JPH07281746A - Traveling controller for light beam guided work vehicle - Google Patents

Traveling controller for light beam guided work vehicle

Info

Publication number
JPH07281746A
JPH07281746A JP6069160A JP6916094A JPH07281746A JP H07281746 A JPH07281746 A JP H07281746A JP 6069160 A JP6069160 A JP 6069160A JP 6916094 A JP6916094 A JP 6916094A JP H07281746 A JPH07281746 A JP H07281746A
Authority
JP
Japan
Prior art keywords
vehicle body
work
vehicle
ground
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6069160A
Other languages
Japanese (ja)
Inventor
Koji Yoshikawa
浩司 吉川
Ryozo Kuroiwa
良三 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6069160A priority Critical patent/JPH07281746A/en
Publication of JPH07281746A publication Critical patent/JPH07281746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To detect rolling angle in the left and right directions of a car body with simple configuration without providing any expensive inclination sensor on the car body side by effectively utilizing the inclining state detecting means of a ground working part. CONSTITUTION:This controller is provided with a steering controlling photosensor S1 for receiving guiding light beam, steering means 7-10, a control means 100 for automatically traveling a work vehicle V along a traveling course, an inclining means M for inclining the ground working part held in the car body so as to be freely inclined in the left and right directions of the car body in the left and right directions of the car body, a horizontal keeping means 101 for keeping the ground working part at the ground horizontal posture in the left and right directions of the car body by operating the inclining means M based on the information of an inclining state detecting means S6 for detecting the ground inclining state of the ground working part, and an inclination angle detecting means S5 for detecting the inclination angles in the left and right directions of the car body to the ground working part. The control means 100 corrects the amount of deviation in the width direction of the car body to the beam light for guidance based on the rolling angle information in the left and right directions of the car body discriminated by the detected information of the inclining state detecting means S6 and the inclination angle detecting means S5, and operates the steering means 7-10 based on the deviation information after the correction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作業車が走行行程に沿
って自動走行するように前記走行行程の長手方向に沿っ
て誘導用ビーム光を投射するビーム光投射手段が、地上
側に設けられ、前記ビーム光投射手段にて投射される誘
導用ビーム光に対する車体横幅方向でのずれを検出すべ
く、その誘導用ビーム光を受光する操向制御用光センサ
と、前記作業車の車体を操向させる操向手段と、前記操
向制御用光センサの受光情報に基づいて前記作業車が前
記走行行程に沿って自動走行するように前記操向手段の
作動を制御する制御手段と、車体左右方向に傾斜自在な
状態で前記車体に保持された対地作業部と、その対地作
業部を前記車体に対して車体左右方向に傾斜させる傾斜
手段と、前記対地作業部の車体左右方向での対地傾斜状
態を検出する傾斜状態検出手段と、前記傾斜状態検出手
段の情報に基づいて前記傾斜手段を作動させて前記対地
作業部を車体左右方向において対地水平姿勢に維持する
水平維持手段とが、前記作業車に設けられたビーム光誘
導式作業車用の走行制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a beam light projecting means on the ground side for projecting a guiding beam of light along the longitudinal direction of a traveling path so that a work vehicle automatically travels along the traveling path. In order to detect a shift in the vehicle width direction with respect to the guidance light beam projected by the light beam projection means, a steering control optical sensor for receiving the guidance light beam and the body of the work vehicle are provided. Steering means for steering, control means for controlling the operation of the steering means so that the work vehicle automatically travels along the travel stroke based on the light reception information of the steering control optical sensor, and a vehicle body A ground working part held in the vehicle body in a state of being tiltable in the left-right direction, an inclining means for tilting the ground working part in the vehicle body left-right direction with respect to the car body, and a ground working part in the vehicle body left-right direction Inclination to detect the inclination state The work vehicle is provided with a state detecting means and a horizontal maintaining means for operating the inclining means on the basis of the information of the inclining state detecting means to maintain the ground working unit in a horizontal posture with respect to the ground in the lateral direction of the vehicle body. The present invention relates to a travel control device for a beam light guide type work vehicle.

