JPH07284020A - Bone density measuring method - Google Patents

Bone density measuring method

Info

Publication number
JPH07284020A
JPH07284020A JP6074609A JP7460994A JPH07284020A JP H07284020 A JPH07284020 A JP H07284020A JP 6074609 A JP6074609 A JP 6074609A JP 7460994 A JP7460994 A JP 7460994A JP H07284020 A JPH07284020 A JP H07284020A
Authority
JP
Japan
Prior art keywords
femur
bone
bone density
density
measuring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6074609A
Other languages
Japanese (ja)
Inventor
Mitsuko Uchida
美津子 内田
Koichi Sano
耕一 佐野
Miyakai Kumamoto
三矢戒 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP6074609A priority Critical patent/JPH07284020A/en
Publication of JPH07284020A publication Critical patent/JPH07284020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically extract a measurement area so as to make it suitable for the measurement of bone density by performing the setting of a measurement object area and the calculation of a correction value for which reproducibility is high based on the anatomical shape of a femur center end part. CONSTITUTION:Since it is considered that the anatomical shape of a femur part in image pickup is approximately the same in the case of the same patient as long as a substantial change such as the fracture of a bone or the like and a large difference in a photographing posture is not present around the femur, the measurement object area 20 is set based on the anatomical shape. That is, without preparing a difference picture 54 in addition to measuring the bone density of the femur center end part, the area measured by a tentative difference picture 52 and a binary picture 53 is extracted and a bone salinity amount is obtained by the cumulative density value of the tentative difference picture 52 and the correction value F. Since BMCN=BMCN '-F is attained when the cumulative density value in the tentative difference picture 52 of an N part 22 is defined as BMCN' for instance and the bone density BMDN becomes BMDN=BMD'-F when a tentative average density value is defined as BMDN' similarly for the bone density, only a threshold density value (t) is used so as to distinguish the bone and soft part tissues.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線画像を用いて骨塩
量および骨密度を自動計測する方法、特にDEXA(Du
al Energy X-ray Absorptiometry)法を用いた大腿骨中
枢端部の自動計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically measuring bone mineral content and bone density using X-ray images, and more particularly to DEXA (DuA
al Energy X-ray Absorptiometry) method for automatic measurement of the central end of the femur.

【0002】[0002]

【従来の技術】骨粗鬆症による骨折は、椎体や大腿骨中
枢端でおきるケースがほとんどである。ここでいう大腿
骨中枢端とは、大腿骨頸部,大転子,ウォード(Ward)
三角であり、大腿骨中枢端部とは、中枢端および、大転
子につながるシャフトの部分、および大腿骨頸部につな
がる骨盤を含めて総称する。これらの部位は、筋肉や脂
肪で構成される軟部組織で囲まれているため、骨密度を
計測する場合は、DEXA法またはDPA(Dual Photo
n Absorptiometry)法を用いる。
2. Description of the Related Art Most of the fractures due to osteoporosis occur in the vertebral body or the central end of the femur. The central end of the femur here means the neck of the femur, the greater trochanter, and the ward.
It is a triangle, and the central end of the femur is a generic term including the central end, a part of the shaft connected to the greater trochanter, and the pelvis connected to the femoral neck. Since these parts are surrounded by soft tissues composed of muscles and fats, when measuring bone density, DEXA method or DPA (Dual Photo) is used.
n Absorptiometry) method is used.

【0003】骨密度計測の主な目的は、骨粗鬆症である
かどうかを診断することと、骨粗鬆症の治療効果を観察
することである。特に治療効果の観察では、計測値の再
現性の高さが必要である。十分な再現性がない場合、数
回の計測にわたる計測値の変化が治療効果であるか、装
置の変動によるものであるかを判断できない。通常、年
に数%といわれる骨塩量の変化を観察できる高い再現性
を持つ計測方法が必要とされる。
The main purposes of bone density measurement are to diagnose whether or not osteoporosis is present and to observe the therapeutic effect on osteoporosis. Especially in observing the therapeutic effect, high reproducibility of measured values is required. Without sufficient reproducibility, it is not possible to determine whether the change in the measured value over several measurements is a therapeutic effect or a device variation. Usually, a highly reproducible measurement method that can observe changes in bone mineral content, which is said to be several percent per year, is required.

【0004】高い再現性を実現するには、(1)骨密度
を計測する領域の設定再現性,(2)脂肪による計測値の
ずれを補正する領域(以下、補正領域という)の設定再
現性、の二つが満たされなければならない。
In order to realize high reproducibility, (1) setting reproducibility of a region for measuring bone density, and (2) setting reproducibility of a region for correcting deviation of measurement values due to fat (hereinafter referred to as correction region). , Two must be met.

【0005】図2に示すように、補正領域21は、通常
大腿骨中枢端部を囲む矩形の計測対象領域20内の軟部
組織部分であり、補正値は補正領域21の濃度値から算
出する。
As shown in FIG. 2, the correction area 21 is a soft tissue portion in a rectangular measurement target area 20 that normally surrounds the central end of the femur, and the correction value is calculated from the density value of the correction area 21.

【0006】従来は、操作者が計測対象領域20を指示
し、それをもとに補正領域21の設定,補正値の算出,
計測領域の抽出,各部の面積,骨塩量,骨密度を計測し
ている。計測領域は、図2に示すように大腿骨中枢端部
の、頸部22,大転子部23,ウォード三角部24(以
下それぞれN部,T部,W部と表わす)の3ヵ所である
(ザ・ボーン(THE BONE)1991.9 vol5 No3 p73-79)。
Conventionally, the operator designates the measurement target region 20, and based on this, the correction region 21 is set, the correction value is calculated,
The measurement area is extracted, the area of each part, the amount of bone mineral, and the bone density are measured. As shown in FIG. 2, there are three measurement regions, namely, the neck 22, the greater trochanter 23, and the Ward triangle 24 (hereinafter referred to as N, T, and W, respectively) at the central end of the femur. (THE BONE 1991.9 vol5 No3 p73-79).

【0007】[0007]

【発明が解決しようとする課題】従来は、計測対象領域
20を操作者が指示して決定するため、これに左右され
る補正領域21の設定再現性が高くならなかった。この
ため、計測領域が再現性高く設定されても、計測値の再
現性につながらなかった。
Conventionally, since the operator designates and determines the measurement target region 20, the setting reproducibility of the correction region 21, which is influenced by this, has not become high. Therefore, even if the measurement region is set to have high reproducibility, the reproducibility of the measured value is not connected.

