JPH07283475A - Frequency stabilizing semiconductor laser light source - Google Patents

Frequency stabilizing semiconductor laser light source

Info

Publication number
JPH07283475A
JPH07283475A JP7312694A JP7312694A JPH07283475A JP H07283475 A JPH07283475 A JP H07283475A JP 7312694 A JP7312694 A JP 7312694A JP 7312694 A JP7312694 A JP 7312694A JP H07283475 A JPH07283475 A JP H07283475A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor laser
laser
frequency
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7312694A
Other languages
Japanese (ja)
Inventor
Yasuyuki Suzuki
泰幸 鈴木
Mamoru Arihara
守 在原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7312694A priority Critical patent/JPH07283475A/en
Publication of JPH07283475A publication Critical patent/JPH07283475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the oscillation frequency of a semiconductor laser from being exerted the effect of an ambient temperature even in the case where a thermal resistance between the semiconductor laser and a temperature detector is high by a method wherein the ambient temperature is detected, the value of this detected temperature is converted into a change component of the temperature of the laser and the temperature of the laser is controlled on the basis of the value of the converted change component. CONSTITUTION:As a variation component 'TA2-TA0' of an ambient temperature is converted as a variation component 'TLD2-TLD0' of the temperature of a semiconductor laser 1 and the converted variation component 'TLD2-TLD0' is added to the temperature of the laser 1 by an adder, which is constituted of resistors 15, 19, 21 and 22 and an operational amplifier 23, a control circuit 24 controls the temperature of the laser 1 so as to drop to the 'TCD0' anticipating that the temperature of the laser 1 rises to the 'TLD2'. As a result, the ambient temperature is detected by a temperature detector 11 and the value of this detected temperature is converted into a change component of the temperature of the laser 1 to control the temperature of the laser 1 by the circuit 24. Thereby, the temperature of the laser 1 is prevented from being exerted the effect of the ambient temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、周波数安定化半導体レ
ーザ光源に関し、特に周囲温度の影響を補償できる周波
数安定化半導体レーザ光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency-stabilized semiconductor laser light source, and more particularly to a frequency-stabilized semiconductor laser light source capable of compensating the influence of ambient temperature.

【0002】[0002]

【従来の技術】従来の周波数安定化半導体レーザ光源は
標準物質の吸収線に半導体レーザの発振周波数を制御す
ること等により、発振周波数の安定化を図っていた。
2. Description of the Related Art In a conventional frequency-stabilized semiconductor laser light source, the oscillation frequency is stabilized by controlling the oscillation frequency of the semiconductor laser with an absorption line of a standard substance.

【0003】図3はこのような従来の周波数安定化半導
体レーザ光源の一例を示す構成ブロック図である。図3
において1は半導体レーザ、2はビームスプリッタ、3
は例えばC22分子等の標準物質を封入した吸収セル、
4は光検出器、5は発振器、6は同期検波回路、7は電
流制御回路、8は温度検出器、9は温度制御回路、10
は恒温槽、100は出力光である。また、2〜7は周波
数制御手段50を構成している。
FIG. 3 is a block diagram showing an example of such a conventional frequency-stabilized semiconductor laser light source. Figure 3
1 is a semiconductor laser, 2 is a beam splitter, 3
Is an absorption cell containing a standard substance such as C 2 H 2 molecule,
4 is a photodetector, 5 is an oscillator, 6 is a synchronous detection circuit, 7 is a current control circuit, 8 is a temperature detector, 9 is a temperature control circuit, and 10 is a temperature control circuit.
Is a constant temperature bath, and 100 is output light. Further, 2 to 7 constitute the frequency control means 50.

【0004】半導体レーザ1の出力光はビームスプリッ
タ2に入射され、入射光の一部は出力光100として出
力され、入射光の残りは反射され吸収セル3に入射され
る。
The output light of the semiconductor laser 1 is incident on the beam splitter 2, a part of the incident light is output as the output light 100, and the rest of the incident light is reflected and enters the absorption cell 3.