【0002】[0002]

【従来の技術】上記ビーム光誘導式作業車用の走行制御
装置において、車体が車体左右方向に傾いていないとき
は、誘導用ビーム光を受光した操向制御用光センサの受
光情報に基づいて車体横幅方向での車体のずれを検出
し、このずれ情報に基づく操向制御を行って作業車を走
行行程に沿って適正に自動走行させることができるが、
車体が車体左右方向にローリングして傾くと、操向制御
用光センサの誘導用ビーム光に対するセンサ位置も変動
して、その操向制御用光センサの受光情報に基づいて検
出した車体横幅方向での車体のずれ情報に車体傾斜によ
る誤差が含まれ、このずれ情報に基づいて作業車を走行
行程に沿って適正に自動走行させることができなくな
る。そのため、従来、例えば重錘式の傾斜センサ等を車
体に設置して、その傾斜センサにて検出される車体の車
体左右方向でのローリング角の情報に基づいて、前記操
向制御用光センサの受光情報から得られる車体横幅方向
での車体のずれ量を補正し、その補正後のずれ情報に基
づいて作業車を操向制御することが提案されていた。
2. Description of the Related Art In a traveling control apparatus for a beam light guide type work vehicle, when the vehicle body is not tilted in the left-right direction of the vehicle body, based on the light reception information of a steering control light sensor that has received the beam light for guidance. Although it is possible to detect the deviation of the vehicle body in the lateral direction of the vehicle body and perform steering control based on this deviation information to appropriately and automatically drive the work vehicle along the traveling stroke,
When the vehicle body rolls in the left-right direction and tilts, the sensor position of the steering control optical sensor with respect to the guiding beam light also fluctuates, and in the lateral direction of the vehicle body detected based on the received light information of the steering control optical sensor. The deviation information of the vehicle body includes an error due to the inclination of the vehicle body, and it becomes impossible to appropriately and automatically drive the work vehicle along the traveling stroke based on the deviation information. Therefore, conventionally, for example, a weight-type tilt sensor or the like is installed on the vehicle body, and based on the information on the rolling angle in the vehicle body left-right direction of the vehicle body detected by the tilt sensor, the steering control optical sensor It has been proposed to correct the displacement amount of the vehicle body in the lateral direction of the vehicle body obtained from the light reception information and to steer the work vehicle based on the corrected displacement information.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、車体の車体左右方向でのローリング角を検
出するのに、高価な傾斜センサを用いているために装置
コストが高くなるという不具合があり、改善が望まれて
いた。
However, in the above-mentioned prior art, there is a problem that the cost of the apparatus increases because an expensive tilt sensor is used to detect the rolling angle of the vehicle body in the left-right direction of the vehicle body. , Improvement was desired.

【0004】本発明は、上記実情に鑑みて、対地作業部
(例えば、作業車が田植え機の場合の苗植え付け装置
等)を車体左右方向において対地水平姿勢に維持する制
御を行う際の制御情報を得るために、対地作業部の車体
左右方向での傾斜状態つまりローリング角を検出する傾
斜状態検出手段が設けられている点に着目してなされた
ものであって、その目的は、上記従来技術の欠点を解消
すべく、上記対地作業部用の傾斜状態検出手段を有効活
用して、車体側に高価な傾斜センサを設置することなく
極力簡素な構成にて、車体の車体左右方向でのローリン
グ角を検出させることにある。
In view of the above situation, the present invention provides control information for performing control for maintaining a ground working unit (for example, a seedling planting device when a work vehicle is a rice transplanter) in a horizontal posture with respect to the horizontal direction of the vehicle body. In order to obtain the above, the present invention has been made by paying attention to the point that an inclination state detecting means for detecting the inclination state of the ground working unit in the left-right direction of the vehicle body, that is, the rolling angle is provided. In order to eliminate the disadvantage of the above, the rolling state of the vehicle body in the lateral direction of the vehicle body is effectively utilized by effectively utilizing the inclination state detecting means for the ground working section without installing an expensive inclination sensor on the vehicle body side. It is to detect the corner.