【0008】本発明の目的は、大腿骨中枢端部の骨密度
計測において、計測対象領域の設定と計測領域の抽出の
両方の処理を、大腿骨の解剖学的形状に基づいて、高い
再現性で行う骨密度の計測方法を提供することにある。
It is an object of the present invention to perform both the setting of a measurement target area and the extraction of a measurement area in the bone density measurement of the central end of the femur with high reproducibility based on the anatomical shape of the femur. The purpose of the present invention is to provide a method for measuring bone density performed in.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するため、図5に示すように、大腿骨中枢端部の骨密度
計測時に通常撮影する、左右いずれかの骨盤から大腿骨
を含む部分を高低2種類のエネルギで撮影した2枚のX
線画像50,51から、予め定めた係数を用いて仮の差
分画像52を作成する。次に、大腿骨中枢端部の解剖学
的形状と、その形状に伴う前記仮の差分画像52の縦お
よび横方向の濃度値変化をもとに、大腿骨中枢端部を囲
む計測対象領域20を設定し、前記計測対象領域20内
の軟部組織部分の領域である補正領域21の濃度値から
補正値Fを算出し、補正値Fと前記仮の差分画像52よ
り骨密度を計測するための差分画像54を作成する。更
に前記差分画像54から、大腿骨のシャフトの主軸を算
出し、前記主軸を基準として大腿骨中枢端部の計測領域
すなわち前記N部,T部,W部を抽出し、各部の領域内
の差分画像54の濃度値の和をもとに骨塩量を算出し、
平均濃度値をもとに骨密度を算出する。
In order to achieve the above object, the present invention includes a femur from either the left or right pelvis, which is usually photographed when measuring the bone density of the central end of the femur, as shown in FIG. Two X images of the high and low energy of the part
A temporary difference image 52 is created from the line images 50 and 51 using a predetermined coefficient. Next, based on the anatomical shape of the central end of the femur and the density value changes in the vertical and horizontal directions of the temporary difference image 52 associated with the shape, the measurement target region 20 surrounding the central end of the femur 20 Is set, the correction value F is calculated from the density value of the correction region 21 which is the region of the soft tissue portion in the measurement target region 20, and the bone density is measured from the correction value F and the temporary difference image 52. The difference image 54 is created. Further, the main axis of the shaft of the femur is calculated from the difference image 54, the measurement area of the central end of the femur, that is, the N section, the T section, and the W section are extracted with the main axis as a reference, and the difference in the area of each section is calculated. The bone mineral content is calculated based on the sum of the density values of the image 54,
The bone density is calculated based on the average density value.

【0010】他の手段として、差分画像54を作成せず
に、仮の差分画像上52で、前記N部,T部,W部を抽
出し、各部の領域内の仮の差分画像52の濃度値の和と
補正値Fより骨塩量を算出し、平均濃度値と補正値Fよ
り骨密度を算出することもできる。更に、骨盤と大腿骨
の連結部からN部、またはT部までの長さ,計測対象領
域内に含まれる大腿骨中枢端部全体の骨塩量,骨密度等
も算出することができる。
As another means, without creating the difference image 54, the N portion, the T portion, and the W portion are extracted on the temporary difference image 52, and the density of the temporary difference image 52 in the area of each portion is extracted. The bone mineral density can be calculated from the sum of the values and the correction value F, and the bone density can be calculated from the average density value and the correction value F. Further, the length from the connecting portion of the pelvis and the femur to the N portion or the T portion, the amount of bone mineral of the central femoral end included in the measurement target region, the bone density, and the like can be calculated.

【0011】[0011]

【作用】大腿骨周辺は、骨折などの著しい変化、または
撮影姿勢に大きな差がない限り、同一患者ならば撮影画
像における大腿骨部の解剖学的形状はほぼ同一と考えら
れる。上記手段は、この解剖学的形状をもとに計測対象
領域20を設定するため、同一患者に対しては常に高い
再現性でこの領域を設定することができる。例えば、撮
影位置が縦方向または横方向にずれている場合でも、少
なくとも計測領域が撮影されているならば、解剖学的形
状をもとに画像のずれに影響されることなく計測対象領
域20を設定することが可能である。
The anatomical shape of the femur in the photographed image is considered to be almost the same for the same patient unless there is a significant change such as a fracture or a large difference in the photographing posture around the femur. Since the above-mentioned means sets the measurement target region 20 based on this anatomical shape, this region can always be set with high reproducibility for the same patient. For example, even if the imaging position is displaced in the vertical direction or the horizontal direction, if at least the measurement region is captured, the measurement target region 20 is determined based on the anatomical shape without being affected by the displacement of the image. It is possible to set.

【0012】本発明は、図5のように、撮影したL画像
50,H画像51より作成する仮の差分画像52と、骨
と軟部組織を区別するしきい濃度値tを用いて、仮の差
分画像52の縦および横方向の濃度値変化をもとに、図
2に示すような計測対象領域20を設定する。
According to the present invention, as shown in FIG. 5, a temporary difference image 52 created from the captured L image 50 and H image 51 and a threshold density value t for distinguishing between bone and soft tissue are used. The measurement target region 20 as shown in FIG. 2 is set based on the vertical and horizontal density value changes of the difference image 52.

【0013】例えば図2において、大腿骨と軟部組織の
縦方向の境界201は、しきい濃度値t未満を0、以上
を1とすれば、骨部分は1、軟部組織や空気の部分の濃
度は0になるので、骨のない部分の画像の縦方向の累積
値は0であり、骨の部分を含むと累積値は0でなくな
る。したがって、縦方向の累積値が0である位置と0で
ない位置との境界を、境界201として設定できる。ま
た、骨盤と大腿骨の連結部分の横方向の境界202は、
仮の差分画像52上では、連結部分の骨が薄いために少
し低濃度になっており、連結部分の上部の骨盤は、骨の
厚さが厚いため周囲に比べて高濃度になっている。した
がって、仮の差分画像52における横方向の累積濃度値
または平均濃度値が最大になり、その少し下の位置で累
積濃度値が減少→増加になっている位置を、境界202
として設定できる。仮の差分画像52の下端部の骨はシ
ャフトであるので、シャフトの左右の端点p′25,
q′26を抽出することができる。この端点を抽出する
ことにより、大腿骨中枢端部の位置や、大まかな大きさ
を決定でき、これに基づいて上記の境界201〜204
を設定する際の累積値を算出する範囲を決定できる。以
上の方法で設定した計測対象領域20内で、しきい濃度
値t未満の領域を補正領域21と設定する。計測領域
は、図2に示すN部22,T部23,W部24である。
For example, in FIG. 2, a longitudinal boundary 201 between the femur and the soft tissue has a bone density of 1 and a density of the soft tissue or air when the threshold density value t is 0 or less. Is 0, the cumulative value in the vertical direction of the image of the part without bone is 0, and the cumulative value is not 0 when the part of bone is included. Therefore, the boundary between the position where the cumulative value in the vertical direction is 0 and the position where the cumulative value is not 0 can be set as the boundary 201. Further, the lateral boundary 202 of the connecting portion between the pelvis and the femur is
On the provisional difference image 52, the bone in the connected portion is thin and thus has a slightly low density, and the pelvis above the connected portion has a high density as compared with the surrounding area because the bone is thick. Therefore, the boundary 202 is a position where the cumulative density value or the average density value in the horizontal direction in the temporary difference image 52 is maximized and the cumulative density value is decreased → increased at a position slightly lower than that.
Can be set as Since the bone at the lower end of the temporary difference image 52 is the shaft, the left and right end points p′25,
q'26 can be extracted. By extracting this end point, the position and rough size of the femoral center end can be determined, and based on this, the boundaries 201-204 described above can be determined.
The range for calculating the cumulative value when setting is determined. In the measurement target area 20 set by the above method, an area having a threshold density value less than t is set as a correction area 21. The measurement area is the N section 22, the T section 23, and the W section 24 shown in FIG.

