JPH07283649A - Antenna circuit - Google Patents

Antenna circuit

Info

Publication number
JPH07283649A
JPH07283649A JP6862694A JP6862694A JPH07283649A JP H07283649 A JPH07283649 A JP H07283649A JP 6862694 A JP6862694 A JP 6862694A JP 6862694 A JP6862694 A JP 6862694A JP H07283649 A JPH07283649 A JP H07283649A
Authority
JP
Japan
Prior art keywords
slot
radiator
slot radiator
semiconductor substrate
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6862694A
Other languages
Japanese (ja)
Other versions
JP3224323B2 (en
Inventor
Hideki Kamitsuna
秀樹 上綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP06862694A priority Critical patent/JP3224323B2/en
Publication of JPH07283649A publication Critical patent/JPH07283649A/en
Application granted granted Critical
Publication of JP3224323B2 publication Critical patent/JP3224323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Transmitters (AREA)

Abstract

PURPOSE:To provide the antenna circuit which has a simple configuration and a high efficiency and is suitably made into an integrated circuit by arranging plural nonlinear elements in one slot radiator and feeding them by a slot line. CONSTITUTION:A conductor film 27 is stuck to one face of a semiconductor substrate 1 and has a part cut away to form a slot radiator 2 and a feeding slot line 3 which has one end part connected to one side end part of the center in the lengthwise direction of the radiator 2. At least a pair of nonlinear element diodes 4 and 4' are connected on both sides of the radiator 2 viewed from the connection part between both of slots 2 and 3 and between conductors on both sides in the breadthwise direction of the slot, which is formed in the breadthwise direction, across this slot. Length L of the radiator 2 is set to about (1/2)n or the intra-line wavelength of the frequency which is twice as high as the input signal frequency given through the slot line 3. Width W of the radiator 2 is made sufficiently shorter than the length L. Thus, the antenna is obtained which efficiently transmits only desired ultrahigh frequency signal components like secondary higher harmonics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低い周波数の無線信号
を高い周波数の信号に変換して放射・送信するアンテナ
装置に関し、特に、誘電体基板上、あるいは、半導体基
板上に形成された(モノリシック)アクティブアンテナ
装置、および光給電型アクティブアンテナ装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna device which converts a low frequency radio signal into a high frequency signal and radiates / transmits it, and in particular, it is formed on a dielectric substrate or a semiconductor substrate ( The present invention relates to a monolithic) active antenna device and an optically powered active antenna device.

【0002】[0002]

【従来の技術】ミリ波等の超高周波数帯の電波を効率良
く放射させる手段として、トランジスタ発振器などのよ
うな半導体デバイスで直接超高周波を発生させないで、
半導体デバイスへの負担を軽減し、かつ、効率よく超高
周波信号を得るため、比較的低い周波数の信号を周波数
変換して高周波に変換してから放射する手法がある。
2. Description of the Related Art As means for efficiently radiating radio waves in the ultra high frequency band such as millimeter waves, it is necessary to directly generate an ultra high frequency in a semiconductor device such as a transistor oscillator.
In order to reduce the load on the semiconductor device and efficiently obtain an ultra-high frequency signal, there is a method in which a signal of a relatively low frequency is frequency-converted to a high frequency and then radiated.

【0003】この手法では、基本波(入力信号周波数成
分)を出力端で抑圧する必要があり、フィルタなどを使
用することによりこの目的が達成できるが、集積化、特
に半導体基板上への集積化を行なおうとする場合には、
高性能のフィルタを一体化することは一般的に困難であ
るから実現が難しい。そのため、フィルタへの要求条件
を緩和し、容易に集積化できる手法として、図6に示す
ような、逆相分配器17、高調波を発生する非線形素子
22,22′、および同相合成器23から成るバランス
構成が一般的に採用される。
In this method, it is necessary to suppress the fundamental wave (frequency component of the input signal) at the output end, and this object can be achieved by using a filter or the like. However, integration, particularly integration on a semiconductor substrate. If you are going to
It is generally difficult to integrate a high-performance filter, which makes it difficult to realize. Therefore, as a method of relaxing the requirements for the filter and allowing easy integration, as shown in FIG. 6, the anti-phase distributor 17, the non-linear elements 22 and 22 ′ for generating harmonics, and the in-phase combiner 23 are used. A balanced configuration consisting of is commonly adopted.

【0004】これは、マイクロ波信号21を逆相分配器
17で互いに等振幅・逆位相の2信号に分配した後、そ
れぞれ非線形素子22,22′に入力すると、非線形素
子の出力端において入力信号成分は逆位相のままである
が、2次高調波は同位相となるため同相合成器23にお
いて、入力信号成分が相殺され、2次高調波が合成でき
るためである。
This is because when the microwave signal 21 is divided by the anti-phase distributor 17 into two signals of equal amplitude and opposite phase and input to the nonlinear elements 22 and 22 ', respectively, the input signal is output at the output terminals of the nonlinear elements. This is because the components remain in antiphase, but the second-order harmonics have the same phase, so that the in-phase combiner 23 cancels the input signal component and the second-order harmonics can be combined.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のような
従来の方式は、装置構成の規模が大きくなる上、周波数
が高くなればなるほど逆相分配器および同相合成器にお
ける損失が増大するという問題点があった。また、その
ため、合成損失を避ける目的で、図7に示すように、同
相合成器の出力を直接放射器24,24′に接続し、空
間において合成することにより基本波を抑圧する構成が
考案されている。
However, in the conventional method as described above, the scale of the device configuration is large, and the higher the frequency is, the more the loss in the anti-phase distributor and the in-phase combiner is increased. There was a point. Therefore, for the purpose of avoiding the synthetic loss, as shown in FIG. 7, a configuration is devised in which the output of the in-phase synthesizer is directly connected to the radiators 24 and 24 ', and the fundamental wave is suppressed by synthesizing in space. ing.

【0006】しかし、この構成では、複数の放射器が必
要となるため装置規模が大きくなることや、基本波の抑
圧される放射方向が特定の方向(それぞれの放射器から
等距離の空間領域)にしか存在しないと言う問題点があ
った。
However, in this configuration, since a plurality of radiators are required, the device scale becomes large, and the radiation direction in which the fundamental wave is suppressed is in a specific direction (a space area equidistant from each radiator). There was a problem that it only existed.

【0007】また、基本的に発振器と放射器を直接結合
しているため、正弦波信号の放射は容易にできるが、中
間周波数帯で変調された信号を周波数変換して放射する
構成などに適用する場合、図8に示すようにさらに複数
の同相合成器などが必要となる。
Further, since the oscillator and the radiator are directly coupled to each other, it is possible to easily radiate a sine wave signal, but it is applied to a configuration in which a signal modulated in an intermediate frequency band is frequency-converted and radiated. In that case, a plurality of in-phase combiners and the like are required as shown in FIG.

【0008】すなわち、マイクロ波信号21および中間
周波数帯信号25を、それぞれ逆相分配器17,17′
で互いに等振幅・逆位相の2信号に分配し、同相合成器
23,23′において合成した後、これらの合成波を非
線形素子22,22′に入力すると、非線形素子の出力
端において入力信号成分(マイクロ波信号21および中
間周波数帯信号25)は逆位相のままであるが、これら
2信号の、和および差の周波数成分は同位相となるた
め、そのどちらか一方をフィルタ26で、ろ波した後、
所望の混合成分を放射器24より放射するようにしなけ
ればならないからである。
That is, the microwave signal 21 and the intermediate frequency band signal 25 are supplied to the anti-phase distributors 17 and 17 ', respectively.
Are divided into two signals of equal amplitude and opposite phase with each other, and after being combined in the in-phase combiners 23 and 23 ', the combined waves are input to the nonlinear elements 22 and 22'. Although the microwave signal 21 and the intermediate frequency band signal 25 remain in opposite phases, the sum and difference frequency components of these two signals have the same phase, so either one of them is filtered by the filter 26. After doing
This is because it is necessary to radiate the desired mixed component from the radiator 24.