【0005】[0005]

【課題を解決するための手段】本発明によるビーム光誘
導式作業車用の走行制御装置は、作業車が走行行程に沿
って自動走行するように前記走行行程の長手方向に沿っ
て誘導用ビーム光を投射するビーム光投射手段が、地上
側に設けられ、前記ビーム光投射手段にて投射される誘
導用ビーム光に対する車体横幅方向でのずれを検出すべ
く、その誘導用ビーム光を受光する操向制御用光センサ
と、前記作業車の操向を司る操向手段と、前記操向制御
用光センサの受光情報に基づいて前記作業車が前記走行
行程に沿って自動走行するように前記操向手段の作動を
制御する制御手段と、車体左右方向に傾斜自在な状態で
前記車体に保持された対地作業部と、その対地作業部を
前記車体に対して車体左右方向に傾斜させる傾斜手段
と、前記対地作業部の車体左右方向での対地傾斜状態を
検出する傾斜状態検出手段と、前記傾斜状態検出手段の
情報に基づいて前記傾斜手段を作動させて前記対地作業
部を車体左右方向において対地水平姿勢に維持する水平
維持手段とが、前記作業車に設けられたビーム光誘導式
作業車用の走行制御装置であって、その第1の特徴構成
は、前記対地作業部に対する前記車体の車体左右方向で
の傾斜角を検出する傾斜角検出手段が設けられ、前記制
御手段は、前記傾斜状態検出手段及び前記傾斜角検出手
段の検出情報に基づいて前記車体の車体左右方向でのロ
ーリング角を判別し、そのローリング角情報に基づいて
前記操向制御用光センサの前記誘導用ビーム光に対する
車体横幅方向でのずれ量を補正した補正後のずれ情報に
基づいて前記操向手段を作動させるように構成されてい
る点にある。
A traveling control device for a beam light guided working vehicle according to the present invention comprises a guiding beam along a longitudinal direction of a traveling path so that the working vehicle automatically travels along the traveling path. A beam light projecting means for projecting light is provided on the ground side, and receives the guiding beam light so as to detect a deviation in the lateral direction of the vehicle body with respect to the guiding beam light projected by the beam light projecting means. An optical sensor for steering control, a steering means for controlling the steering of the work vehicle, and the work vehicle so as to automatically travel along the travel path based on light reception information of the optical sensor for steering control. Control means for controlling the operation of the steering means, ground working section held on the vehicle body in a state of being tiltable in the left and right direction of the vehicle body, and tilting means for tilting the ground working section with respect to the vehicle body in the left and right direction of the vehicle body And the ground working unit Inclination state detecting means for detecting an inclination state to the ground in the left-right direction of the vehicle body, and horizontal operation for operating the inclining means on the basis of information from the inclination state detecting means to maintain the ground working unit in a horizontal attitude to the earth in the left-right direction of the vehicle body. The maintenance means is a travel control device for a beam light guide type work vehicle provided in the work vehicle, and a first characteristic configuration thereof is an inclination angle of the vehicle body with respect to the ground working part in a vehicle body left-right direction. An inclination angle detecting means for detecting the rolling angle is provided, and the control means determines the rolling angle of the vehicle body in the left-right direction of the vehicle body based on the detection information of the inclination state detecting means and the inclination angle detecting means. The steering means is operated based on the corrected shift information obtained by correcting the shift amount of the steering control optical sensor with respect to the guidance light beam in the lateral direction of the vehicle body based on the information. In that it is configured to.