【0014】N部22は、図3に示す大腿骨頸部の中心
軸CD32に垂直、かつ最もくびれている領域である。
従って、中心軸CD32の算出がN部22の抽出に必要
である。しかし、大腿骨頸部は長さも短く、輪郭の形状
も滑らかとは限らないため、直接頸部の輪郭より中心軸
CD32を算出するのは精度の面で問題がある。そこ
で、本発明では、図3に示す大腿骨のシャフトの中心軸
AB31をもとに頸部の中心軸CD32を算出する。
The N portion 22 is a region which is perpendicular to the central axis CD32 of the femoral neck shown in FIG.
Therefore, calculation of the central axis CD32 is necessary to extract the N portion 22. However, since the femoral neck has a short length and the contour shape is not always smooth, it is problematic in terms of accuracy to directly calculate the central axis CD32 from the neck contour. Therefore, in the present invention, the central axis CD32 of the neck is calculated based on the central axis AB31 of the femoral shaft shown in FIG.

【0015】ラジオロジー(RADIOLOGY)87:p904−90
7,November 1966 によれば、中心軸AB31とCD3
2のなす角α33は約127°である。中心軸AB31
は、輪郭も十分長く、かつ輪郭の形状も滑らかであるた
め精度良く算出できる。このように、まずAB31を算
出し、AB31と127°をなすCD′を設定した後、
CD′に補正を加えてCD32を算出することで、CD
32を精度良く設定することができる。
Radiology 87: p904-90
7, According to November 1966, central axis AB31 and CD3
The angle α33 formed by 2 is about 127 °. Central axis AB31
Can be accurately calculated because the contour is sufficiently long and the contour has a smooth shape. In this way, first, AB31 is calculated, and after setting CD 'forming 127 ° with AB31,
By calculating the CD32 by adding the correction to the CD ', the CD
32 can be accurately set.

【0016】T部23は、N部22と隣接し、シャフト
にかからない領域として抽出する。T部23とシャフト
との境界は明確に設定することができないが、頸部の中
心軸CD32より上部に境界を設定するのが適当である
ことから、頸部の中心軸CD32に対して予め定めた角β7
1をなす傾きで、N部22の重心Gを通る直線を境界と
する。または、シャフトの中心軸AB31に対して予め
定めた角β′72をなす傾きで、N部22の重心を通る
直線を境界とする。上述のとおりシャフトの中心軸AB
31および頸部の中心軸CD32は、精度よく算出され
るので、これに基づいて設定する境界も精度よく設定す
ることができる。
The T portion 23 is adjacent to the N portion 22 and is extracted as a region which does not touch the shaft. Although the boundary between the T portion 23 and the shaft cannot be clearly set, it is appropriate to set the boundary above the central axis CD32 of the neck, and therefore it is predetermined with respect to the central axis CD32 of the neck. Angle β7
A straight line passing through the center of gravity G of the N portion 22 with an inclination of 1 is defined as a boundary. Alternatively, a straight line passing through the center of gravity of the N portion 22 at an inclination that forms a predetermined angle β′72 with respect to the central axis AB31 of the shaft is set as a boundary. As mentioned above, the central axis AB of the shaft
Since 31 and the central axis CD32 of the neck are accurately calculated, the boundary set based on this can also be accurately set.

【0017】W部24は、皮質骨が多いN部22とT部
23の隣接部周辺にあり、海綿骨が多く、骨梁の狭間に
あるため比較的低濃度になっている。このことからN部
22とT部23の隣接部周辺で最も平均濃度が低い位置
をW部24と設定する。W部24の面積は予め定めてお
き、形状はN部の傾きと中心軸CD32の傾きより設定
する。以上のように、精度良く設定できるシャフトの中
心軸AB31や頸部の中心軸CD32に基づいて各計測
領域を設定していくので領域の設定再現性も高くでき
る。
The W portion 24 is located around the adjacent portion of the N portion 22 and the T portion 23 where a large amount of cortical bone is present, has a large amount of cancellous bone, and is located between the trabecular bones, and thus has a relatively low density. From this, the position having the lowest average density around the adjacent portion between the N portion 22 and the T portion 23 is set as the W portion 24. The area of the W portion 24 is determined in advance, and the shape is set based on the inclination of the N portion and the inclination of the central axis CD32. As described above, since each measurement region is set based on the shaft center axis AB31 and the neck center axis CD32 that can be set with high accuracy, the region setting reproducibility can be increased.

【0018】[0018]

【実施例】本実施例は、DEXA法を用いて、大腿骨中
枢端部の骨塩量および骨密度を計測する方法である。
EXAMPLE This example is a method of measuring the amount of bone mineral and the bone mineral density at the central end of the femur using the DEXA method.

【0019】図4は本発明を実現するシステム構成の一
例である。以下、各部の機能概要を説明する。X線発生
器41から高低2種類の電圧でファンビーム状のX線を
交互に発生する。X線は被写体40を通過し、X線検出
器42で検出され、それぞれAD変換器43で変換され
る。発生器41と検出器42は連動して撮影区間を移動
しながら撮影を行い、最終的に得られる2種類の画像が
画像処理装置44に送られる。画像処理装置44では、
以下に述べる骨塩量および骨密度計測処理等を行う。表
示装置45は画像や操作メッセージ,計測結果等を表示
し、操作卓46はキーボード,マウス,トラックボール
などを備えており指示,入力を行う。外部記憶装置47
は画像データ等を記憶し、出力装置48は表示装置45
の表示内容のハードコピーを行う。
FIG. 4 is an example of a system configuration for implementing the present invention. The functional outline of each unit will be described below. The X-ray generator 41 alternately generates fan-beam-shaped X-rays with two kinds of high and low voltages. The X-rays pass through the subject 40, are detected by the X-ray detector 42, and are respectively converted by the AD converter 43. The generator 41 and the detector 42 work together to perform shooting while moving in the shooting section, and the two types of finally obtained images are sent to the image processing device 44. In the image processing device 44,
The bone mineral content and bone density measuring processes described below are performed. The display device 45 displays images, operation messages, measurement results, etc., and the operation console 46 is equipped with a keyboard, a mouse, a trackball, etc., and gives instructions and inputs. External storage device 47
Stores image data, and the output device 48 is the display device 45.
Make a hard copy of the display content of.