【0009】しかし、図8からも明らかなように、装置
構成が一層複雑・大規模となり、さらに、フィルタまで
も必要となるから、装置の小型化・集積化が困難であっ
た。
However, as is clear from FIG. 8, the device configuration becomes more complicated and large in scale, and a filter is also required, which makes it difficult to miniaturize and integrate the device.

【0010】本発明は上述のような課題を解決し、基本
波などの不要波を放射することなく2次高調波などの所
望の超高周波信号成分のみを高い効率で送信でき、か
つ、集積化に適した簡潔な構成のアンテナ装置を提供す
ることを目的としている。
The present invention solves the above-mentioned problems and can transmit only a desired super high frequency signal component such as a second harmonic with high efficiency without radiating an unnecessary wave such as a fundamental wave, and it is integrated. It is an object of the present invention to provide an antenna device having a simple structure suitable for.

【0011】[0011]

【課題を解決するための手段】本発明によれば上述の目
的は、前記特許請求の範囲に記載した手段により達成さ
れる。
According to the invention, the above mentioned objects are achieved by means of the patent claims.

【0012】すなわち、請求項1の発明は、誘電体基板
または半導体基板の片面に、導体膜を展着せしめて、該
導体膜の一部を欠切することによって、スロット放射器
と、該スロット放射器の長手方向のほぼ中央部の一方の
側端部に、一方の端部が接続された給電用スロット線路
とを形成せしめると共に、スロット放射器と給電用スロ
ット線路との接続部から見たスロット放射器の両側の位
置に、スロット放射器の幅方向のスロットを跨ぐように
該スロットの幅方向の両側の導体間に少なくとも一つの
非線形素子をそれぞれ接続し、前記スロット放射器の長
さ(L)は、給電用スロット線路を通じて与えられる入
力信号周波数の2倍の周波数の線路内波長のほぼ(1/
2)n(ただしnは正の整数)とし、スロット放射器の
幅(W)は、該スロット放射器の長さLに比して充分小
なる値としたアンテナ回路である。
That is, according to the first aspect of the invention, a conductor film is spread on one surface of a dielectric substrate or a semiconductor substrate, and a part of the conductor film is cut off to form a slot radiator and the slot. A feeder slot line having one end connected to it is formed at one side end of a substantially central portion of the radiator in the longitudinal direction, and it is seen from a connecting portion between the slot radiator and the feeder slot line. At least one non-linear element is connected between conductors on both sides in the width direction of the slot radiator at positions on both sides of the slot radiator so as to straddle the slot in the width direction of the slot radiator. L) is approximately (1/1 / the wavelength of the line wavelength of twice the frequency of the input signal given through the feeding slot line).
2) An antenna circuit in which n (where n is a positive integer) is set, and the width (W) of the slot radiator is a value sufficiently smaller than the length L of the slot radiator.

【0013】請求項2の発明は、請求項1記載のアンテ
ナ回路において、誘電体基板または半導体基板部の実質
的な厚みを、放射周波数の波長のほぼ1/4にすると共
に、誘電体基板または半導体基板のスロット放射器と給
電用スロット線路を設けた面の反対側の面に導体膜を展
着して、これを接地導体とするように構成したものであ
る。
According to a second aspect of the present invention, in the antenna circuit according to the first aspect, the dielectric substrate or the semiconductor substrate portion has a substantial thickness of about ¼ of the wavelength of the radiation frequency, and the dielectric substrate or In this structure, a conductor film is spread on the surface of the semiconductor substrate opposite to the surface on which the slot radiator and the feeding slot line are provided, and this is used as a ground conductor.

【0014】請求項3の発明は、誘電体基板または半導
体基板の片面に、導体膜を展着せしめて、該導体膜の一
部を欠切することによって、スロット放射器と、該スロ
ット放射器の長手方向のほぼ中央部の一方の側端部に、
一方の端部が接続された給電用スロット線路とを形成せ
しめると共に、スロット放射器と給電用スロット線路と
の接続部から見たスロット放射器の両側の位置に、スロ
ット放射器の幅方向のスロットを跨ぐように該スロット
の幅方向の両側の導体間に、光信号を検出して電気信号
に変換し得る少なくとも一つの非線形素子をそれぞれ接
続し、第1の入力信号を前記給電用スロット線路から与
えると共に、第2の入力信号をそれが変換されたとき給
電用スロット線路を挟んで対向する非線形素子同士が互
に逆位相の電気信号となるような光信号として、非線形
素子に入力するように構成し、前記スロット放射器の長
さ(L)は、第1の入力信号の周波数と第2の入力信号
の周波数との和または差の周波数の線路内波長のほぼ
(1/2)n(ただしnは正の整数)とし、スロット放
射器の幅(W)は、該スロット放射器の長さLに比して
充分小なる値としたアンテナ回路である。
According to a third aspect of the present invention, a conductor film is spread on one surface of a dielectric substrate or a semiconductor substrate, and a part of the conductor film is cut away to form a slot radiator and the slot radiator. To one side end of the substantially central part of the
A slot line for feeding is formed at one end of the slot radiator, and a slot in the width direction of the slot radiator is formed at positions on both sides of the slot radiator as viewed from the connection between the slot radiator and the slot slot for feeding. At least one non-linear element capable of detecting an optical signal and converting it into an electric signal is connected between the conductors on both sides in the width direction of the slot so that the first input signal is fed from the feeding slot line. At the same time, the second input signal is input to the non-linear element as an optical signal such that, when converted, the non-linear elements facing each other with the feeding slot line interposed therebetween become electric signals having mutually opposite phases. And the length (L) of the slot radiator is approximately (1/2) n () of the in-line wavelength of the sum or difference frequency of the frequency of the first input signal and the frequency of the second input signal. However n is a positive integer), the slot radiators width (W) is an antenna circuit and a length sufficiently small becomes a value than the L of the slot radiators.

【0015】請求項4の発明は、請求項3記載のアンテ
ナ回路において、誘電体基板または半導体基板の実質的
な厚みを、放射周波数の波長のほぼ1/4にすると共
に、誘電体基板または半導体基板の、スロット放射器と
給電用スロット線路を設けた面の反対側の面に導体膜を
展着して、これを接地導体と成し、接地導体および誘電
体基板または半導体基板に光路となる孔を設け、第2の
入力信号を光信号として接地導体側より非線形素子に与
えるように構成したものである。
According to a fourth aspect of the present invention, in the antenna circuit according to the third aspect, the dielectric substrate or the semiconductor substrate has a substantial thickness of about 1/4 of a wavelength of a radiation frequency, and the dielectric substrate or the semiconductor substrate has a semiconductor substrate. A conductor film is spread on the surface of the substrate opposite to the surface on which the slot radiator and the feeding slot line are provided, and this is used as a ground conductor, which serves as an optical path to the ground conductor and the dielectric substrate or semiconductor substrate. A hole is provided and the second input signal is given as an optical signal from the ground conductor side to the non-linear element.

【0016】請求項5の発明は、請求項3記載のアンテ
ナ回路において、誘電体基板または半導体基板部の実質
的な厚みを放射周波数の波長のほぼ1/4にすると共
に、誘電体基板または半導体基板の、スロット放射器と
給電用スロット線路を設けた面の反対側の面に導体膜を
展着して、これを接地導体と成し、該接地導体に光路と
なる孔を設けると共に、誘電体基板または半導体基板と
して光を透過する材質のものを用い、第2の入力信号を
光信号として接地導体側より非線形素子に与えるように
構成したものである。
According to a fifth aspect of the present invention, in the antenna circuit according to the third aspect, the dielectric substrate or the semiconductor substrate portion has a substantial thickness of about 1/4 of the wavelength of the radiation frequency, and the dielectric substrate or the semiconductor substrate. A conductor film is spread on the surface of the substrate opposite to the surface on which the slot radiator and the feeding slot line are provided to form a ground conductor, and the ground conductor is provided with a hole to serve as an optical path. The body substrate or the semiconductor substrate is made of a material that transmits light, and the second input signal is applied as an optical signal to the nonlinear element from the ground conductor side.