【0005】吸収セル3の透過光は光検出器4に入射さ
れ、光検出器4の出力は同期検波回路6の一方の入力端
子に接続され、同期検波回路6の他方の入力端子には発
振器5の出力が接続される。
The transmitted light of the absorption cell 3 is incident on the photodetector 4, the output of the photodetector 4 is connected to one input terminal of the synchronous detection circuit 6, and the other input terminal of the synchronous detection circuit 6 is an oscillator. 5 outputs are connected.

【0006】同期検波回路6の出力は電流制御回路7の
一方の入力端子に接続され、電流制御回路7の他方の入
力端子には発振器5の出力信号が接続される。また、電
流制御回路7の出力は半導体レーザ1に駆動電流を供給
する。
The output of the synchronous detection circuit 6 is connected to one input terminal of the current control circuit 7, and the output signal of the oscillator 5 is connected to the other input terminal of the current control circuit 7. The output of the current control circuit 7 supplies a driving current to the semiconductor laser 1.

【0007】一方、半導体レーザ1及び温度検出器8は
恒温槽10の内部に設けられ、温度検出器8の出力は温
度制御回路9に接続され、温度制御回路9の制御信号は
半導体レーザ1に接続される。
On the other hand, the semiconductor laser 1 and the temperature detector 8 are provided inside the thermostatic chamber 10, the output of the temperature detector 8 is connected to the temperature control circuit 9, and the control signal of the temperature control circuit 9 is sent to the semiconductor laser 1. Connected.

【0008】ここで、図3に示す従来例の動作を説明す
る。詳細な動作については本願出願人の出願に係る実願
平3−106390号に記載されており、基本的な部分
についてのみ説明する。
The operation of the conventional example shown in FIG. 3 will be described. The detailed operation is described in Japanese Patent Application No. 3-106390 filed by the applicant of the present application, and only the basic part will be described.

【0009】吸収セル3を透過した光は、吸収セル3内
に封入されている標準物質により特定周波数に吸収が生
じ、光検出器4に入射され電気信号に変換される。同期
検波回路6で電流変調周波数である発振器5の出力信号
に基づき前記電気信号を同期検波することにより微分波
形が得られる。
The light transmitted through the absorption cell 3 is absorbed by the standard substance enclosed in the absorption cell 3 at a specific frequency and is incident on the photodetector 4 to be converted into an electric signal. A differential waveform is obtained by synchronously detecting the electric signal based on the output signal of the oscillator 5 having the current modulation frequency in the synchronous detection circuit 6.

【0010】この微分波形の変曲点に半導体レーザ1の
発振周波数を制御することにより、発振周波数が標準物
質の吸収線の中心線に制御されることになり、周波数が
安定化される。
By controlling the oscillation frequency of the semiconductor laser 1 at the inflection point of this differential waveform, the oscillation frequency is controlled to the center line of the absorption line of the standard substance, and the frequency is stabilized.

【0011】また、一般に半導体レーザ1の発振周波数
は温度に影響され易く、図4の半導体レーザ1の温度と
発振周波数の関係を示す特性曲線図から分かるように、
半導体レーザ1の温度の変化に伴って半導体レーザ1の
発振周波数も変化してしまう。
Further, in general, the oscillation frequency of the semiconductor laser 1 is easily affected by temperature, and as can be seen from the characteristic curve diagram showing the relationship between the temperature and the oscillation frequency of the semiconductor laser 1 of FIG.
The oscillation frequency of the semiconductor laser 1 also changes as the temperature of the semiconductor laser 1 changes.

【0012】例えば、半導体レーザ1の温度が”TLD
0”から”TLD2”に変化した場合、半導体レーザ1
の発振周波数が”FLD0”から”FLD2”へと変化
してしまう。
For example, if the temperature of the semiconductor laser 1 is "TLD"
When changing from 0 "to" TLD2 ", the semiconductor laser 1
Oscillation frequency changes from "FLD0" to "FLD2".