【0020】以下、図1の処理手順のフローチャートに
従って大腿骨中枢端部の骨塩量および骨密度の計測方法
について説明する。
A method of measuring the amount of bone mineral and the bone mineral density at the central end of the femur will be described below with reference to the flowchart of the processing procedure of FIG.

【0021】ステップ10:仮の差分画像S′52の作
成(図5) 高低2種類の電圧で撮影した画像(以下、L画像50,
H画像51)、と定数r,H画像51の濃度値関数とし
て定義される計測位置ごとの厚みに対する補正値R(H
(i,j))を用いて、仮の差分画像S′52をS′
(i,j)=(L′(i,j)−r・H′(i,j))・R
(H′(i,j))として作成する。ここで、撮影方法に
よってL画像50とH画像51は理論上0.5 画素ずれ
ているため、少なくとも一方の画像をキュービック コ
ンボリューションCubic Convolution 法などで位置合わ
せした画像L′,H′を用いる。また、画像L′に、ビ
ームハードニング現象が起こっている場合には、その補
正も行う。ビームハードニングの補正は、補正値Rと同
様にH画像51の関数として求めることができる。
Step 10: Creation of Temporary Difference Image S'52 (FIG. 5) Images photographed with two kinds of high and low voltages (hereinafter, L image 50,
H image 51), and a constant r, a correction value R (H
(i, j)), the temporary difference image S′52 is converted to S ′
(i, j) = (L '(i, j) -r * H' (i, j)) * R
Create as (H '(i, j)). Here, since the L image 50 and the H image 51 are theoretically shifted by 0.5 pixel depending on the photographing method, images L'and H'where at least one image is aligned by the cubic convolution Cubic Convolution method or the like are used. Further, when the beam hardening phenomenon occurs in the image L ', the correction is also performed. The beam hardening correction can be obtained as a function of the H image 51 like the correction value R.

【0022】DEXA法で撮影する画像は積分像であ
り、骨密度計測のために作成する差分画像S54は、軟
部組織の濃度を0とした画像で、骨の部分の画素濃度は
0より大きく、画素濃度がそのまま骨密度になるもので
ある。脂肪がない場合は、軟部組織は水とほとんど変わ
らないため、ここで作成したS′52を差分画像S54
として用いることができる。しかし、実際は脂肪による
影響が生じる。脂肪量が多いと、画素濃度は低下してし
まうため、各データごとに脂肪量に基づいた補正値Fを
求め、S′52を補正する必要がある。
The image photographed by the DEXA method is an integral image, and the difference image S54 created for measuring the bone density is an image in which the density of soft tissue is 0, and the pixel density of the bone part is larger than 0, The pixel density is the bone density as it is. If there is no fat, the soft tissue is almost the same as water, so S'52 created here is used as the difference image S54.
Can be used as However, in reality, the effects of fat occur. If the fat amount is large, the pixel density will decrease, so it is necessary to obtain a correction value F based on the fat amount for each data and correct S′52.

【0023】ステップ11:計測対象領域20と補正領
域21の設定(図2および図5) 補正値Fは、計測領域の周辺の軟部組織の平均濃度を0
にする値として算出する。補正値Fを求めるための補正
領域21を設定する。補正領域21の設定は、計測対象
領域20を設定する必要がある。まず、S′52より軟
部組織と骨の部分を区別する2値画像53を、例えば
S′の画素濃度が予め定めたしきい濃度値t以上であれ
ば1、t未満ならば0として作成する。しきい濃度値t
は0を用いると、ほぼ軟部組織と骨の部分を区別でき
る。しかしこの処理だけでは軟部組織部分や骨にごま塩
状のノイズが発生するためノイズ除去を行って最終の2
値画像53とする。ノイズ除去の方法は、平滑化や注目
点の周辺の濃度値から注目点が孤立点であるか判定して
除去する方法などがある。
Step 11: Setting the measurement target area 20 and the correction area 21 (FIGS. 2 and 5) The correction value F is the average density of the soft tissue around the measurement area.
Calculate as the value to be set. A correction area 21 for obtaining the correction value F is set. To set the correction area 21, it is necessary to set the measurement target area 20. First, a binary image 53 for distinguishing a soft tissue and a bone portion from S'52 is created, for example, as 1 if the pixel density of S'is greater than or equal to a predetermined threshold density value t, and as 0 if it is less than t. . Threshold concentration value t
Is used to distinguish between soft tissue and bone. However, this process alone produces sesame salt-like noise in the soft tissue part and bone, so noise removal is performed and the final 2
The value image 53 is set. Noise removal methods include smoothing and determining from the density value around the point of interest whether the point of interest is an isolated point and removing it.

【0024】次に、S′52と2値画像53を用いて計
測対象領域20の各境界201〜204を設定する。境
界201は2値画像53の縦方向の累積濃度値の変化か
ら定め、境界202はS′52の横方向の累積濃度値の
変化から定めることができる。同様に境界203は、
S′52の縦方向の累積濃度値から定める。これらの境
界201〜203は累積濃度値から定めるが、その累積
する範囲は撮影位置の下方の横のラインからシャフトの
左右端点p′25,q′26を求め、その端点の位置か
ら大腿骨の解剖学的形状に基づいて、累積範囲を設定す
る。また、2値画像53より大腿骨の解剖学的形状に基
づいて、変曲点p2〜p7,q2,q3も求めることができ
るので、それらの位置も用いて累積範囲を設定すること
ができる。
Next, the boundaries 201 to 204 of the measurement target area 20 are set using S'52 and the binary image 53. The boundary 201 can be determined from the change in the vertical cumulative density value of the binary image 53, and the boundary 202 can be determined from the change in the horizontal cumulative density value of S′52. Similarly, the boundary 203 is
It is determined from the cumulative density value of S'52 in the vertical direction. These boundaries 201 to 203 are determined from the cumulative density value. The cumulative range is obtained by finding the left and right end points p'25, q'26 of the shaft from the horizontal line below the imaging position, and from the position of the end points of the femur. A cumulative range is set based on the anatomical shape. In addition, since the inflection points p 2 to p 7 , q 2 , q 3 can also be obtained from the binary image 53 based on the anatomical shape of the femur, the cumulative range is set also by using those positions. be able to.