【0017】請求項6の発明は、請求項1〜請求項5記
載のアンテナ回路において、スロット放射器の長手方向
の両端部の導体膜に、該スロット放射器の幅方向の両側
の導体が直流的に導通しないように間隙を設けると共
に、該間隙間の両側の導体間をキャパシタで接続するよ
うに構成したものである。
According to a sixth aspect of the present invention, in the antenna circuit according to the first to fifth aspects, the conductor films on both ends in the longitudinal direction of the slot radiator have direct-current conductors on both sides in the width direction of the slot radiator. A gap is provided to prevent electrical continuity, and the conductors on both sides of the gap are connected by a capacitor.

【0018】[0018]

【作用】請求項1記載のアンテナ回路においては、導体
面上に形成された細長いスロットにおいて、該スロット
は長手(以下長辺ともいう)方向に入力信号周波数の2
倍の周波数に対する(1/2)n(nは正の整数)線路
内波長近辺の長さを有する放射器を構成している。この
スロット放射器の長辺部分の一点より信号を給電するス
ロット線路等の平衡型伝送線路を接続すると、給電部は
直列分岐になっているため、給電部からみてスロット放
射器の長辺方向の両側では、給電された信号は互いに逆
位相となっている。
In the antenna circuit according to the present invention, in the elongated slot formed on the conductor surface, the slot has an input signal frequency of 2 in the longitudinal direction (hereinafter also referred to as the long side).
A radiator having a length close to (1/2) n (n is a positive integer) in-line wavelength with respect to the doubled frequency is configured. When a balanced transmission line such as a slot line that feeds a signal is connected from one point on the long side of this slot radiator, the feed section is a series branch, so the long side direction of the slot radiator is seen from the feed section. On both sides, the fed signals are out of phase with each other.

【0019】そして、該給電部からみてスロット放射器
の長辺方向の両側にはそれぞれスロット放射器の幅(以
下短辺ともいう)方向の導体間に非線形素子が接続され
ており、これらに上記の互いに逆位相の信号が入力され
るため、上記給電信号周波数の高調波を生じる。給電部
からみてスロット放射器の長辺方向の両側においては、
入力信号周波数f1の高調波の内、奇数次の成分は逆位
相のままであるため相殺されるが、偶数次の成分は同位
相となり、スロット放射器中で合成される。
Nonlinear elements are connected between the conductors in the width (hereinafter also referred to as short side) direction of the slot radiator on both sides in the long side direction of the slot radiator as seen from the power feeding section. Since signals of opposite phases are input, harmonics of the power supply signal frequency are generated. On both sides in the long side direction of the slot radiator as seen from the power feeding part,
Among the harmonics of the input signal frequency f1, the odd-order components are canceled because they remain in antiphase, but the even-order components have the same phase and are combined in the slot radiator.

【0020】更に、スロット放射器の長辺方向の長さL
を入力信号周波数f1の2倍の周波数に対する(1/
2)n(nは正の整数)線路内波長程度としているた
め、入力信号周波数の偶数次の高調波のみ効率的に放射
させることができる。また、非線形素子で生じる高調波
は次数が高くなるに従いレベルが急激に減少するため、
4次以降の高調波は無視できる程度に小さくなる。従っ
て、基本波などの不要波の放射を抑圧し、2次高調波の
み放射できるアンテナ装置を、逆相分配回路、同相合成
回路や複数の放射器を必要とすることなく、放射器自体
に機能を集約した非常に簡易な構成で実現できるため、
容易に小型化・集積化できる。
Furthermore, the length L of the slot radiator in the long side direction
For the frequency twice the input signal frequency f1 (1 /
2) Since n (n is a positive integer) approximately equal to the in-line wavelength, only even harmonics of the input signal frequency can be efficiently radiated. In addition, since the level of harmonics generated by nonlinear elements decreases sharply as the order increases,
The fourth and subsequent harmonics are small enough to be ignored. Therefore, the antenna device capable of suppressing the emission of the unwanted wave such as the fundamental wave and radiating only the second harmonic can function as the radiator itself without the need for the anti-phase distribution circuit, the in-phase synthesis circuit, or the plurality of radiators. Because it can be realized with a very simple configuration that aggregates
Can be easily miniaturized and integrated.

【0021】請求項2記載のアンテナ回路においては、
誘電体基板または半導体基板部の実質的な厚みを、放射
周波数の波長のほぼ1/4にすると共に、誘電体基板ま
たは半導体基板の、スロット放射器と給電用スロット線
路を設けた面の反対側の面に導体膜を展着して、これを
接地導体とするように構成しているので、放射波は接地
導体で反射してスロット放射器を設けた側の面から効率
的に放射される。
According to another aspect of the antenna circuit of the present invention,
The substantial thickness of the dielectric substrate or the semiconductor substrate portion is set to about 1/4 of the wavelength of the radiation frequency, and the opposite side of the surface of the dielectric substrate or the semiconductor substrate on which the slot radiator and the feeding slot line are provided. Since a conductor film is spread on the surface of and the grounding conductor is used, the radiated wave is reflected by the grounding conductor and is efficiently radiated from the surface on which the slot radiator is provided. .

【0022】また、請求項3記載のアンテナ回路におい
ては、スロット放射器は、長辺方向に第1の入力信号周
波数と第2の入力信号周波数の和または差の周波数に対
する(1/2)n(nは正の整数)線路内波長近辺の長
さを有し、さらに非線形素子の少なくとも一部は波長λ
1以上の光を検出できる物質で形成されている。
In the antenna circuit according to the present invention, the slot radiator is (1/2) n with respect to the sum or difference frequency of the first input signal frequency and the second input signal frequency in the long side direction. (N is a positive integer) has a length near the wavelength in the line, and at least a part of the nonlinear element has a wavelength λ.
It is formed of a substance capable of detecting one or more lights.

【0023】そして、スロット線路により給電される第
1の入力信号(周波数f1)とは別に、第2の入力信号
(周波数f2)を、非線形素子の数に相当する数の波長
λ1以上の光信号により、複数の非線形素子にそれぞれ
入力する。この際、上記光信号は、該スロット長辺方向
に対し互いに両側に位置する該非線形素子において検出
された際、互いに逆位相の電気信号となるような複数の
光信号に変換されている。
In addition to the first input signal (frequency f1) fed by the slot line, the second input signal (frequency f2) is converted into an optical signal having a wavelength λ1 or more, which is the number corresponding to the number of nonlinear elements. Input to each of the plurality of nonlinear elements. At this time, the optical signals are converted into a plurality of optical signals that become electric signals having mutually opposite phases when detected by the nonlinear elements located on both sides with respect to the long side direction of the slot.

【0024】給電部からみてスロット放射器の長辺方向
の両側においては、給電される第1の入力信号成分(周
波数f1)および、光検出により生じる第2の入力信号
成分(周波数f2)は逆位相であるため、それぞれ相殺
される。一方、上記の複数の非線形素子の非線形特性に
より生じる第1の入力信号と第2の入力信号の周波数混
合成分の内、f1+f2,|f1−f2|等は同位相と
なりスロット放射器中で合成される。
The first input signal component (frequency f1) to be fed and the second input signal component (frequency f2) generated by photodetection are opposite on both sides in the long side direction of the slot radiator as viewed from the feeding section. Since they are in phase, they are canceled out. On the other hand, among the frequency mixing components of the first input signal and the second input signal generated by the non-linear characteristics of the plurality of non-linear elements, f1 + f2, | f1-f2 | etc. have the same phase and are combined in the slot radiator. It

【0025】上記スロット放射器の長辺方向の長さを例
えば信号周波数成分f1+f2に対する1/2n(nは
正の整数)線路内波長付近とすると、該周波数成分f1
+f2のみの信号を効率的に放射させることができる。
従って、所望の周波数混合成分のみ放射できるアンテナ
装置を、複数の逆相分配回路、複数の同相合成回路や高
性能なフィルタなどを必要とすることなく、放射器自体
に機能を集約した非常に簡易な構成で実現できるため、
容易に小型化・集積化できる。
Assuming that the length of the slot radiator in the long side direction is, for example, about 1 / 2n (n is a positive integer) in-line wavelength with respect to the signal frequency component f1 + f2, the frequency component f1
The signal of only + f2 can be efficiently radiated.
Therefore, the antenna device that can radiate only the desired frequency mixed component does not require a plurality of anti-phase distribution circuits, a plurality of in-phase combining circuits, a high-performance filter, etc. Since it can be realized with a simple configuration,
Can be easily miniaturized and integrated.