【0006】又、第2の特徴構成は、前記対地作業部
が、車体前後方向に沿う軸芯周りに回転自在な状態で前
記車体に保持され、前記傾斜角検出手段が、前記対地作
業部に対する前記車体の前記軸芯周りでの回動角を検出
する回動角検出手段にて構成されている点にある。
According to a second characteristic construction, the ground working portion is held by the vehicle body in a state of being rotatable about an axis extending in the longitudinal direction of the vehicle body, and the inclination angle detecting means is provided with respect to the ground working portion. It is composed of a rotation angle detecting means for detecting a rotation angle of the vehicle body around the axis.

【0007】又、第3の特徴構成は、前記回動角検出手
段が、前記対地作業部又は前記車体に取り付けた固定部
と、前記対地作業部又は前記車体に取り付けられて前記
回動角の変化に連動して前記固定部に対して相対回転す
る回転部とからなるポテンショメータにて構成されてい
る点にある。
According to a third characteristic configuration, the rotation angle detecting means is fixed to the ground working portion or the vehicle body, and the rotation angle detecting means is attached to the ground working portion or the vehicle body to detect the rotation angle. It is composed of a potentiometer composed of a rotating part which rotates relative to the fixed part in association with a change.

【0008】[0008]

【作用】本発明によるビーム光誘導式作業車用の走行制
御装置の第1の特徴構成によれば、車体左右方向での対
地傾斜状態を検出する傾斜状態検出手段の検出情報に基
づいて傾斜手段が作動されて、対地作業部が対地水平姿
勢に維持され、且つ、上記対地作業部の車体左右方向で
の対地傾斜状態検出情報及び上記対地作業部に対する車
体の車体左右方向での傾斜角を検出する傾斜角検出手段
の検出情報に基づいて、車体の車体左右方向でのローリ
ング角が検出され、地上側に走行行程の長手方向に沿っ
て投射された誘導用ビーム光の受光情報に基づいて検出
した誘導用ビーム光に対する車体横幅方向でのずれ量
が、上記ローリング角情報に基づいて補正され、その補
正後のずれ情報に基づいて操向手段が作動されて、作業
車が走行行程に沿って自動走行するように車体が操向さ
れる。
According to the first characteristic configuration of the traveling control device for a beam light guide type working vehicle according to the present invention, the inclining means is detected based on the detection information of the inclining state detecting means for detecting the inclining state to the ground in the lateral direction of the vehicle. Is operated, the ground working unit is maintained in a horizontal posture with respect to the ground, and the ground tilt state detection information in the lateral direction of the vehicle body of the ground working unit and the tilt angle of the vehicle body in the lateral direction of the ground working unit are detected. The rolling angle of the vehicle body in the lateral direction of the vehicle body is detected based on the detection information of the inclination angle detecting means, and is detected based on the light reception information of the guiding light beam projected along the longitudinal direction of the traveling stroke on the ground side. The deviation amount in the lateral direction of the vehicle body with respect to the guided light beam is corrected based on the rolling angle information, the steering means is operated based on the corrected deviation information, and the work vehicle is moved along the traveling stroke. Vehicle is steered to automatically run.

【0009】又、第2の特徴構成によれば、対地作業部
が車体前後方向に沿う軸芯周りに回動自在な状態で車体
に保持されるとともに、その対地作業部に対する車体の
上記軸芯周りでの回動角が、対地作業部に対する車体の
車体左右方向での傾斜角として検出され、その回動角情
報及び前記対地作業部の対地傾斜状態検出情報に基づい
て、車体の車体左右方向でのローリング角が検出され、
このローリング角情報に基づいて前記誘導用ビーム光に
対する車体横幅方向でのずれ量が補正され、その補正後
のずれ情報に基づいて操向手段が作動されて、作業車が
走行行程に沿って自動走行するように車体が操向され
る。
Further, according to the second characteristic construction, the ground working portion is held by the vehicle body in a state of being rotatable about an axis extending in the longitudinal direction of the vehicle body, and the axis center of the vehicle body with respect to the ground working portion is held. A rotation angle around the vehicle body is detected as an inclination angle of the vehicle body with respect to the ground working portion in the left-right direction of the vehicle body. Based on the rotation angle information and the ground inclination state detection information of the ground working portion, the vehicle body left-right direction is detected. The rolling angle at
Based on this rolling angle information, the deviation amount in the vehicle body lateral direction with respect to the guiding light beam is corrected, the steering means is operated based on the corrected deviation information, and the work vehicle automatically moves along the traveling stroke. The body is steered to run.