【0013】従って、半導体レーザ1を恒温槽10内に
設け、更に、恒温槽10の温度を温度検出器8で検出
し、この検出温度に基づき半導体レーザ1の温度を制御
することにより、発振周波数がより安定化された出力光
を得ることができる。
Therefore, the semiconductor laser 1 is provided in the constant temperature chamber 10, the temperature of the constant temperature chamber 10 is detected by the temperature detector 8, and the temperature of the semiconductor laser 1 is controlled based on the detected temperature to obtain the oscillation frequency. It is possible to obtain more stabilized output light.

【0014】[0014]

【発明が解決しようとする課題】しかし、図3に示す従
来例では半導体レーザ1の温度が温度検出器8の検出温
度と等しくなるように制御されてはいるものの、半導体
レーザ1と温度検出器8との間の熱抵抗が大きい場合に
は、実際の半導体レーザ1の温度は温度検出器8の検出
温度とは一致しない。
However, in the conventional example shown in FIG. 3, although the temperature of the semiconductor laser 1 is controlled to be equal to the temperature detected by the temperature detector 8, the semiconductor laser 1 and the temperature detector are controlled. When the thermal resistance between the semiconductor laser 1 and the semiconductor laser 8 is large, the actual temperature of the semiconductor laser 1 does not match the temperature detected by the temperature detector 8.

【0015】即ち、周囲温度の変動に伴い温度制御され
ているはずの半導体レーザ1の温度が変動してしまうこ
とになる。
That is, the temperature of the semiconductor laser 1, which should have been temperature-controlled, fluctuates as the ambient temperature fluctuates.

【0016】例えば、図5は周囲温度と半導体レーザ1
の温度との関係を示す特性曲線図であり、図5に示すよ
うに周囲温度が”TA0”から”TA2”へと上昇した
場合には半導体レーザ1の温度も”TLD0”から”T
LD2”へと上昇してしまい、前述のように半導体レー
ザ1の発振周波数も変動してしまい電流制御のロックレ
ンジからはずれて周波数の安定化が図れなくなる。従っ
て本発明の目的は、半導体レーザと温度検出器との間の
熱抵抗が大きい場合でも発振周波数が周囲温度の影響を
受けない、周波数ロンクレンジの広い周波数安定化半導
体レーザ光源を実現することにある。
For example, FIG. 5 shows the ambient temperature and the semiconductor laser 1.
6 is a characteristic curve diagram showing the relationship with the temperature of the semiconductor laser 1. When the ambient temperature rises from "TA0" to "TA2" as shown in FIG. 5, the temperature of the semiconductor laser 1 also changes from "TLD0" to "TLD0".
LD2 ″, the oscillation frequency of the semiconductor laser 1 also fluctuates as described above, and the frequency cannot be stabilized outside the lock range of the current control. Therefore, the object of the present invention is Another object is to realize a frequency-stabilized semiconductor laser light source with a wide frequency range, in which the oscillation frequency is not affected by the ambient temperature even when the thermal resistance with the temperature detector is large.

【0017】[0017]

【課題を解決するための手段】このような目的を達成す
るために、本発明では、標準物質を封入した吸収セルに
半導体レーザの出力光を透過させ、前記標準物質の吸収
線に前記半導体レーザの発振周波数を制御する周波数安
定化半導体レーザ光源において、前記半導体レーザと、
前記半導体レーザの発振周波数を前記吸収線に制御する
周波数制御手段と、前記半導体レーザの温度を検出する
第1の温度検出器と、周囲温度を検出する第2の温度検
出器と、前記第1及び第2の温度検出器の出力に基づき
前記半導体レーザの温度を制御する温度制御手段とを備
えたことを特徴とするものである。
In order to achieve such an object, according to the present invention, the output light of a semiconductor laser is transmitted through an absorption cell in which a standard substance is enclosed, and the absorption line of the standard substance is changed to the semiconductor laser. A frequency-stabilized semiconductor laser light source for controlling the oscillation frequency of the semiconductor laser,
Frequency control means for controlling the oscillation frequency of the semiconductor laser to the absorption line, a first temperature detector for detecting the temperature of the semiconductor laser, a second temperature detector for detecting ambient temperature, and the first temperature detector. And temperature control means for controlling the temperature of the semiconductor laser based on the output of the second temperature detector.