【0026】さらに、本アンテナ回路を形成している誘
電体基板または半導体基板を、波長λ1以上の光を透過
する材質とするなどにより、基板の裏面からの光信号の
入力を行なうようにすれば、放射面に光ファイバ、レン
ズ等を配置することなく装置を構成することができる。
従って、このような構造では、放射面に障害となる構造
物がないので放射パターンへの影響を生ずることもな
い。
Furthermore, if the dielectric substrate or the semiconductor substrate forming the present antenna circuit is made of a material that transmits light having a wavelength of λ1 or more, an optical signal can be input from the back surface of the substrate. The device can be configured without disposing an optical fiber, a lens, etc. on the radiation surface.
Therefore, in such a structure, since there is no obstacle on the radiation surface, the radiation pattern is not affected.

【0027】[0027]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は本発明の第1の実施例のアンテナ回
路を示す図である。本アンテナ回路は、誘電体または半
導体基板1上に形成された導体膜27に、長辺方向が入
力信号角周波数ωの2倍の周波数に対する(1/2)n
(nは正の整数)線路内波長近辺(長さL)で、短辺方
向が長辺方向より大幅に短い幅W(W<<L)のスロッ
ト放射器2を形成し、給電用スロット線路3によりスロ
ット放射器2の長手方向中心部から給電するように構成
している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an antenna circuit according to a first embodiment of the present invention. In this antenna circuit, in the conductor film 27 formed on the dielectric or the semiconductor substrate 1, the long side direction is (1/2) n with respect to the frequency twice the input signal angular frequency ω.
(N is a positive integer) A slot radiator 2 having a width W (W << L) in the vicinity of the in-line wavelength (length L) and in which the short side direction is significantly shorter than the long side direction is formed. 3, the slot radiator 2 is configured to supply power from the central portion in the longitudinal direction.

【0028】さらに、実質的に同一の非線形特性を有す
るダイオード4,4′を、上記給電部分からみてスロッ
ト放射器2の長手方向の互いに対称の位置のスロット短
辺方向の導体間に、同一の局性を持つように接続してい
る。図1に示したスロット放射器2中の電界の向きを見
ると、入力信号周波数成分(角周波数ω)の電界は、給
電部分がスロット線路の直列T分岐を形成しているた
め、給電部からみてスロット放射器の両側では互いに逆
位相となっている。
Further, the diodes 4 and 4'having substantially the same non-linear characteristic are arranged between the conductors in the slot short side direction at positions symmetrical to each other in the longitudinal direction of the slot radiator 2 when viewed from the feeding portion. It is connected so as to have locality. Looking at the direction of the electric field in the slot radiator 2 shown in FIG. 1, the electric field of the input signal frequency component (angular frequency ω) shows that the feeding part forms a series T branch of the slot line. Obviously, the opposite sides of the slot radiator are in opposite phase.

【0029】一方、実質的に同一の非線形特性を有し、
スロット放射器2の両側の対称の位置のスロット短辺方
向の導体間に同一の局性を持つように接続されたダイオ
ード4,4′において、入力信号周波数の高調波成分が
生じる。ここでダイオード4,4′に入力される給電信
号5の周波数成分(角周波数ω)を Pin=Asin (ωt)……(ダイオード4に入力) および Pin′=Asin (ωt+π)……(ダイオード4′に入
力) (Aは各信号の振幅) とすると実質的に同一であるダイオード4および4′で
生じる信号成分は Pout =Bsin (ωt)+Csin (2ωt)+Dsin
(3ωt)+……(ダイオード4の出力) Pout ′=Bsin (ωt+π)+Csin (2ωt)+D
sin (3ωt+π)+……(ダイオード4′の出力) (Bは信号成分ωの振幅、Cは信号成分2ωの振幅、D
は信号成分3ωの振幅) となる。
On the other hand, they have substantially the same nonlinear characteristics,
A harmonic component of the input signal frequency is generated in the diodes 4 and 4'which are connected so as to have the same locality between the conductors in the slot short side direction at symmetrical positions on both sides of the slot radiator 2. Here, the frequency component (angular frequency ω) of the power supply signal 5 input to the diodes 4 and 4 ′ is Pin = Asin (ωt) (input to the diode 4) and Pin ′ = Asin (ωt + π) ... (Diode 4 ′) (A is the amplitude of each signal), the signal components generated in the diodes 4 and 4 ′ that are substantially the same are: Pout = Bsin (ωt) + Csin (2ωt) + Dsin
(3ωt) + (output of diode 4) Pout ′ = Bsin (ωt + π) + Csin (2ωt) + D
sin (3ωt + π) + (output of diode 4 ') (B is the amplitude of the signal component ω, C is the amplitude of the signal component 2ω, D
Is the amplitude of the signal component 3ω).

【0030】従って、給電部からみてスロット放射器の
両側では、入力信号周波数ωの奇数倍の成分は、逆位相
・等振幅のままであるため相殺されて放射されないが、
偶数倍の成分は同位相となるためスロット放射器2中で
合成される。ここで、非線形素子で生じる高調波は次数
が高くなるに従いレベルが急激に減少するため、4次以
降の項は無視できる程度となり、また、スロット放射器
2は、長辺方向に入力信号角周波数ωの2倍の周波数に
対する(1/2)n(nは正の整数)線路内波長近辺の
長さを有しているため、2次高調波のみを放射させるこ
とができる。
Therefore, on both sides of the slot radiator as seen from the feeding section, components of odd multiples of the input signal frequency ω are canceled out because they remain in antiphase and equal amplitude, but are not radiated.
Since even-numbered components have the same phase, they are combined in the slot radiator 2. Here, since the level of harmonics generated in the non-linear element sharply decreases as the order increases, the terms of the fourth and subsequent orders become negligible, and the slot radiator 2 has the input signal angular frequency in the long side direction. Since it has a length around (1/2) n (n is a positive integer) in-line wavelength with respect to twice the frequency of ω, only the second harmonic can be emitted.

【0031】従って、基本波などの不要波の放射を抑圧
し、2次高調波のみ放射できる装置を、逆相分配回路、
同相合成回路や複数の放射器を必要とすることなく、放
射器自体に機能を集約した非常に簡易な構成で実現でき
るため、容易に小型化・集積化できる。また図2に示し
た第2の実施例においては、金属導体を一部剥離し、キ
ャパシタ6,6′により高周波的には短絡し、直流的に
分離することにより、放射特性に影響を与えることなく
ダイオードに直流バイアスを印加できるようになってい
る。
Therefore, a device capable of suppressing the emission of unnecessary waves such as the fundamental wave and radiating only the second harmonic is provided with an antiphase distribution circuit,
Since it can be realized with a very simple configuration in which the radiator itself has the functions integrated without the need for an in-phase combining circuit or a plurality of radiators, it can be easily miniaturized and integrated. In the second embodiment shown in FIG. 2, the metal conductor is partially peeled off, short-circuited by the capacitors 6 and 6'in terms of high frequency, and separated in terms of direct current to affect the radiation characteristics. Instead, a DC bias can be applied to the diode.

【0032】また、図3に示す第3の実施例のように、
これらの要素は、例えば、ダイオードとしてショットキ
バリアダイオード8,8′、キャパシタとしてMIM
(Metal−Insulator−Metal)キャ
パシタ9,9′を使用することにより容易に半導体基板
上に集積化できる。このため、発振器10、増幅器1
1、移相器等の他のマイクロ波回路と容易に集積化でき
る。他のマイクロ波回路との接続を容易にし、かつ、不
要な電磁放射や電磁結合を防ぐため、給電用スロット線
路にエアブリッジ12等を用いたコプレーナ−スロット
変換部を設けることも可能である。
Further, as in the third embodiment shown in FIG.
These elements are, for example, Schottky barrier diodes 8 and 8'as diodes and MIM as capacitors.
By using the (Metal-Insulator-Metal) capacitors 9 and 9 ', they can be easily integrated on the semiconductor substrate. Therefore, the oscillator 10 and the amplifier 1
1. It can be easily integrated with other microwave circuits such as a phase shifter. In order to facilitate connection with other microwave circuits and prevent unnecessary electromagnetic radiation and electromagnetic coupling, it is possible to provide a coplanar-slot converter using the air bridge 12 or the like in the power feeding slot line.