【0010】又、第3の特徴構成によれば、対地作業部
が車体前後方向に沿う軸芯周りに回動自在な状態で車体
に保持されるとともに、上記軸芯周りの回動角が変化す
ると、その回動角の変化に連動して、ポテンショメータ
の構成要素として対地作業部又は車体に取り付けた回転
部が、ポテンショメータの他方の構成要素として対地作
業部又は車体に取り付けた固定部に対して相対回転し、
その相対回転量によって上記軸芯周りの回動角が検出さ
れる。そして、その回動角情報及び前記対地作業部の対
地傾斜状態検出情報に基づいて車体のローリング角を検
出してから、前述と同様に、このローリング角情報に基
づく車体横幅方向でのずれ量の補正、及び、その補正後
のずれ情報に基づく操向手段の作動を行って、作業車が
走行行程に沿って自動走行するように車体が操向され
る。
According to the third characteristic construction, the ground working portion is held by the vehicle body in a state of being rotatable about an axis extending along the longitudinal direction of the vehicle, and the rotation angle around the axis changes. Then, in conjunction with the change in the rotation angle, the rotating part attached to the ground working unit or the vehicle body as a component of the potentiometer is compared with the fixed part attached to the ground working unit or the vehicle body as the other component of the potentiometer. Relative rotation,
The rotation angle around the axis is detected by the relative rotation amount. Then, after detecting the rolling angle of the vehicle body based on the rotation angle information and the ground inclination state detection information of the ground working unit, the amount of deviation in the vehicle lateral width direction based on the rolling angle information is detected in the same manner as described above. The vehicle body is steered so that the working vehicle automatically travels along the travel path by performing the correction and the operation of the steering means based on the corrected deviation information.

【0011】[0011]

【発明の効果】従って、本発明によるビーム光誘導式作
業車用の走行制御装置の第1の特徴構成によれば、対地
作業部の水平姿勢制御用の傾斜状態検出手段を有効活用
して、対地作業部に対する車体の車体左右方向での傾斜
角を検出する手段を設けるだけの簡素な構成にて、車体
の車体左右方向でのローリング角を検出させるようにし
たので、従来のように、例えば車体側に高価な傾斜セン
サを設ける必要もなく、装置コストを極力低く抑えるこ
とができるに至った。
Therefore, according to the first characteristic configuration of the traveling control device for a beam light guide type working vehicle according to the present invention, the inclination state detecting means for controlling the horizontal posture of the ground working portion is effectively utilized, Since the rolling angle of the vehicle body in the left-right direction of the vehicle body is detected with a simple configuration only by providing means for detecting the inclination angle of the vehicle body in the left-right direction of the vehicle body with respect to the ground working unit, as in the conventional case, for example, The cost of the apparatus can be kept as low as possible without providing an expensive tilt sensor on the vehicle body side.