【0025】境界204は、簡単な方法としては撮影位
置の一番下方に設定したり、境界202から予め定めた
距離だけはなれた位置に設定できる。しかし、この方法
は計測対象領域20が絶対的な大きさになってしまうた
め、撮影条件の違いによって計測対象領域20の相対的
な大きさ,設定位置が異なってしまう。そこで、撮影条
件によらず相対的に計測対象領域20を設定する方法と
して、例えばp2 を検出し、p2 と境界202間の距離
を2倍した位置に境界204を設定する。さらに、計測
対象領域20内の2値画像53の濃度値が0である領域
を補正領域21とする。
As a simple method, the boundary 204 can be set at the bottom of the photographing position, or can be set at a position separated from the boundary 202 by a predetermined distance. However, in this method, the measurement target area 20 has an absolute size, and therefore the relative size and setting position of the measurement target area 20 vary depending on the difference in the imaging conditions. Therefore, as a method of relatively setting the measurement target region 20 regardless of the imaging condition, for example, p 2 is detected, and the boundary 204 is set at a position where the distance between p 2 and the boundary 202 is doubled. Further, a region in the measurement target region 20 in which the density value of the binary image 53 is 0 is set as a correction region 21.

【0026】以上の方法で、撮影条件によって被写体の
位置ずれが発生していたり、大きさが異なっていても相
対的に一定の計測対象領域20および補正領域21が設
定できる。他の方法として、シャフトの左右端点p′2
5,q′26,変曲点p2〜p7,q2,q3 から、直接
境界201〜204を設定することもできる。例えば、
境界201は変曲点p2,p3の位置、境界202は変曲
点p4,p5の位置からp2とp4間の縦方向の長さ分上の
位置、境界203は変曲点q3 の位置、を基準に設定
し、境界204は上記の方法で設定する。
By the above method, the measurement target area 20 and the correction area 21 can be set relatively constant even if the object is displaced due to the photographing conditions or the size is different. As another method, the left and right end points p′2 of the shaft
5, q'26, from the inflection point p 2 ~p 7, q 2, q 3, it is also possible to directly set the boundaries 201-204. For example,
The boundary 201 is the position of the inflection points p 2 and p 3 , the boundary 202 is the position above the position of the inflection points p 4 and p 5 in the vertical direction between p 2 and p 4 , and the boundary 203 is the inflection point. The position of the point q 3 is set as a reference, and the boundary 204 is set by the above method.

【0027】ステップ12:補正値F算出 S′52において、補正領域21の平均濃度値Fを求め
る。
Step 12: Calculation of Correction Value F In S'52, the average density value F of the correction area 21 is obtained.

【0028】ステップ13:差分画像S54作成 S′52と補正値Fより脂肪による濃度値のずれを補正
し、骨のある位置の画素濃度がその位置の骨密度になる
ような差分画像S54を作成する。
Step 13: Creation of a difference image S54 A difference image S54 is created by correcting the deviation of the density value due to fat from S'52 and the correction value F so that the pixel density at a certain position of the bone becomes the bone density at that position. To do.

【0029】S(i,j)=S′(i,j)−F ステップ14:計測領域抽出 2値画像53を用いて計測対象領域20の境界と大腿骨
の輪郭の接する点p1,p8,q1,q4 を求める。以下、
大腿骨中枢端部のN部22,T部23,W部24の抽出
方法を順に説明する。
S (i, j) = S '(i, j) -F Step 14: Measurement Area Extraction Using the binary image 53, the points p 1 and p at which the boundary of the measurement target area 20 and the contour of the femur contact Calculate 8 , q 1 , and q 4 . Less than,
A method of extracting the N portion 22, the T portion 23, and the W portion 24 at the central end of the femur will be described in order.

【0030】(1)N部22の抽出(図6) (a)シャフトの中心軸AB31の設定 大腿骨を囲む輪郭のp1とp2の中点px、q1とq2の中
点qxを求め、p1とpx間の輪郭座標と、q1とqx間の
輪郭座標を用いて、それぞれの近似直線を求め、その中
線を中心軸AB31とする。他の方法として、領域p1
xx1内の全座標から慣性の主軸を計算し、それを
中心軸AB31とすることもできる。また、px はp1
とp2の間の中点とは限らず、もちろんp1とp2間のど
こに設定してもかまわない。qxについても同様であ
る。しかし、px がp2,qxがq2に近づくにつれてシ
ャフトが広がってくるので、シャフトが安定している位
置にpxxを設定した方が良い。
(1) Extraction of N part 22 (FIG. 6) (a) Setting of the central axis AB31 of the shaft Midpoints of p 1 and p 2 of the contour surrounding the femur p x , midpoints of q 1 and q 2 q x is obtained, each of the approximate straight lines is obtained by using the contour coordinates between p 1 and p x and the contour coordinates between q 1 and q x , and the center line is set as the central axis AB31. Alternatively, the region p 1
p x q x q inertia of the main shaft calculated from all the coordinates within 1 may be the same as the central axis AB31. Also, p x is p 1
And not limited to a middle point between the p 2, it may be set anywhere in between, of course p 1 and p 2. The same applies to q x . However, since the shaft expands as p x approaches p 2 and q x approaches q 2 , it is better to set p x q x at a position where the shaft is stable.

【0031】(b)大腿骨頸部の中心軸CD32の設定
とN部22の抽出 中心軸AB31と反時計回りに角α33をなす直線の傾
きを、求める中心軸CD32の初期傾きa1 とする。角
α33は、125°〜130°であり、ここでは127
°にする。次に、頸部の輪郭p6〜p7とq2〜q3間で最
もくびれている対座標PN、QNを検出し、線分PNN
垂直な傾きa2 求め、a1とa2の中間の傾きaを中心軸
CD32の傾きとする。線分PNNの中点を中心とし、
傾きaに垂直な傾きbで中心から予め定めた距離k離れ
た線分N12、N34を設定し、この線分と輪郭で囲ま
れる領域をN部22とする。更に、N部22の設定位置
が不適切である場合は傾きaに垂直な方向に平行移動し
てN部の位置を補正する。N部22の設定位置が不適切
とは、例えばN4 がp6よりp5側、またはN1 がp7
りp8側、またはN2がq3よりq4 側に設定されるよう
な場合である。補正したN部22の重心Gを求め、傾き
aでGを通る直線を中心軸CD32とする。
(B) Setting of the central axis CD32 of the femoral neck and extraction of the N portion 22 The inclination of a straight line forming an angle α33 counterclockwise with the central axis AB31 is set as the initial inclination a 1 of the central axis CD32. . The angle α33 is 125 ° to 130 °, and is 127 here.
To °. Next, the most constricted paired coordinates P N and Q N between the neck contours p 6 to p 7 and q 2 to q 3 are detected, and the inclination a 2 perpendicular to the line segment P N Q N is obtained, and a An inclination a between 1 and a 2 is the inclination of the central axis CD32. Centering on the midpoint of the line segment P N Q N ,
Line segments N 1 N 2 and N 3 N 4 are set at a predetermined distance k from the center with a slope b perpendicular to the slope a, and a region surrounded by the line segment and the contour is referred to as an N portion 22. Further, when the set position of the N portion 22 is inappropriate, the position of the N portion is corrected by moving in parallel in the direction perpendicular to the inclination a. When the setting position of the N portion 22 is inappropriate, for example, N 4 is set to the p 5 side from p 6 or N 1 is set to the p 8 side from p 7 or N 2 is set to the q 4 side from q 3 This is the case. The corrected center of gravity G of the N portion 22 is obtained, and the straight line passing through G at the inclination a is set as the central axis CD32.