【0033】上記実施例はいずれも、誘電体または半導
体基板の片面のみに導体膜を有する場合について示して
いるが、その両面に導体膜を展着し、その一方を、接地
導体とすると共に、誘電体または半導体基板の板厚(基
板が複数枚からなるときはそのトータルな板厚)を放射
周波数の波長のほぼ1/4として、同様に構成すること
により、請求項2の発明に対応するアンテナが実現でき
ることは言うまでもない。
In each of the above embodiments, the conductor film is provided on only one surface of the dielectric or semiconductor substrate. However, the conductor films are spread on both surfaces of the dielectric material or the semiconductor substrate, and one of them is used as a ground conductor. According to the invention of claim 2, the thickness of the dielectric or semiconductor substrate (when the substrate is composed of a plurality of substrates, the total thickness thereof) is set to about 1/4 of the wavelength of the radiation frequency, and the same configuration is adopted. It goes without saying that an antenna can be realized.

【0034】図4、図5は、本発明の第4の実施例のア
ンテナ回路を示す図である。図4と図5は、それぞれス
ロット放射器2が上側、下側にある斜視図を示す。本ア
ンテナ回路は、波長λ1以上の光を透過する物質で形成
された誘電体または半導体基板1′上に形成された導体
面の長辺方向に長さL、短辺方向に長辺方向より大幅に
短い幅W(W<<L)のスロット放射器2を形成し、給
電用スロット線路3によりスロット放射器2の長辺方向
の中心点から給電される。
4 and 5 are views showing an antenna circuit according to the fourth embodiment of the present invention. 4 and 5 show perspective views with the slot radiator 2 on the upper side and the lower side, respectively. This antenna circuit has a length L in the long side direction and a width L in the short side direction larger than the long side direction of a conductor surface formed on a dielectric or a semiconductor substrate 1 ′ formed of a substance that transmits light having a wavelength of λ1 or more. A slot radiator 2 having a short width W (W << L) is formed in the slot radiator 2, and power is fed from a center point in the long side direction of the slot radiator 2 by a feeding slot line 3.

【0035】さらに、実質的に同一の非線形特性を有
し、波長λ1以上の光を検出できる少なくとも一層以上
の光吸収層を有するフォトダイオード14,14′を、
上記給電部分からみてスロット放射器2の長辺方向の互
いに対称の位置のスロット短辺方向の導体間に同一の局
性を持つように接続している。
Further, photodiodes 14 and 14 'having substantially the same non-linear characteristic and having at least one or more light absorption layers capable of detecting light having a wavelength of λ1 or more,
The conductors in the slot short-side direction at positions symmetrical to each other in the long-side direction of the slot radiator 2 as viewed from the feeding portion are connected so as to have the same locality.

【0036】上記フォトダイオード14,14′として
は、アバランシェフォトダイオードを用いることが好ま
しい。このことは以下の記述におけるフォトダイオード
についても同様である。
Avalanche photodiodes are preferably used as the photodiodes 14 and 14 '. This also applies to the photodiodes described below.

【0037】ここまでの構成は基本的に実施例1と同じ
であるが、本実施例においては、さらに図5に示すよう
に、基板裏面の接地導体15の一部にフォトダイオード
14,14′に光を入力するため、導体を円形に取り除
いた窓16,16′を設けている。
The structure up to this point is basically the same as that of the first embodiment, but in this embodiment, as shown in FIG. 5, photodiodes 14 and 14 'are formed on a part of the ground conductor 15 on the back surface of the substrate. In order to input light to the window, windows 16 and 16 'are formed by removing the conductors in a circular shape.

【0038】さらに逆相分配器17、電気/光変換器1
8,18′、光伝送媒体19,19′、光学レンズ2
0,20′を備え、スロット線路3により給電される給
電信号5′(角周波数ω1)とは異なる信号21(角周
波数ω2)を、波長λ1以上の光信号により、フォトダ
イオード14,14′に向けて、誘電体または半導体基
板1′の裏面からそれぞれ入力する。この光信号は図中
に破線の矢印で示した光路を通ってフォトダイオード1
4,14′に達する。
Further, the reverse phase distributor 17 and the electric / optical converter 1
8, 18 ', optical transmission medium 19, 19', optical lens 2
A signal 21 (angular frequency ω2) which is different from the feeding signal 5 '(angular frequency ω1) which is provided by the slot line 3 and is supplied to the photodiodes 14 and 14' by the optical signal of wavelength λ1 or more. Input from the back surface of the dielectric or semiconductor substrate 1 '. This optical signal passes through the optical path indicated by the dashed arrow in the figure and the photodiode 1
Reach 4,14 '.

【0039】この際、上記光信号は、電気信号の段階に
おいて逆相分配器17により逆位相でそれぞれ電気/光
変換器18,18′に入力され、波長λ1以上の2つの
光信号(光キャリアに対する電気信号のサブキャリア段
階で相対位相0およびπ)に変換されており、光伝送媒
体19,19′、光学レンズ20,20′および、導体
を除いた窓16,16′を介してフォトダイオード1
4,14′にそれぞれ入力される。
At this time, the above-mentioned optical signals are input to the electric / optical converters 18 and 18 'in anti-phase by the anti-phase distributor 17 at the stage of electric signals, and two optical signals (optical carrier) having a wavelength of λ1 or more (optical carrier Relative phase 0 and π) in the subcarrier stage of the electrical signal for the photodiodes through the optical transmission mediums 19 and 19 ', the optical lenses 20 and 20', and the conductor-free windows 16 and 16 '. 1
4 and 14 '.

【0040】ここで、フォトダイオード14,14′に
給電用スロット線路3により電気信号で入力される信号
5′(角周波数ω1)を第一の実施例と同様に PEin=Asin (ω1t)……(フォトダイオード14
に入力) および PEin′=Asin (ω1t+π)……(フォトダイオー
ド14′に入力) (Aは各信号の振幅) とする。
Here, the signal 5 '(angular frequency .omega.1) input to the photodiodes 14 and 14' as an electric signal by the power feeding slot line 3 is PEin = Asin (.omega.1t) ... Like the first embodiment. (Photodiode 14
To PEin '= Asin (ω1t + π) (input to photodiode 14') (A is the amplitude of each signal).

【0041】一方、光信号により入力される信号21
(角周波数ω2)を POin=PO[ 1+m sin(ω2t)] ……(フォト
ダイオード14に入力) および POin′=PO[ 1+m sin(ω2t+π)] ……
(フォトダイオード14′に入力) (PO は平均光強度、mは変調指数) とすると、実質的に同一の光検出特性を有するフォトダ
イオード14,14′で検出される電気信号は、 Pdet =Gsin (ω2t)……(フォトダイオード14
の検出信号) および Pdet ′=Gsin (ω2t+π)…(フォトダイオード
14′の検出信号) (Gは各信号の振幅) となる。
On the other hand, the signal 21 input by the optical signal
(Angular frequency ω2) is POin = PO [1 + m sin (ω2t)] (input to the photodiode 14) and POin ′ = PO [1 + m sin (ω2t + π)] ......
(Input to the photodiode 14 ') (where PO is the average light intensity and m is the modulation index), the electric signals detected by the photodiodes 14 and 14' having substantially the same photodetection characteristics are Pdet = Gsin (Ω2t) (photodiode 14
Detection signal) and Pdet '= Gsin (ω2t + π) (detection signal of photodiode 14') (G is the amplitude of each signal).