【0012】又、第2の特徴構成によれば、対地作業部
を車体前後方向に沿う軸芯周りに回動自在な状態で車体
に保持させ、且つ、その対地作業部に対する車体の上記
軸芯周りでの回動角にて対地作業部に対する車体の車体
左右方向での傾斜角を検出するようにしたので、例え
ば、対地作業部をリンク機構によって車体に保持させる
ものに比べて、ガタツキ等もなく円滑に対地作業部を車
体に対して車体左右方向に傾斜させることができるとと
もに、その傾斜角の検出も、上記軸芯周りの回動角とし
て簡素な検出手段にて精度良く検出でき、もって、上記
第1の特徴構成による効果を実現する際の好適な手段が
得られる。
Further, according to the second characteristic construction, the ground working portion is held on the vehicle body in a state of being rotatable about the axis along the longitudinal direction of the vehicle body, and the axis of the vehicle body with respect to the ground working portion is held. Since the inclination angle of the vehicle body with respect to the ground working portion in the left-right direction of the vehicle body is detected based on the rotation angle around it, for example, rattling or the like is more likely to occur than when the ground working portion is held on the vehicle body by the link mechanism. Without being able to smoothly incline the ground work part relative to the vehicle body in the left-right direction of the vehicle body, the inclination angle can also be detected with high accuracy by a simple detecting means as the rotation angle around the axis. Therefore, it is possible to obtain suitable means for realizing the effect of the first characteristic configuration.

【0013】又、第3の特徴構成によれば、上記第2の
特徴構成において、上記軸芯周りの回動角検出手段とし
て、例えば、磁気式や光電式のセンサと比較して、安価
でありながらも検出精度に優れたポテンショメータを用
いることができ、もって、上記第2の特徴構成を実施す
る際の好適な手段が得られる。
Further, according to the third characteristic constitution, in the second characteristic constitution, the rotation angle detecting means around the shaft center is cheaper than, for example, a magnetic type sensor or a photoelectric type sensor. It is possible to use a potentiometer which is excellent in detection accuracy even though it is available, and therefore, a suitable means for implementing the second characteristic configuration can be obtained.

【0014】[0014]

【実施例】以下、本発明をビーム光誘導式作業車として
の田植え用の作業車に適用した場合の実施例を図面に基
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a rice planting work vehicle as a beam light guide type work vehicle will be described below with reference to the drawings.

【0015】図1に示すように、矩形状の作業地(圃
場)Kを囲む複数辺のうちの一つの基準辺M1の一端
(図の左上端)部に、その基準辺M1に隣接する隣接辺
M2の長手方向に沿って走行して作業車Vが進入及び退
出する出入口Miを設け、そして、前記隣接辺M2の長
手方向において、作業地Kの両端側夫々を枕地部分K
1,K2とし且つ中央側部分を作業対象部分Ksとした
状態で、前記隣接辺M2の長手方向に沿って作業車Vを
往復走行させながら前記作業対象部分Ksに対して作業
する往復作業を行い、その後、両枕地部分K1,K2に
おいて、作業車Vを基準辺M1の長手方向に沿って往復
走行させながら枕地部分K1,K2に対して作業する枕
地作業を行う。尚、前記作業対象部分Ksと両枕地部分
K1,K2とは、隣接辺M2の長手方向における作業対
象部分Ksの両端位置に基準辺M1に沿う状態で設けた
右側及び左側の2本の境界線Y,Yで区分けされてい
る。
As shown in FIG. 1, one end (upper left end in the figure) of one reference side M1 of a plurality of sides surrounding a rectangular work site (field) K is adjacent to the reference side M1. An entrance Mi is provided through which the work vehicle V enters and exits along the longitudinal direction of the side M2, and both end sides of the work site K are provided on the headland portion K in the longitudinal direction of the adjacent side M2.
1 and K2 and the central portion as the work target portion Ks, the reciprocating work is performed on the work target portion Ks while moving the work vehicle V back and forth along the longitudinal direction of the adjacent side M2. Then, the headland work is performed on the headland parts K1 and K2 while reciprocating the work vehicle V along the longitudinal direction of the reference side M1 in both headland parts K1 and K2. The work target portion Ks and the two headland portions K1 and K2 are provided with two boundaries on the right side and the left side provided along both ends of the work target portion Ks in the longitudinal direction of the adjacent side M2 along the reference side M1. It is divided by lines Y and Y.