【0018】[0018]

【作用】第2の温度検出器により周囲温度を検出し、こ
の値を半導体レーザの温度変化分に変換し、この値に基
づき半導体レーザの温度を制御することにより、半導体
レーザの温度は周囲温度に対して一定となり、半導体レ
ーザと第1の温度検出器との間の熱抵抗が大きい場合で
も発振周波数が周囲温度の影響を受けなくなる。
The temperature of the semiconductor laser is controlled by detecting the ambient temperature with the second temperature detector, converting this value into the temperature change of the semiconductor laser, and controlling the temperature of the semiconductor laser based on this value. However, even if the thermal resistance between the semiconductor laser and the first temperature detector is large, the oscillation frequency is not affected by the ambient temperature.

【0019】[0019]

【実施例】以下本発明を図面を用いて詳細に説明する。
図1は本発明に係る周波数安定化半導体レーザ光源の一
実施例を示す構成ブロック図である。ここで、1〜8,
10,50及び100は図3と同一符号を付してある。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a configuration block diagram showing an embodiment of a frequency-stabilized semiconductor laser light source according to the present invention. Where 1-8,
10, 50 and 100 are denoted by the same reference numerals as in FIG.

【0020】図1において11は温度検出器、12及び
16は定電流源、13,15,17,19,21及び2
2は抵抗、14,18及び23は演算増幅器、20は電
圧源、24は制御回路、110,111,112及び1
13は電圧である。また、12〜24は温度制御手段5
1を構成している。
In FIG. 1, 11 is a temperature detector, 12 and 16 are constant current sources, 13, 15, 17, 19, 21, and 2.
2 is a resistor, 14, 18 and 23 are operational amplifiers, 20 is a voltage source, 24 is a control circuit, 110, 111, 112 and 1
13 is a voltage. Further, 12 to 24 are temperature control means 5
Make up one.

【0021】周波数制御手段50と恒温槽10との接続
関係については図3と同様であり説明は省略する。温度
検出器8の出力は定電流源16の一端、抵抗17の一端
及び演算増幅器18の反転入力端子に接続され、演算増
幅器18の出力は抵抗17の他端及び抵抗19の一端に
接続される。
The connection relationship between the frequency control means 50 and the constant temperature bath 10 is the same as that shown in FIG. The output of the temperature detector 8 is connected to one end of the constant current source 16, one end of the resistor 17 and the inverting input terminal of the operational amplifier 18, and the output of the operational amplifier 18 is connected to the other end of the resistor 17 and one end of the resistor 19. .

【0022】一方、温度検出器11の出力は定電流源1
2の一端、抵抗13の一端及び演算増幅器14の反転入
力端子に接続され、演算増幅器14の出力は抵抗13の
他端及び抵抗15の一端に接続される。
On the other hand, the output of the temperature detector 11 is the constant current source 1
2 is connected to one end of the resistor 13, one end of the resistor 13 and the inverting input terminal of the operational amplifier 14, and the output of the operational amplifier 14 is connected to the other end of the resistor 13 and one end of the resistor 15.

【0023】また、電圧源20の出力は抵抗21の一端
に接続され、抵抗21の他端は抵抗15及び19の他端
と、抵抗22の一端と、演算増幅器23の反転入力端子
にそれぞれ接続される。
The output of the voltage source 20 is connected to one end of the resistor 21, and the other end of the resistor 21 is connected to the other ends of the resistors 15 and 19, one end of the resistor 22 and the inverting input terminal of the operational amplifier 23, respectively. To be done.

【0024】演算増幅器23の出力は抵抗22の他端及
び制御回路24に接続され、制御回路24の出力は制御
信号として半導体レーザ1に接続される。さらに、定電
流源12及び16の他端、演算増幅器14,18及び2
3の非反転入力端子は接地される。
The output of the operational amplifier 23 is connected to the other end of the resistor 22 and the control circuit 24, and the output of the control circuit 24 is connected to the semiconductor laser 1 as a control signal. Further, the other ends of the constant current sources 12 and 16 and the operational amplifiers 14, 18 and 2
The non-inverting input terminal of 3 is grounded.