【0042】従って、実質的に同一の非線形特性を有す
るフォトダイオード14,14′で生じる周波数成分
は、 Pout =Bsin (ω1t)+Csin (ω2t)+Dsin
(ω1+ω2)t+Esin (ω1−ω2)t……(フォ
トダイオード14の出力) Pout ′=Bsin(ω1t+π)+Csin(ω2t+π)+
Dsin (ω1+ω2)t+2π]+Esin(ω1−ω2)
t……(フォトダイオード14′の出力) (Bは信号成分ω1の振幅、Cは信号成分ω2の振幅、
Dは信号成分ω1+ω2の振幅、Eは信号成分ω1−ω
2の振幅) となる。
Therefore, the frequency component generated in the photodiodes 14 and 14 'having substantially the same non-linear characteristic is Pout = Bsin (ω1t) + Csin (ω2t) + Dsin
(Ω1 + ω2) t + Esin (ω1-ω2) t (output of the photodiode 14) Pout ′ = Bsin (ω1t + π) + Csin (ω2t + π) +
Dsin (ω1 + ω2) t + 2π] + Esin (ω1-ω2)
t (output of the photodiode 14 ') (B is the amplitude of the signal component ω1, C is the amplitude of the signal component ω2,
D is the amplitude of the signal component ω1 + ω2, E is the signal component ω1-ω
2).

【0043】従って、給電部からみてスロット放射器2
の両側では、入力信号周波数ω1,ω2成分等は逆位相
のままであるため相殺されて放射されないが、それらの
和(ω1+ω2)および差(ω1−ω2)の成分等はス
ロット放射器2中で同位相となり合成される。ここで、
例えばスロット放射器2の長辺方向の長さLを、角周波
数(ω1+ω2)に対する(1/2)n(nは正の整
数)線路内波長近辺とすると、和成分(ω1+ω2)の
みを効率的に放射させることができる。
Therefore, the slot radiator 2 is seen from the power feeding portion.
On both sides of, the input signal frequencies ω1 and ω2 components, etc. remain in antiphase and therefore are not emitted, but their sum (ω1 + ω2) and difference (ω1-ω2) components, etc. It becomes the same phase and is synthesized. here,
For example, assuming that the length L of the slot radiator 2 in the long side direction is around (1/2) n (n is a positive integer) in-line wavelength with respect to the angular frequency (ω1 + ω2), only the sum component (ω1 + ω2) is efficient. Can be emitted to.

【0044】さらに、放射面の反対の面から光信号を入
力するため、光学レンズ等による放射パターンの乱れは
生じない。従って、所望の周波数混合成分のみ放射でき
る装置を、複数の同相合成回路や高性能なフィルタなど
を必要とすることなく、放射器自体に機能を集約した非
常に簡易な構成で実現できるため、容易に小型化・集積
化できる。なお、光信号により信号の一方を入力するた
め、信号入力端子間のアイソレーションは何ら問題なく
保証されている。
Further, since the optical signal is input from the surface opposite to the radiation surface, the radiation pattern is not disturbed by the optical lens or the like. Therefore, a device that can radiate only a desired frequency mixed component can be realized with a very simple configuration in which the radiator itself has integrated functions without requiring a plurality of in-phase combining circuits or high-performance filters. Can be miniaturized and integrated. Since one of the signals is inputted by the optical signal, the isolation between the signal input terminals is guaranteed without any problem.

【0045】またこれらの要素は、第1の実施例と同様
に、容易に半導体基板上に集積化できる。ここで半導体
基板としてInP、フォトダイオードの光吸収層として
InGaAs層を使用し、光信号の波長を例えば1.3
μmとすると、この光信号はInP基板を透過し、In
GaAs層で吸収されるため、図5に示したような裏面
からの入力が可能となる。さらに、第1の実施例と同様
に、発振器、増幅器、移相器等の他のマイクロ波回路と
集積化することもできる。
Further, these elements can be easily integrated on the semiconductor substrate as in the first embodiment. Here, InP is used as the semiconductor substrate and an InGaAs layer is used as the light absorption layer of the photodiode, and the wavelength of the optical signal is, for example, 1.3.
μm, this optical signal is transmitted through the InP substrate and
Since it is absorbed by the GaAs layer, it is possible to input from the back surface as shown in FIG. Further, like the first embodiment, it can be integrated with other microwave circuits such as an oscillator, an amplifier and a phase shifter.

【0046】上記第1〜第4の実施例の説明において
は、誘電体基板あるいは半導体基板上の導体膜の展着に
ついては、特に触れていないが、これは特別なものが要
求されるものではなく、従来から用いられている、金、
銀、銅、アルミニューム、などの金属の薄板等を接着
や、圧着するか、蒸着などの方法によって付着させるこ
とによって容易に実現できるものである。
In the above description of the first to fourth embodiments, the spreading of the conductor film on the dielectric substrate or the semiconductor substrate is not mentioned in particular, but this is not required to be special. Not traditionally used, gold,
It can be easily realized by adhering a thin plate of metal such as silver, copper, aluminum, etc., by pressure bonding, or by adhering it by a method such as vapor deposition.

【0047】また、スロット放射器の素子形状は4隅が
直角の長方形のものについて示しているが、これに限る
ものではなく、各コーナ部にRを有するものや、長手方
向の端部が曲線になっているような形状のものであって
も良い。更に、給電用スロット線路も、各実施例の図面
に描かれているような長方形のものに限るものではな
く、任意の形状を採り得るものである。
Further, although the element shape of the slot radiator is shown as a rectangular shape having four corners at right angles, it is not limited to this, and one having R at each corner portion and a curved end portion in the longitudinal direction. It may have a shape such as. Further, the power feeding slot line is not limited to the rectangular one as illustrated in the drawings of the respective embodiments, but may have any shape.

【0048】[0048]

【発明の効果】以上詳述したように本発明のアンテナ回
路によれば、1つのスロット放射器中に複数の非線形素
子を配置し、これにスロット線路等のスロット線路によ
り給電を行うことにより、従来の構成で必要であった、
逆相分配機能、周波数逓倍または変換機能(非線形素
子)、同相合成機能に加え、フィルタ機能までも放射器
自体に集約した非常に簡易な構成で、給電信号の基本波
などの不要波の放射を抑圧し、2次高調波等の所望の高
周波信号のみ放射できる。
As described in detail above, according to the antenna circuit of the present invention, a plurality of non-linear elements are arranged in one slot radiator, and power is fed to the non-linear elements by slot lines such as slot lines. Required in the conventional configuration,
In addition to the anti-phase distribution function, frequency multiplication or conversion function (non-linear element), in-phase synthesis function, the filter function is also integrated in the radiator itself, and it is possible to radiate unnecessary waves such as the fundamental wave of the power supply signal. It is possible to suppress and radiate only a desired high frequency signal such as a second harmonic.

【0049】さらに、本発明の構成要素である非線形素
子として光検出機能を有する素子を使用し、上記給電信
号と異なる信号を光信号により入力することにより、所
望の混合周波数成分のみを放射させる装置を、(電気信
号でのみ給電する従来の方法では必須であった複数の電
力合成回路や高性能なフィルタを一切必要とせず)、非
常に簡易な構成のままで実現できる。
Furthermore, an apparatus having a photodetecting function is used as a nonlinear element which is a constituent element of the present invention, and a signal different from the power feeding signal is input by an optical signal to emit only a desired mixed frequency component. Can be realized with a very simple configuration (without requiring a plurality of power combining circuits and a high-performance filter, which are indispensable in the conventional method of supplying power only by an electric signal).

【0050】そして、このアンテナ回路は、放射器自体
に複数の機能を集約しているので、容易に小型化でき、
また、半導体基板上に集積化できるから、無線送信装置
の小型化・高機能化・低コスト化に寄与することができ
る。
Since this antenna circuit has a plurality of functions integrated in the radiator itself, it can be easily miniaturized,
Further, since it can be integrated on a semiconductor substrate, it can contribute to downsizing, high functionality, and cost reduction of the wireless transmission device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す図である。FIG. 3 is a diagram showing a third embodiment of the present invention.

【図4】本発明の第4の実施例のスロット放射器の存在
する側を示す図である。
FIG. 4 is a view showing a side where a slot radiator according to a fourth embodiment of the present invention exists.

【図5】本発明の第4の実施例の接地導体側を示す図で
ある。
FIG. 5 is a diagram showing a ground conductor side according to a fourth embodiment of the present invention.