【0016】前記作業対象部分Ksにおいて基準辺M1
の長手方向に並ぶ複数の走行行程としての作業行程R1
の夫々に沿って作業車Vを誘導すべく、誘導用ビーム光
A1を作業行程R1の長手方向に沿って投射する第1ビ
ーム光投射装置B1が設けられ、又、一対の枕地部分K
1,K2のうちの基準辺M1に隣接する第一枕地部分K
1及び基準辺M1に対向する対向辺M4に隣接する第二
枕地部分K2の夫々において、隣接辺M2の長手方向に
並ぶ複数の走行行程としての作業行程R2の夫々に沿っ
て作業車Vを誘導すべく、誘導用ビーム光A2を作業行
程R2の長手方向に沿って投射する第2ビーム光投射装
置B2が設けられている。即ち、作業車Vが直交する状
態で設けた2つの走行行程R1,R2の夫々に沿って自
動走行するように、前記2つの走行行程R1,R2夫々
の長手方向に沿って誘導用ビーム光A1,A2を投射す
るビーム光投射手段としてのビーム光投射装置B1,B
2が、地上側に設けられている。
The reference side M1 in the work target portion Ks
Process R1 as a plurality of travel processes arranged in the longitudinal direction of the vehicle
In order to guide the work vehicle V along each of the above, the first beam light projecting device B1 for projecting the guiding beam light A1 along the longitudinal direction of the working stroke R1 is provided, and the pair of headland portions K
The first headland portion K adjacent to the reference side M1 of 1, K2
1 and the second headland portion K2 adjacent to the opposite side M4 opposite to the reference side M1, the work vehicle V is moved along each of the work steps R2 as a plurality of traveling steps arranged in the longitudinal direction of the adjacent side M2. A second beam light projection device B2 is provided for projecting the guidance light beam A2 along the longitudinal direction of the work process R2 for guiding. That is, the guide beam light A1 is provided along the longitudinal direction of each of the two travel paths R1 and R2 so that the work vehicle V automatically travels along each of the two travel paths R1 and R2 provided in a state of being orthogonal to each other. , A2 for projecting beam light as a beam light projecting device B1, B
2 is provided on the ground side.

【0017】上記第1ビーム光投射装置B1は、基本的
に前記複数の作業行程R1のうちの隣接する2個の作業
行程に対して1個の割合でその両作業行程の境界位置に
設置されるが、図は作業行程R1の数が奇数の場合を示
しており、最上端の作業行程R1に対してのみ1個の第
1ビーム光投射装置B1が配置されている。又、第2ビ
ーム光投射装置B2は、前記複数の作業行程R2が2個
であるのでその作業行程の境界位置に設置される。又、
図には、隣接辺M2,M3の長手方向において第2ビー
ム光投射装置B2からの誘導用ビーム光A2の投射位置
よりも内側に、その誘導用ビーム光A2と平行にビーム
光A3を投射する第3ビーム光投射装置B3が設けられ
ている。尚、詳述はしないが、各ビーム光投射装置B
1,B2,B3はレーザー装置等にて構成され、各ビー
ム光A1,A2,A3は垂直方向の所定角度範囲に走査
される(図2参照)。
The first beam light projection device B1 is basically installed at a boundary position between two adjacent work steps of the plurality of work steps R1 at a ratio of one to two adjacent work steps. However, the drawing shows the case where the number of work strokes R1 is odd, and one first beam light projection device B1 is arranged only for the work stroke R1 at the uppermost end. Further, the second beam light projection device B2 is installed at the boundary position of the work steps because the plurality of work steps R2 are two. or,
In the figure, in the longitudinal direction of the adjacent sides M2, M3, the beam light A3 is projected in parallel with the guiding beam light A2 inside the projection position of the guiding beam light A2 from the second beam light projection device B2. A third beam light projection device B3 is provided. Although not described in detail, each beam light projection device B
1, B2, B3 are configured by a laser device or the like, and each light beam A1, A2, A3 is scanned within a predetermined angle range in the vertical direction (see FIG. 2).