【0025】ここで、図1に示す実施例の動作を図2を
用いて説明する。図2は周囲温度と半導体レーザ1の温
度の関係を示す特性曲線図である。
The operation of the embodiment shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a characteristic curve diagram showing the relationship between the ambient temperature and the temperature of the semiconductor laser 1.

【0026】温度検出器8からは検出温度に対応した電
流が出力され、定電流源16によりオフセット電流分が
差し引かれる。この電流を抵抗17及び演算増幅器18
により電圧111に変換する。同様に温度検出器11で
検出された温度も12〜14を用いて電圧112に変換
される。
A current corresponding to the detected temperature is output from the temperature detector 8, and the constant current source 16 subtracts the offset current component. This current is transferred to the resistor 17 and the operational amplifier 18.
Is converted into a voltage 111. Similarly, the temperature detected by the temperature detector 11 is also converted into a voltage 112 using 12 to 14.

【0027】電圧源20からの電圧110、演算増幅器
14及び18からの電圧112及び111は抵抗15,
19,21及び22と演算増幅器23から構成される加
算器に入力され、加算結果の電圧113が制御回路24
に入力される。
The voltage 110 from the voltage source 20 and the voltages 112 and 111 from the operational amplifiers 14 and 18 are the resistor 15,
The voltage 113 of the addition result is input to the adder composed of 19, 21, and 22 and the operational amplifier 23, and the control circuit 24
Entered in.

【0028】電圧源20の出力電圧110は設定温度に
相当し、もし、半導体レーザ1の温度が変化すれば電圧
111の電圧値が変化し、加算結果である電圧113も
変化する。ここで、制御回路24は電圧113により電
圧111が電圧110に等しくなるように半導体レーザ
1の温度を制御する。
The output voltage 110 of the voltage source 20 corresponds to the set temperature, and if the temperature of the semiconductor laser 1 changes, the voltage value of the voltage 111 changes and the voltage 113 as the addition result also changes. Here, the control circuit 24 controls the temperature of the semiconductor laser 1 by the voltage 113 so that the voltage 111 becomes equal to the voltage 110.

【0029】一方、周囲温度が変化すると電圧112の
電圧値が変化し、加算結果である電圧113も変化す
る。この時、制御回路24は半導体レーザ1の温度が変
化したものと見做して半導体レーザ1の温度を制御す
る。
On the other hand, when the ambient temperature changes, the voltage value of the voltage 112 changes, and the voltage 113 as the addition result also changes. At this time, the control circuit 24 considers that the temperature of the semiconductor laser 1 has changed and controls the temperature of the semiconductor laser 1.

【0030】例えば、図2において周囲温度が”TA
0”から”TA2”に上昇した場合を考える。この時、
半導体レーザ1と温度検出器8との間の熱抵抗が大きい
場合には前述のように半導体レーザ1の温度と温度検出
器8の検出温度が異なり、半導体レーザ1の実際の温度
は図2中”イ”に示すように”TLD0”ではなく”T
LD2”に上昇してしまう。
For example, in FIG. 2, the ambient temperature is "TA
Consider the case where it rises from 0 ”to“ TA2. ”At this time,
When the thermal resistance between the semiconductor laser 1 and the temperature detector 8 is large, the temperatures of the semiconductor laser 1 and the temperature detector 8 are different as described above, and the actual temperature of the semiconductor laser 1 is shown in FIG. As shown in "a", "TLD0" is not "T"
It rises to LD2 ".

【0031】一方、温度検出器11はこの周囲温度の変
化を検出し、12〜14で構成される回路により電圧1
12を発生させる。
On the other hand, the temperature detector 11 detects the change in the ambient temperature, and the circuit composed of 12 to 14 detects the voltage 1
12 is generated.

【0032】ここで、抵抗15と抵抗19の抵抗値をそ
れぞれ”R15”及び”R19”とした場合、 R19/R15=(TLD2−TLD0)/(TA2−TA0) (1) となるように設定する。
[0032] Here, when the resistance value of the resistor 15 and the resistor 19 were respectively "R 15" and "R 19", R 19 / R 15 = (TLD2-TLD0) / (TA2-TA0) and (1) To be set.