【図6】従来のアンテナ構成の第1の例を示す図であ
る。
FIG. 6 is a diagram showing a first example of a conventional antenna configuration.

【図7】従来のアンテナ構成の第2の例を示す図であ
る。
FIG. 7 is a diagram showing a second example of a conventional antenna configuration.

【図8】従来のアンテナ構成の第3の例を示す図であ
る。
FIG. 8 is a diagram showing a third example of a conventional antenna configuration.

【符号の説明】[Explanation of symbols]

1 誘電体または半導体基板 2 スロット放射器 3 給電用スロット線路 4,4′ ダイオード 5 給電信号 6,6′ キャパシタ 7 ワイヤ 8,8′ ショットキバリアダイオード 9,9′ MIMキャパシタ 10 発振器 11 増幅器 12 エアブリッジ 13 コプレーナ線路 14,14′ フォトダイオード 15 基板裏面の導体 16 基板裏面導体中の光入力用窓 17,17′ 逆相分配器 18,18′ 電気/光変換器 19,19′ 光伝送媒体 20,20′ 光学レンズ 21 マイクロ波信号源 22,22′ 非線形素子 23,23′ 同相合成器 24,24′ 放射器 25 中間周波数帯信号 26 フィルタ 27 導体膜 1 Dielectric or Semiconductor Substrate 2 Slot Radiator 3 Feed Slot Line 4, 4'Diode 5 Feed Signal 6,6 'Capacitor 7 Wire 8, 8' Schottky Barrier Diode 9, 9 'MIM Capacitor 10 Oscillator 11 Amplifier 12 Air Bridge 13 Coplanar line 14, 14 'Photodiode 15 Conductor on backside of substrate 16 Optical input window in backside conductor of substrate 17, 17' Reverse-phase distributor 18, 18 'Electric / optical converter 19, 19' Optical transmission medium 20, 20 'Optical lens 21 Microwave signal source 22, 22' Non-linear element 23, 23 'In-phase combiner 24, 24' Radiator 25 Intermediate frequency band signal 26 Filter 27 Conductor film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 誘電体基板または半導体基板の片面に、
導体膜を展着せしめて、 該導体膜の一部を欠切することによって、スロット放射
器(2)と、該スロット放射器の長手方向のほぼ中央部
の一方の側端部に、一方の端部が接続された給電用スロ
ット線路(3)とを形成せしめると共に、 スロット放射器(2)と給電用スロット線路(3)との
接続部から見たスロット放射器(2)の両側の位置に、
スロット放射器(2)の幅方向のスロットを跨ぐように
該スロットの幅方向の両側の導体間に少なくとも一つの
非線形素子をそれぞれ接続し、 前記スロット放射器(2)の長さ(L)は、給電用スロ
ット線路(3)を通じて与えられる入力信号周波数の2
倍の周波数の線路内波長のほぼ(1/2)n(ただしn
は正の整数)とし、 スロット放射器(2)の幅(W)は、該スロット放射器
の長さLに比して充分小なる値としたことを特徴とする
アンテナ回路。
1. A dielectric substrate or a semiconductor substrate on one side,
By spreading the conductor film and notching a part of the conductor film, one of the slot radiator (2) and one of the side ends of substantially the central portion of the slot radiator in the longitudinal direction is provided. Positions on both sides of the slot radiator (2) viewed from the connection between the slot radiator (2) and the power feeding slot line (3) while forming a feeding slot line (3) to which the ends are connected. To
At least one nonlinear element is connected between conductors on both sides in the width direction of the slot radiator (2) so as to straddle the slots in the width direction of the slot radiator (2), and the length (L) of the slot radiator (2) is , 2 of the input signal frequency given through the feeding slot line (3)
Almost (1/2) n (however n
Is a positive integer), and the width (W) of the slot radiator (2) is set to a value sufficiently smaller than the length L of the slot radiator.
【請求項2】 誘電体基板または半導体基板部の実質的
な厚みを、放射周波数の波長のほぼ1/4にすると共
に、 誘電体基板または半導体基板の、スロット放射器と給電
用スロット線路を設けた面の反対側の面に導体膜を展着
して、これを接地導体とした請求項1記載のアンテナ回
路。
2. A dielectric substrate or a semiconductor substrate portion has a substantial thickness of about 1/4 of a wavelength of a radiation frequency, and a slot radiator and a feeding slot line of the dielectric substrate or the semiconductor substrate are provided. The antenna circuit according to claim 1, wherein a conductor film is spread on the surface opposite to the ground surface, and this is used as a ground conductor.
【請求項3】 誘電体基板または半導体基板の片面に、
導体膜を展着せしめて、 該導体膜の一部を欠切することによって、スロット放射
器(2)と、該スロット放射器の長手方向のほぼ中央部
の一方の側端部に、一方の端部が接続された給電用スロ
ット線路(3)とを形成せしめると共に、 スロット放射器(2)と給電用スロット線路(3)との
接続部から見たスロット放射器(2)の両側の位置に、
スロット放射器(2)の幅方向のスロットを跨ぐように
該スロットの幅方向の両側の導体間に光信号を検出して
電気信号に変換し得る少なくとも一つの非線形素子をそ
れぞれ接続し、 第1の入力信号を前記給電用スロット線路(3)から与
えると共に、第2の入力信号をそれが変換されたとき給
電用スロット線路(3)を挟んで対向する非線形素子同
士が互に逆位相の電気信号となるような光信号として、
非線形素子に入力するよう構成し、 前記スロット放射器(2)の長さ(L)は、第1の入力
信号の周波数と第2の入力信号の周波数との和または差
の周波数の線路内波長のほぼ(1/2)n(ただしnは
正の整数)とし、 スロット放射器(2)の幅(W)は、該スロット放射器
の長さLに比して充分小なる値としたことを特徴とする
アンテナ回路。
3. One side of a dielectric substrate or a semiconductor substrate,
By spreading the conductor film and notching a part of the conductor film, one of the slot radiator (2) and one of the side ends of substantially the central portion of the slot radiator in the longitudinal direction is provided. Positions on both sides of the slot radiator (2) viewed from the connection between the slot radiator (2) and the power feeding slot line (3) while forming a feeding slot line (3) to which the ends are connected. To
At least one non-linear element capable of detecting an optical signal and converting it into an electric signal is connected between conductors on both sides in the width direction of the slot radiator (2) so as to straddle the slot in the width direction. Input signal from the power feeding slot line (3), and when the second input signal is converted, the nonlinear elements facing each other across the power feeding slot line (3) are electrically opposite in phase. As an optical signal that becomes a signal,
The length (L) of the slot radiator (2) is configured to be input to a non-linear element, and the length (L) of the slot radiator (2) is the in-line wavelength of the sum or difference frequency of the first input signal frequency and the second input signal frequency. Of (1/2) n (where n is a positive integer), and the width (W) of the slot radiator (2) is sufficiently smaller than the length L of the slot radiator. Antenna circuit characterized by.
【請求項4】 誘電体基板または半導体基板部の実質的
な厚みを、放射周波数の波長のほぼ1/4にすると共
に、 誘電体基板または半導体基板の、スロット放射器と給電
用スロット線路を設けた面の反対側の面に導体膜を展着
して、これを接地導体と成し、 接地導体および誘電体基板または半導体基板に光路とな
る孔を設け、 第2の入力信号を光信号として接地導体側より非線形素
子に与えるように構成した請求項3記載のアンテナ回
路。
4. The dielectric substrate or the semiconductor substrate portion has a substantial thickness of about 1/4 of a wavelength of a radiation frequency, and a slot radiator and a feeding slot line of the dielectric substrate or the semiconductor substrate are provided. The conductor film is spread on the surface opposite to the ground surface to form the ground conductor, and the ground conductor and the dielectric substrate or semiconductor substrate are provided with holes to serve as an optical path, and the second input signal is used as an optical signal. The antenna circuit according to claim 3, wherein the non-linear element is provided from the ground conductor side.
【請求項5】 誘電体基板または半導体基板部の実質的
な厚みを放射周波数の波長のほぼ1/4にすると共に、 誘電体基板または半導体基板の、スロット放射器と給電
用スロット線路を設けた面の反対側の面に導体膜を展着
して、これを接地導体と成し、 該接地導体に光路となる孔を設けると共に、誘電体基板
または半導体基板として光を透過する材質のものを用
い、 第2の入力信号を光信号として接地導体側より非線形素
子に与えるように構成した請求項3記載のアンテナ回
路。
5. The dielectric substrate or the semiconductor substrate portion has a substantial thickness of about 1/4 of the wavelength of the radiation frequency, and the slot radiator and the feeding slot line of the dielectric substrate or the semiconductor substrate are provided. A conductive film is spread on the surface opposite to the surface to form a ground conductor, and a hole serving as an optical path is formed in the ground conductor, and a dielectric substrate or a semiconductor substrate made of a material that transmits light is used. The antenna circuit according to claim 3, wherein the second input signal is applied as an optical signal to the nonlinear element from the ground conductor side.
【請求項6】 スロット放射器(2)の、長手方向の両
端部において、該スロット放射器(2)の幅方向の両側
の導体が直流的に導通しないように間隙を設けると共
に、該間隙間の両側の導体間をキャパシタで接続した請
求項1〜請求項5記載のアンテナ回路。
6. A slot radiator (2) is provided with a gap at both ends in the longitudinal direction so that conductors on both sides in the width direction of the slot radiator (2) are not electrically connected to each other in a direct current manner, and a gap between them. The antenna circuit according to claim 1, wherein the conductors on both sides of the antenna are connected by a capacitor.
JP06862694A 1994-04-06 1994-04-06 Antenna circuit Expired - Fee Related JP3224323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06862694A JP3224323B2 (en) 1994-04-06 1994-04-06 Antenna circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06862694A JP3224323B2 (en) 1994-04-06 1994-04-06 Antenna circuit