【0032】(2)T部23の抽出(図7) 中心軸CD32と線分N34の交点をT2とする。T2
通り中心軸CD32と時計回りに角β71をなす直線の
大腿骨輪郭との交点をT1とし、T124とT1とN4
の輪郭で囲まれる領域をT23とする。角β71は5°
〜20°程度であり、ここでは10°にする。別の方法
として、T1をCとp2の中間輪郭位置にしたり、T2
線分T1Gと線分N34の交点とすることもできる。更
に他の方法として、シャフトの中心軸AB31と時計回
りに角β′72をなす傾きで、T2を通る直線と大腿骨
輪郭との交点をT1とし、T部23を抽出する。角β′7
2は60°〜70°程度である。
(2) Extraction of the T portion 23 (FIG. 7) The intersection of the central axis CD32 and the line segment N 3 N 4 is designated as T 2 . The intersection point between the central axis CD32 passing through T 2 and the straight femoral contour that forms the angle β71 in the clockwise direction is defined as T 1, and the region surrounded by the contour between T 1 T 2 N 4 and T 1 and N 4 is defined as T23. To do. Angle β71 is 5 °
It is about 20 °, and is 10 ° here. Alternatively, T 1 may be an intermediate contour position between C and p 2 , or T 2 may be the intersection of the line segment T 1 G and the line segment N 3 N 4 . As still another method, the intersection of the straight line passing through T 2 and the outline of the femur is tilted at an angle β′72 with the central axis AB31 of the shaft in the clockwise direction, and T 1 is extracted, and the T portion 23 is extracted. Angle β'7
2 is about 60 ° to 70 °.

【0033】(3)W部24の抽出 T2を中心とし、半径がT2Gの長さの円形領域内におい
て、周辺の何点かで算出した差分画像54の平均濃度が
最低になる位置W1を求め、W1を中心に予め定めた面積
Zになるように矩形領域W部24を抽出する。W部24
の各辺の傾きは中心軸CD32および線分N34に平行
になるように設定する。ここでW1 を求める領域は円形
でなくとも構わないし、W1 は平均濃度で求めずに画素
濃度でもよい。さらに、W部24は矩形でなく円形でも
よい。
(3) Extraction of the W section 24 A position where the average density of the difference image 54 calculated at some points in the periphery becomes the lowest within a circular area centered on T 2 and having a radius of T 2 G. W 1 is obtained, and the rectangular region W portion 24 is extracted so as to have a predetermined area Z centering on W 1 . W part 24
The inclination of each side of is set to be parallel to the central axis CD32 and the line segment N 3 N 4 . Here to region seeking W 1 it is may not be a circular, W 1 may be a pixel density without requiring the average concentration. Further, the W portion 24 may be circular instead of rectangular.

【0034】ステップ15:骨塩量,骨密度算出 上記で抽出したN部22,T部23,W部24の差分画
像54における各領域内の総座標数を面積とし、累積濃
度値を骨塩量、平均濃度値を骨密度とする。さらに、輪
郭p1〜p5〜N1と線分N12と輪郭q1〜q2〜N2と線
分p11で囲まれる領域を大腿骨中枢端部全体の領域と
して、面積,骨塩量,骨密度を算出する。または、輪郭
1〜p8と線分p84と輪郭q1〜q4と線分p11で囲
まれる領域を大腿骨中枢端部全体の領域としてもよい。
また、他の測定値として線分CD32や、線分T2D の長さ
も算出し、骨密度と共に骨折の危険性を診断する指標と
して用いることもできる。
Step 15: Calculation of Bone Mineral Amount and Bone Density The total number of coordinates in each region in the difference image 54 of the N part 22, T part 23 and W part 24 extracted above is defined as the area, and the cumulative density value is the bone mineral density. The amount and the average density value are used as the bone density. Further, a region surrounded by the contours p 1 to p 5 to N 1 , the line segment N 1 N 2 , the contours q 1 to q 2 to N 2 and the line segment p 1 q 1 is defined as a region of the entire femoral central end portion. Calculate area, bone mineral density, and bone density. Alternatively, the region surrounded by the contours p 1 to p 8 , the line segment p 8 q 4 , the contours q 1 to q 4, and the line segment p 1 q 1 may be the region of the entire femoral central end portion.
Further, as other measured values, the length of the line segment CD32 and the length of the line segment T 2 D can be calculated and used as an index for diagnosing the risk of fracture together with the bone density.

【0035】図1のフローチャートに従って、大腿骨中
枢端部の骨密度を測定する方法の他に、差分画像54を
作成せずに、仮の差分画像52と2値画像53より計測
領域を抽出し、骨塩量を仮の差分画像52の累積濃度値
と補正値Fより求めることができる。例えば、N部22
の仮の差分画像52における累積濃度値をBMCN′と
すると、N部22の骨塩量BMCNは、BMCN=BM
CN′−Fとなる。骨密度も同様に、N部22の仮の差
分画像52における平均濃度値をBMDN′とすると、
N部22の骨密度BMDNは、BMDN=BMDN′−
Fとなる。他の領域も同様にして求めることができる。
According to the flowchart of FIG. 1, in addition to the method of measuring the bone density of the central end of the femur, the measurement area is extracted from the temporary difference image 52 and the binary image 53 without creating the difference image 54. The bone mineral content can be calculated from the cumulative density value of the temporary difference image 52 and the correction value F. For example, N part 22
Assuming that the cumulative density value in the provisional difference image 52 is BMCN ′, the bone mineral content BMCN of the N portion 22 is BMCN = BM.
It becomes CN'-F. Similarly for the bone density, if the average density value in the temporary difference image 52 of the N portion 22 is BMDN ′,
The bone density BMDN of the N portion 22 is BMDN = BMDN′−
It becomes F. Other areas can be similarly obtained.