【0033】即ち、抵抗15,19,21及び22と演
算増幅器23で構成される加算器により、周囲温度の変
動分”TA2−TA0”が半導体レーザ1の温度変動
分”TLD2−TLD0”として変換されて加算される
ことになるので、制御回路24は半導体レーザ1の温度
が”TLD2”となったものと見做して半導体レーザ1
の温度を”TLD0”となるように制御する。
That is, by the adder composed of the resistors 15, 19, 21 and 22 and the operational amplifier 23, the variation "TA2-TA0" of the ambient temperature is converted into the variation "TLD2-TLD0" of the temperature of the semiconductor laser 1. Therefore, the control circuit 24 considers that the temperature of the semiconductor laser 1 has become “TLD2”, and the semiconductor laser 1 is thus added.
The temperature of is controlled to be "TLD0".

【0034】この結果、温度検出器11により周囲温度
を検出し、この値を半導体レーザ1の温度変化分に変換
して制御回路24で半導体レーザ1の温度を制御するこ
とにより、半導体レーザ1の温度は図2中”ロ”に示す
ように周囲温度に対して影響を受けなくなる。即ち、発
振周波数が周囲温度の影響を受けなくなる。
As a result, the ambient temperature is detected by the temperature detector 11, this value is converted into a temperature change amount of the semiconductor laser 1, and the temperature of the semiconductor laser 1 is controlled by the control circuit 24. The temperature is not affected by the ambient temperature as shown by "B" in FIG. That is, the oscillation frequency is not affected by the ambient temperature.

【0035】[0035]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のような効果がある。第2の温度検出
器により周囲温度を検出し、この値を半導体レーザの温
度変化分に変換して半導体レーザの温度を制御すること
により、半導体レーザの温度は周囲温度に対して一定と
なり、半導体レーザと第1の温度検出器との間の熱抵抗
が大きい場合でも発振周波数が周囲温度の影響を受けな
い周波数ロックレンジの広い周波数安定化半導体レーザ
光源を実現できる。
As is apparent from the above description,
The present invention has the following effects. By detecting the ambient temperature with the second temperature detector and converting this value into the temperature change of the semiconductor laser to control the temperature of the semiconductor laser, the temperature of the semiconductor laser becomes constant with respect to the ambient temperature, It is possible to realize a frequency-stabilized semiconductor laser light source with a wide frequency lock range in which the oscillation frequency is not affected by the ambient temperature even if the thermal resistance between the laser and the first temperature detector is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る周波数安定化半導体レーザ光源の
一実施例を示す構成ブロック図である。
FIG. 1 is a configuration block diagram showing an embodiment of a frequency-stabilized semiconductor laser light source according to the present invention.

【図2】周囲温度と半導体レーザの温度との関係を示す
特性曲線図である。
FIG. 2 is a characteristic curve diagram showing a relationship between ambient temperature and semiconductor laser temperature.

【図3】従来の周波数安定化半導体レーザ光源の一例を
示す構成ブロック図である。
FIG. 3 is a configuration block diagram showing an example of a conventional frequency-stabilized semiconductor laser light source.

【図4】半導体レーザの温度と発振周波数の関係を示す
特性曲線図である。
FIG. 4 is a characteristic curve diagram showing the relationship between the temperature of the semiconductor laser and the oscillation frequency.

