.05
%、酵母エキス 0.02%)50mlを500ml容
三角フラスコに分注し、滅菌(121℃、15分間)し
た。該培地に乾熱滅菌した炭酸カルシウム1gを添加
後、オウレオバセディウム スピーシーズ(Aureobasid
ium sp.)A−91(FERM P−11966)を植
菌し、25℃にて3日間振とう培養を行い、これを前培
養物とした。次に、上記培地100mlを1000ml
容三角フラスコに分注、滅菌(121℃、15分間)し
た後、乾熱滅菌した炭酸カルシウム3gを添加後、前培
養物の20mlを添加して25℃にて3日間振とう培養
を行った。
Reference Example Medium (Glucose 8%, NH 4 Cl 0.2%, KH 2
PO 4 0.05%, MgSO 4 · 7H 2 O 0.05
%, Yeast extract 0.02%) was dispensed into a 500 ml Erlenmeyer flask and sterilized (121 ° C., 15 minutes). After adding 1 g of dry heat-sterilized calcium carbonate to the medium, Aureobasidium species (Aureobasid)
ium sp.) A-91 (FERM P-11966) was inoculated and shake-cultured at 25 ° C. for 3 days to obtain a preculture. Next, add 100 ml of the above medium to 1000 ml
After pipetting into an Erlenmeyer flask and sterilizing (121 ° C., 15 minutes), 3 g of dry heat sterilized calcium carbonate was added, 20 ml of the preculture was added, and shaking culture was carried out at 25 ° C. for 3 days. .

【0023】培養終了後、培養物を遠心分離(8,00
0rpm、15分間、室温)し、菌体を集めた。得られた
菌体を、洗浄液(100mMリン酸緩衝液、pH7.
0)にて1度洗浄した。
After the culture was completed, the culture was centrifuged (8,000
The cells were collected at 0 rpm for 15 minutes at room temperature) to collect the cells. The obtained bacterial cells were washed with a washing solution (100 mM phosphate buffer, pH 7.
It was washed once in 0).

【0024】実施例1 上記参考例で得られた一定量の菌体を、表1に示す各鉄
イオン濃度の硫酸第一鉄を含有する反応液(グルコース
8%、100mMリン酸緩衝液)に懸濁し、菌体濃度
を調整(濁度A580nm=30)後、その50mlを、炭
酸カルシウム1.5gとともに300ml容三角フラス
コに分注して、30℃にて3日間反応させた。
Example 1 A certain amount of the bacterial cells obtained in the above Reference Example was added to a reaction solution (glucose 8%, 100 mM phosphate buffer solution) containing ferrous sulfate at each iron ion concentration shown in Table 1. After suspending and adjusting the cell concentration (turbidity A 580 nm = 30), 50 ml thereof was dispensed together with 1.5 g of calcium carbonate into a 300 ml Erlenmeyer flask and reacted at 30 ° C. for 3 days.

【0025】反応終了後、該反応物から遠心分離(8、
000rpm,15分間、室温)により除菌した上清1m
lに2N H2SO4を1ml添加し、100℃で5時間
加水分解処理を行った。PMLAの生成量は、該処理物
を高速液体クロマトグラフィー(島津製LC−5A型)
により有機酸(リンゴ酸)の分析を行い[カラム:HP
X−87H(BIO−RAD)、カラム温度:60℃、
移動相:0.01MH2SO4、流速:0.7ml/分、
検出器:UV(210nm)]、リンゴ酸量として定量
を行った。
After the reaction is completed, the reaction product is centrifuged (8,
1 m of supernatant sterilized by 000 rpm, 15 minutes, room temperature)
1 ml of 2N H 2 SO 4 was added to 1 and hydrolyzed at 100 ° C. for 5 hours. The amount of PMLA produced was measured by high performance liquid chromatography (LC-5A manufactured by Shimadzu).
The organic acid (malic acid) is analyzed by [column: HP
X-87H (BIO-RAD), column temperature: 60 ° C,
Mobile phase: 0.01 MH 2 SO 4 , flow rate: 0.7 ml / min,
Detector: UV (210 nm)], and quantification was performed as the amount of malic acid.

【0026】その結果を表1に示す。尚、酸加水分解処
理前の反応液上清中の遊離のリンゴ酸を同様に高速液体
クロマトグラフィーにより分析したが、リンゴ酸に相当
するピークは検出されなかった。これより酸加水分解に
より生成するリンゴ酸はすべてPMLA由来であること
が確認された。
The results are shown in Table 1. Free malic acid in the reaction solution supernatant before the acid hydrolysis treatment was similarly analyzed by high performance liquid chromatography, but no peak corresponding to malic acid was detected. From this, it was confirmed that all malic acid produced by acid hydrolysis is derived from PMLA.