【0036】また、実施例では2値画像53を作成する
が、仮の差分画像52と、骨と軟部組織とを区別するし
きい濃度値tのみを用いて処理することもできるため、
2値画像53を作成しなくてもよい。
Further, although the binary image 53 is created in the embodiment, it is possible to perform processing by using only the temporary difference image 52 and the threshold density value t for distinguishing between bone and soft tissue.
It is not necessary to create the binary image 53.

【0037】[0037]

【発明の効果】本発明は、大腿骨中枢端部の解剖学的形
状に基づいて、計測対象領域の設定と、再現性の高い補
正値の算出と計測領域の抽出が自動的にできるため、骨
密度の計測方法として有効である。
As described above, the present invention can automatically set the measurement target area, calculate the highly reproducible correction value, and extract the measurement area based on the anatomical shape of the central end of the femur. It is effective as a method for measuring bone density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の骨密度計測の処理フローチ
ャート。
FIG. 1 is a processing flowchart of bone density measurement according to an embodiment of the present invention.

【図2】本発明の一実施例における画像処理の説明図。FIG. 2 is an explanatory diagram of image processing according to an embodiment of the present invention.

【図3】大腿骨のシャフトの主軸と大腿骨頸部の主軸の
説明図。
FIG. 3 is an explanatory view of the main axis of the femoral shaft and the main axis of the femoral neck.

【図4】本発明を実現するシステム構成の一例を示す説
明図。
FIG. 4 is an explanatory diagram showing an example of a system configuration for realizing the present invention.

【図5】本発明の一実施例の差分画像作成の説明図。FIG. 5 is an explanatory diagram of creating a difference image according to an embodiment of the present invention.

【図6】N部22の抽出方法の説明図。FIG. 6 is an explanatory diagram of an extraction method of an N unit 22.

【図7】T部23の抽出方法の説明図。FIG. 7 is an explanatory diagram of a method of extracting a T portion 23.

【符号の説明】[Explanation of symbols]

20…計測対象領域、22…N部、23…T部、25,
26…シャフトの左右端点p′、31…シャフトの主
軸、32,33…大腿骨頸部の主軸、50…L画像、5
1…H画像、54…差分画像。
20 ... Measurement target area, 22 ... N section, 23 ... T section, 25,
26 ... Left and right end points p ′ of shaft, 31 ... Main axis of shaft, 32, 33 ... Main axis of femoral neck, 50 ... L image, 5
1 ... H image, 54 ... Difference image.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊本 三矢戒 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuya Kumamoto 1-1-14 Kanda, Chiyoda-ku, Tokyo Inside Hitachi Medical Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】高低2種類のエネルギで撮影した大腿骨中
枢端部を含むX線画像より差分画像を作成し、前記差分
画像に基づいて大腿骨頸部の骨密度を計測する方法にお
いて、前記大腿骨中枢端部を囲む計測対象領域を自動設
定し、前記大腿骨頸部の領域を抽出する処理を含むこと
を特徴とする骨密度計測方法。
1. A method of creating a difference image from an X-ray image including the central end of the femur captured by two types of energy, high and low, and measuring the bone density of the neck of the femur based on the difference image. A bone density measuring method comprising a process of automatically setting a measurement target region surrounding a central end of a femur and extracting the region of the femoral neck.
【請求項2】請求項1において、前記大腿骨頸部の領域
抽出処理は、大腿骨のシャフトの主軸を算出し、前記主
軸の傾きより予め定めた角αをなす傾きを基準に、前記
大腿骨頸部の主軸を算出する処理を含む骨密度計測方
法。
2. The femoral neck region extraction process according to claim 1, wherein the main axis of the shaft of the femur is calculated, and the thigh is set with reference to an inclination forming a predetermined angle α from the inclination of the main axis. A bone density measuring method including a process of calculating a principal axis of a bone neck.
【請求項3】請求項2において、前記角αは、前記シャ
フトの主軸に対して反時計回りに125°〜130°で
ある骨密度計測方法。
3. The bone density measuring method according to claim 2, wherein the angle α is 125 ° to 130 ° counterclockwise with respect to the main axis of the shaft.
【請求項4】高低2種類のエネルギで撮影した大腿骨中
枢端部を含むX線画像より差分画像を作成し、前記差分
画像に基づいて大転子部の骨密度を計測する方法におい
て、前記大腿骨中枢端部を囲む計測対象領域を自動設定
し、前記大転子部の領域を抽出する処理を含むことを特
徴とする骨密度計測方法。
4. A method of creating a difference image from an X-ray image including the central end of the femur photographed with two types of energy, high and low, and measuring the bone density of the greater trochanter part based on the difference image. A bone density measuring method comprising a process of automatically setting a measurement target region surrounding the central end of the femur and extracting the region of the greater trochanter.
【請求項5】請求項4において、前記大転子部の領域抽
出処理は、前記大腿骨頸部の主軸を算出し、前記主軸の
傾きより予め定めた角βをなす傾きを基準に、前記大転
子部の領域とシャフトの部分とを分離する境界線を算出
する処理を含む骨密度計測方法。
5. The area extracting process of the greater trochanter part according to claim 4, wherein the main axis of the femoral neck is calculated, and the inclination forming a predetermined angle β from the inclination of the main axis is used as a reference. A bone density measuring method including a process of calculating a boundary line that separates the region of the greater trochanter and the shaft.
【請求項6】請求項5において、前記角βは、前記大腿
骨頸部の主軸に対して時計回りに5°〜20°である骨
密度計測方法。
6. The bone density measuring method according to claim 5, wherein the angle β is 5 ° to 20 ° clockwise with respect to the main axis of the femoral neck.
【請求項7】請求項4において、前記大転子部の領域抽
出処理は、前記大腿骨のシャフトの主軸を算出し、前記
主軸の傾きより予め定めた角β′をなす傾きを基準に、
前記大転子部の領域と前記シャフトの部分とを分離する
境界線を算出する処理を含む骨密度計測方法。
7. The area extracting process of the greater trochanter part according to claim 4, wherein the main axis of the shaft of the femur is calculated, and an inclination forming a predetermined angle β ′ from the inclination of the main axis is used as a reference.
A bone density measuring method including a process of calculating a boundary line that separates the region of the greater trochanter and the shaft.
【請求項8】請求項6において、前記角β′は、前記シ
ャフトの主軸に対して時計回りに60°〜70°である
骨密度計測方法。
8. The bone density measuring method according to claim 6, wherein the angle β ′ is 60 ° to 70 ° clockwise with respect to the main axis of the shaft.
【請求項9】請求項1において、前記計測対象領域を自
動設定する処理は、前記差分画像の下端部より前記大腿
骨のシャフトの左右端点を抽出し、前記端点に基づいて
前記大腿骨中枢端部の位置,大きさを設定する処理を含
む骨密度計測方法。
9. The process for automatically setting the measurement target region according to claim 1, wherein the left and right end points of the shaft of the femur are extracted from the lower end portion of the difference image, and the femoral central end is extracted based on the end points. A bone density measuring method including a process of setting the position and size of a part.
JP6074609A 1994-04-13 1994-04-13 Bone density measuring method Pending JPH07284020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6074609A JPH07284020A (en) 1994-04-13 1994-04-13 Bone density measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6074609A JPH07284020A (en) 1994-04-13 1994-04-13 Bone density measuring method