Publications (2)

Publication Number Publication Date
JPH07283649A true JPH07283649A (en) 1995-10-27
JP3224323B2 JP3224323B2 (en) 2001-10-29

Family

ID=13379155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06862694A Expired - Fee Related JP3224323B2 (en) 1994-04-06 1994-04-06 Antenna circuit

Country Status (1)

Country Link
JP (1) JP3224323B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0991135A1 (en) * 1998-10-02 2000-04-05 Thomson-Csf Selective antenna with frequency switching
KR20030004748A (en) * 2001-07-06 2003-01-15 엘지전자 주식회사 Microstrip antenna
WO2004051790A3 (en) * 2002-11-15 2004-09-23 Panasonic Mobile Comm Co Ltd Active antenna
KR100538185B1 (en) * 2002-11-29 2005-12-22 주식회사 마이크로알에프 Multi-band built-in antenna and wireless communication apparatus
WO2008088505A1 (en) * 2006-12-28 2008-07-24 Intel Corporation Apparatus and method for high speed signals on a printed circuit board
JP2008205711A (en) * 2007-02-19 2008-09-04 Mitsubishi Electric Corp Rfid tag
JP2008263400A (en) * 2007-04-12 2008-10-30 Yazaki Corp Antenna
JP2010135980A (en) * 2008-12-03 2010-06-17 Casio Computer Co Ltd Antenna device, reception device, and radio wave timepiece
CN102437418A (en) * 2011-08-24 2012-05-02 清华大学 Broadband planar reconfigurable antenna system for mobile terminal
WO2013124897A1 (en) * 2012-02-23 2013-08-29 日本電気株式会社 Antenna apparatus
KR101480561B1 (en) * 2008-08-26 2015-01-26 엘지이노텍 주식회사 Antenna
JP2021189005A (en) * 2020-05-28 2021-12-13 株式会社デンソー Radar circuit unit and radar device
WO2024020883A1 (en) * 2022-07-27 2024-02-01 京东方科技集团股份有限公司 Waveguide, beam regulation and control device, beam regulation and control method, and manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0991135A1 (en) * 1998-10-02 2000-04-05 Thomson-Csf Selective antenna with frequency switching
FR2784236A1 (en) * 1998-10-02 2000-04-07 Thomson Csf FREQUENCY SWITCHED ANTENNA
KR20030004748A (en) * 2001-07-06 2003-01-15 엘지전자 주식회사 Microstrip antenna
WO2004051790A3 (en) * 2002-11-15 2004-09-23 Panasonic Mobile Comm Co Ltd Active antenna
KR100538185B1 (en) * 2002-11-29 2005-12-22 주식회사 마이크로알에프 Multi-band built-in antenna and wireless communication apparatus
GB2457195A (en) * 2006-12-28 2009-08-12 Intel Corp Apparatus and method for high speed signals on a printed circ uit board
TWI400834B (en) * 2006-12-28 2013-07-01 Intel Corp Apparatus and method for high speed signals on a printed circuit board
WO2008088505A1 (en) * 2006-12-28 2008-07-24 Intel Corporation Apparatus and method for high speed signals on a printed circuit board
GB2457195B (en) * 2006-12-28 2011-04-13 Intel Corp Apparatus and method for high speed signals on a printed circuit board
JP2008205711A (en) * 2007-02-19 2008-09-04 Mitsubishi Electric Corp Rfid tag
JP2008263400A (en) * 2007-04-12 2008-10-30 Yazaki Corp Antenna
KR101480561B1 (en) * 2008-08-26 2015-01-26 엘지이노텍 주식회사 Antenna
JP2010135980A (en) * 2008-12-03 2010-06-17 Casio Computer Co Ltd Antenna device, reception device, and radio wave timepiece
JP4645730B2 (en) * 2008-12-03 2011-03-09 カシオ計算機株式会社 Antenna device, receiving device and radio clock
CN102437418A (en) * 2011-08-24 2012-05-02 清华大学 Broadband planar reconfigurable antenna system for mobile terminal
WO2013124897A1 (en) * 2012-02-23 2013-08-29 日本電気株式会社 Antenna apparatus
US9472855B2 (en) 2012-02-23 2016-10-18 Nec Corporation Antenna device
JP2021189005A (en) * 2020-05-28 2021-12-13 株式会社デンソー Radar circuit unit and radar device
WO2024020883A1 (en) * 2022-07-27 2024-02-01 京东方科技集团股份有限公司 Waveguide, beam regulation and control device, beam regulation and control method, and manufacturing method

Also Published As

Publication number Publication date
JP3224323B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
JP3224323B2 (en) Antenna circuit
US7783250B2 (en) Method for up converting a transmitted signal and down converting a received signal
US4185252A (en) Microstrip open ring resonator oscillators
JPH036481A (en) Microwave responding apparatus
JP3268807B2 (en) Radio frequency mixer circuit
US5982245A (en) Radiating oscillator apparatus for micro-and millimeter waves
EP1605585B1 (en) Harmonic mixer using anti parallel diodes
US7164902B2 (en) Filter-integrated even-harmonic mixer and hi-frequency radio communication device using the same
Dahlbäck et al. Compact 340 GHz homodyne transceiver modules for FMWC imaging radar arrays
US4523163A (en) Wideband microwave device generating even harmonics of an incident signal
JP3355337B2 (en) Planar radiation type oscillation device
KR20220106747A (en) High Frequency Heterodyne Mixer
US3638126A (en) High-frequency converter
CN116527151A (en) Broadband tunable microwave photon frequency conversion system capable of self-generating local oscillation signals
JP2924421B2 (en) Microwave circuit
US5352885A (en) Frequency converter for varying the frequency of a local signal over a wide band
Taba et al. A review on the state-of-the-art thz fmcw radars implemented on silicon
JP2886390B2 (en) Optical microwave mixing circuit and optical microwave frequency conversion circuit
JP2752903B2 (en) Frequency multiplier
JP2868037B2 (en) Microwave circuit
Chew et al. Use of direct-modulated/gain-switched optical links in monopulse-type active phased array systems
Pfeiffer et al. SiGe transmitter and receiver circuits for emerging terahertz applications
JP5647096B2 (en) Electromagnetic wave generator
JP2598522B2 (en) Microwave frequency converter
JPH10190013A (en) Diode device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

LAPS Cancellation because of no payment of annual fees