【0027】[0027]

【表1】表 1 鉄イオン濃度(mM) PMLA量(mg/ml) 0 10 0.5 22 1.0 23 2.0 243.0 24 [Table 1] Table 1 Iron ion concentration (mM) PMLA amount (mg / ml) 0 10 0.5 22 22 1.0 23 2.0 2.0 24 3.0 24

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オウレオバセディウム属に属するL−リ
ンゴ酸重合物産生菌体又はその固定化物を、少なくとも
糖質原料および鉄イオンを含有し菌体増殖必須成分の少
なくとも一つの成分を含有しない水溶液に作用させてL
−リンゴ酸重合物を生成蓄積せしめ、該水溶液よりL−
リンゴ酸重合物を採取することを特徴とするL−リンゴ
酸重合物の製造法。
1. An L-malic acid polymer-producing bacterium belonging to the genus Aureobasedium or an immobilized product thereof, which contains at least a sugar raw material and iron ions and contains at least one component essential for cell growth. Not acting on aqueous solution L
-Malic acid polymer is produced and accumulated, and L-from the aqueous solution is accumulated.
A method for producing an L-malic acid polymer, which comprises collecting a malic acid polymer.
【請求項2】 オウレオバセディウム属に属するL−リ
ンゴ酸重合物産生菌が、オウレオバセディウム・スピー
シーズ(Aureobasidium sp.)A−91である請求項1
記載の方法。
2. The L-malic acid polymer-producing bacterium belonging to the genus Aureobasidium is Aureobasidium sp. A-91.
The method described.
JP6080056A 1994-04-19 1994-04-19 Production of poly-l-malic acid Pending JPH07284395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6080056A JPH07284395A (en) 1994-04-19 1994-04-19 Production of poly-l-malic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080056A JPH07284395A (en) 1994-04-19 1994-04-19 Production of poly-l-malic acid

Publications (1)

Publication Number Publication Date
JPH07284395A true JPH07284395A (en) 1995-10-31

Family

ID=13707585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080056A Pending JPH07284395A (en) 1994-04-19 1994-04-19 Production of poly-l-malic acid

Country Status (1)

Country Link
JP (1) JPH07284395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757063A (en) * 2013-12-25 2014-04-30 天津北洋百川生物技术有限公司 Fermentation medium for greatly increasing yield of beta-polymalic acid by adding vitamins
CN107653272A (en) * 2017-11-16 2018-02-02 天津北洋百川生物技术有限公司 A kind of method of semi-continuous process production different molecular weight polymalic acid
CN108893498A (en) * 2018-07-11 2018-11-27 天津慧智百川生物工程有限公司 A kind of fermentation process improving polymalic acid yield

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757063A (en) * 2013-12-25 2014-04-30 天津北洋百川生物技术有限公司 Fermentation medium for greatly increasing yield of beta-polymalic acid by adding vitamins
CN107653272A (en) * 2017-11-16 2018-02-02 天津北洋百川生物技术有限公司 A kind of method of semi-continuous process production different molecular weight polymalic acid
CN108893498A (en) * 2018-07-11 2018-11-27 天津慧智百川生物工程有限公司 A kind of fermentation process improving polymalic acid yield
CN108893498B (en) * 2018-07-11 2022-05-06 天津慧智百川生物工程有限公司 Fermentation method for increasing yield of polymalic acid

Similar Documents

Publication Publication Date Title
US5200332A (en) Process for preparation of copolymer
JPS6137919B2 (en)
JPH057492A (en) Production of copolymer
JPS6023838B2 (en) Method for immobilizing sucrose mutase in whole cells of microorganisms
JPH07284395A (en) Production of poly-l-malic acid
JP3081901B2 (en) Method for producing γ-polyglutamic acid
JP2654825B2 (en) Novel cyclic inulooligosaccharide and method for producing the same
JP3845912B2 (en) Method for producing erythritol
JPH01304891A (en) Production of polyester copolymer
JPH07308188A (en) Method for culturing microorganism capable of producing l-malic acid polymer
JPH01222788A (en) Production of copolyester
JPH0630790A (en) Production of optically active 1,2-propanediol
JP2971196B2 (en) Method for producing L-malic acid polymer by enzymatic method
JP2971158B2 (en) Method for producing L-malic acid polymer by microorganism
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
JP3030916B2 (en) Method for producing β-glucooligosaccharide
JPH04341190A (en) Production of l-malic acid polymer by enzymatic process
JPH03247293A (en) Production of water absorbing high-molecular weight substance
JPH06181784A (en) Production of copolyester
JP2519980B2 (en) Method for producing (S) -2-hydroxy-4-phenyl-3-butenoic acid
JPS58116690A (en) Preparation of d-beta-hydroxyamino acid
JPH01144989A (en) Production of colominic acid
JPH02234683A (en) Production of polyester copolymer
US2945787A (en) Glutamic acid synthesis
JPH0591895A (en) Production of d-serine