【図5】周囲温度と半導体レーザの温度との関係を示す
特性曲線図である。
FIG. 5 is a characteristic curve diagram showing a relationship between ambient temperature and semiconductor laser temperature.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 ビームスプリッタ 3 吸収セル 4 光検出器 5 発振器 6 同期検波回路 7 電流制御回路 8,11 温度検出器 9 温度制御回路 10 恒温槽 12,16 定電流原 13,15,17,19,21,22 抵抗 14,18,23 演算増幅器 20 電圧源 24 制御回路 50 周波数制御手段 51 温度制御手段 100 出力光 110,111,112,113 電圧 1 Semiconductor Laser 2 Beam Splitter 3 Absorption Cell 4 Photodetector 5 Oscillator 6 Synchronous Detection Circuit 7 Current Control Circuit 8, 11 Temperature Detector 9 Temperature Control Circuit 10 Constant Temperature Chamber 12, 16 Constant Current Source 13, 15, 17, 19, 21,22 Resistance 14,18,23 Operational amplifier 20 Voltage source 24 Control circuit 50 Frequency control means 51 Temperature control means 100 Output light 110,111,112,113 Voltage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】標準物質を封入した吸収セルに半導体レー
ザの出力光を透過させ、前記標準物質の吸収線に前記半
導体レーザの発振周波数を制御する周波数安定化半導体
レーザ光源において、 前記半導体レーザと、 前記半導体レーザの発振周波数を前記吸収線に制御する
周波数制御手段と、 前記半導体レーザの温度を検出する第1の温度検出器
と、 周囲温度を検出する第2の温度検出器と、 前記第1及び第2の温度検出器の出力に基づき前記半導
体レーザの温度を制御する温度制御手段とを備えたこと
を特徴とする周波数安定化半導体レーザ光源。
1. A frequency-stabilized semiconductor laser light source, wherein an output light of a semiconductor laser is transmitted through an absorption cell in which a standard substance is encapsulated, and an oscillation frequency of the semiconductor laser is controlled by an absorption line of the standard substance. A frequency control unit that controls the oscillation frequency of the semiconductor laser to the absorption line; a first temperature detector that detects the temperature of the semiconductor laser; a second temperature detector that detects an ambient temperature; 1. A frequency-stabilized semiconductor laser light source, comprising: temperature control means for controlling the temperature of the semiconductor laser based on the outputs of the first and second temperature detectors.
JP7312694A 1994-04-12 1994-04-12 Frequency stabilizing semiconductor laser light source Pending JPH07283475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312694A JPH07283475A (en) 1994-04-12 1994-04-12 Frequency stabilizing semiconductor laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312694A JPH07283475A (en) 1994-04-12 1994-04-12 Frequency stabilizing semiconductor laser light source

Publications (1)

Publication Number Publication Date
JPH07283475A true JPH07283475A (en) 1995-10-27

Family

ID=13509225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312694A Pending JPH07283475A (en) 1994-04-12 1994-04-12 Frequency stabilizing semiconductor laser light source

Country Status (1)

Country Link
JP (1) JPH07283475A (en)

Similar Documents

Publication Publication Date Title
JP3421103B2 (en) Photodetection circuit using avalanche photodiode
JP2686036B2 (en) Avalanche photodiode bias circuit
JPS62244184A (en) Oscillating frequency and output stabilizer for semiconductor laser
US4433238A (en) Optical measurement system for spectral analysis
US5237579A (en) Semiconductor laser controller using optical-electronic negative feedback loop
US20020063937A1 (en) Optical receiving apparatus
US7236506B2 (en) Method and apparatus for compensating for temperature characteristics of laser diode in optical communication system
JPH07283475A (en) Frequency stabilizing semiconductor laser light source
JP4501612B2 (en) Bias control circuit
JPH088388B2 (en) Method and apparatus for stabilizing temperature of optical component
US6879607B2 (en) Semiconductor laser module
JP3049469B2 (en) Laser output detector
JPH11233869A (en) Frequency stabilizing semiconductor laser light source
JP2541095B2 (en) Laser wavelength stabilization method
JP3323033B2 (en) Semiconductor laser control device, semiconductor laser device, information recording / reproducing device, and image recording device
JPS6374304A (en) Compensating method for offset or drift or the like in optical receiving circuit
JPH06188503A (en) Wavelength stabilizer
JPH04208581A (en) Semiconductor laser
JPS61164283A (en) Photo output stabilizing device for semiconductor laser
JPH0222873A (en) Temperature compensation circuit of bias circuit for avalanche photodiode
JPH09283829A (en) Stabilized frequency semiconductor laser beam source
JPH051991B2 (en)
JPS6344783A (en) Frequency stabilizer of laser light source
JP2877059B2 (en) Laser diode drive circuit
JP2918023B2 (en) Optical microwave unit for rubidium atomic oscillator