Publications (1)

Publication Number Publication Date
JPH07284020A true JPH07284020A (en) 1995-10-27

Family

ID=13552092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6074609A Pending JPH07284020A (en) 1994-04-13 1994-04-13 Bone density measuring method

Country Status (1)

Country Link
JP (1) JPH07284020A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061949A (en) * 2001-08-24 2003-03-04 Ge Medical Systems Global Technology Co Llc Region extraction method, region extraction device and x-ray ct apparatus
JP2007333471A (en) * 2006-06-13 2007-12-27 Shimadzu Corp Nuclear medicine diagnosis device
US7502641B2 (en) 2002-07-09 2009-03-10 Aecc Enterprises Limited Method for imaging the relative motion of skeletal segments
JP2013236962A (en) * 2007-08-15 2013-11-28 Fujifilm Corp Image component separating device, method and program
US9277879B2 (en) 2009-09-25 2016-03-08 Ortho Kinematics, Inc. Systems and devices for an integrated imaging system with real-time feedback loops and methods therefor
US9491415B2 (en) 2010-12-13 2016-11-08 Ortho Kinematics, Inc. Methods, systems and devices for spinal surgery position optimization
WO2016190327A1 (en) * 2015-05-28 2016-12-01 株式会社日立製作所 Medical x-ray measurement system
JP2016198176A (en) * 2015-04-08 2016-12-01 株式会社日立製作所 Bone salt quantity measuring apparatus
JP2017131427A (en) * 2016-01-28 2017-08-03 株式会社日立製作所 X-ray image diagnostic apparatus and bone density measurement method
CN110840473A (en) * 2019-11-22 2020-02-28 江研伟 Bone mineral density measuring system based on CT thin-layer scanning Hu value
US10959786B2 (en) 2015-06-05 2021-03-30 Wenzel Spine, Inc. Methods for data processing for intra-operative navigation systems

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061949A (en) * 2001-08-24 2003-03-04 Ge Medical Systems Global Technology Co Llc Region extraction method, region extraction device and x-ray ct apparatus
US7502641B2 (en) 2002-07-09 2009-03-10 Aecc Enterprises Limited Method for imaging the relative motion of skeletal segments
JP2007333471A (en) * 2006-06-13 2007-12-27 Shimadzu Corp Nuclear medicine diagnosis device
JP4656008B2 (en) * 2006-06-13 2011-03-23 株式会社島津製作所 Nuclear medicine diagnostic equipment
JP2013236962A (en) * 2007-08-15 2013-11-28 Fujifilm Corp Image component separating device, method and program
US9554752B2 (en) 2009-09-25 2017-01-31 Ortho Kinematics, Inc. Skeletal measuring means
US9277879B2 (en) 2009-09-25 2016-03-08 Ortho Kinematics, Inc. Systems and devices for an integrated imaging system with real-time feedback loops and methods therefor
US9491415B2 (en) 2010-12-13 2016-11-08 Ortho Kinematics, Inc. Methods, systems and devices for spinal surgery position optimization
JP2016198176A (en) * 2015-04-08 2016-12-01 株式会社日立製作所 Bone salt quantity measuring apparatus
JP2016220850A (en) * 2015-05-28 2016-12-28 株式会社日立製作所 Medical X-ray Measurement System
WO2016190327A1 (en) * 2015-05-28 2016-12-01 株式会社日立製作所 Medical x-ray measurement system
US10959786B2 (en) 2015-06-05 2021-03-30 Wenzel Spine, Inc. Methods for data processing for intra-operative navigation systems
JP2017131427A (en) * 2016-01-28 2017-08-03 株式会社日立製作所 X-ray image diagnostic apparatus and bone density measurement method
CN110840473A (en) * 2019-11-22 2020-02-28 江研伟 Bone mineral density measuring system based on CT thin-layer scanning Hu value
CN110840473B (en) * 2019-11-22 2023-05-26 江研伟 Bone mineral density measuring system based on CT thin-layer scanning Hu value

Similar Documents

Publication Publication Date Title
STOKES et al. Measurement of axial rotation of vertebrae in scoliosis
JP3134009B2 (en) Image processing method and apparatus
US5480439A (en) Method for periprosthetic bone mineral density measurement
US8233692B2 (en) Method of suppressing obscuring features in an image
US7609871B2 (en) Automatic region of interest locator for AP spinal images and for hip images in bone densitometry
JP2007130462A (en) Evaluation method of three-dimensional image of symmetrical organ, medical imaging system, and computer program
Hosntalab et al. Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set
JP2009207886A (en) Vertebral center detecting device, method, and program
JPH07284020A (en) Bone density measuring method
JPH06261894A (en) Bone salt quantitative determination method
JP2007105264A (en) Medical picture judgment apparatus, medical picture judgment method, and program thereof
Kalender et al. Bone mineral measurement: automated determination of midvertebral CT section.
EP1551296A1 (en) Method, code, and system for assaying joint deformity
JPH08103439A (en) Alignment processor for image and inter-image processor
Sumner et al. Computed tomographic measurement of cortical bone geometry
JP2002143136A (en) Detection method and detection processing system for candidate of abnormal shadow
US20050119593A1 (en) Method of viewing and controlling balance of the vertebral column
Chappard et al. Clinical evaluation of spine morphometric X-ray absorptiometry.
Yang et al. Semi-automatic ultrasound curve angle measurement for adolescent idiopathic scoliosis
US7046834B2 (en) Method for measuring bone mineral density by using X-ray image
Laine et al. Image processing for femoral endosteal anatomy detection: description and testing of a computed tomography based program
CN116309503A (en) Medical image quality evaluation system based on semantic segmentation
Ren et al. A knowledge-based automatic cephalometric analysis method
CN115359017A (en) Tibial plateau caster angle determining device
EP0755219A1 (en) Method for periprosthetic bone mineral density measurement