【0018】次に、図1に基づいて、作業車Vの走行経
路について説明する。先ず、隣接辺M2の長手方向に沿
って出入口Miに連なる最終作業地部分R1a、及び、
出入口Miから離れて位置する方の隣接辺M3に隣接す
る中継用作業地部分R1bを残して前記往復作業を行
う。ここで、最終作業地部分R1aは、基準辺M1の長
手方向に並ぶ複数の作業行程R1のうちの最上端の作業
行程に対応する作業地部分であり、中継用作業地部分R
1bは、上記複数の作業行程R1のうちの下端側の2つ
の作業行程に対応する作業地部分である。
Next, the travel route of the work vehicle V will be described with reference to FIG. First, the final work site portion R1a that is continuous with the entrance Mi along the longitudinal direction of the adjacent side M2, and
The reciprocating work is performed while leaving the relay work site portion R1b adjacent to the adjacent side M3 located farther from the entrance Mi. Here, the final work site part R1a is a work site part corresponding to the uppermost work process of the plurality of work processes R1 arranged in the longitudinal direction of the reference side M1, and the relay work site part R1.
1b is a work site portion corresponding to the two work strokes on the lower end side of the plurality of work strokes R1.

【0019】前記往復作業は、具体的には、前記中継用
作業地部分R1bを除いて出入口Miから一番遠い位置
の作業行程R1を、その始端部の作業開始位置を示す右
側の境界線Y上のPst点から図の左方向に向かって開
始される。そのため、図に示す経路に沿って、途中のN
h点で停止して最初の苗補給を行いながら、Pst点ま
で非作業状態で前走行させる。尚、この後も、作業車V
が各作業行程R1,R2の基準辺M1側の始端部に停止
したときに苗の消費状態に応じて適宜苗補給がなされ
る。Pst点に着いたら、植え付け装置6を駆動して植
え付け作業を開始し、以後、左右の枕地部分K1,K2
で180度旋回しながら各作業行程R1を往復走行し、
作業対象部分Ksの最終作業行程R1(図の上から2番
目の行程)において、右側の操向制御用光センサS1の
検出情報に基づいて誘導用ビーム光A1に誘導されなが
ら、右側境界線Y上の終端位置Penまで走行する。
In the reciprocating work, specifically, except for the relay work site portion R1b, the work stroke R1 farthest from the entrance Mi is taken, and the right boundary line Y indicating the work start position of the start end portion thereof is shown. It starts from the upper Pst point toward the left in the figure. Therefore, along the route shown in the figure, N
While stopping at the point h and supplying the first seedlings, the vehicle travels forward to the point Pst in a non-working state. After this, the work vehicle V
Is stopped at the starting end of each work process R1, R2 on the side of the reference side M1, the seedlings are replenished appropriately according to the consumption state of the seedlings. When reaching the Pst point, the planting device 6 is driven to start the planting work, and thereafter, the left and right headland portions K1, K2
While making a 180 degree turn with each work stroke R1
In the final work stroke R1 (second stroke from the top of the figure) of the work target portion Ks, the right boundary line Y is guided while being guided by the guiding beam light A1 based on the detection information of the right steering control optical sensor S1. Drive to the upper end position Pen.

【0020】この後、前記一対の枕地部分K1,K2の
うちの基準辺M1に隣接する第一枕地部分K1、及び、
基準辺M1に対向する対向辺M4に隣接する第二枕地部
分K2を作業する前記枕地作業を行い、且つ、その枕地
作業において、第一枕地部分K1と第二枕地部分K2間
の移行の際に前記中継用作業地部分R1bを走行させな
がらその中継用作業地部分R1bを作業し、最後に、第
二枕地部分K2から出入口Miに向けて最終作業地部分
R1aを走行させながら最終作業地部分R1aを作業す
るように設定されている。
Thereafter, the first headland portion K1 adjacent to the reference side M1 of the pair of headland portions K1 and K2, and
The headland work for working the second headland portion K2 adjacent to the facing side M4 facing the reference side M1 is performed, and in the headland work, between the first headland portion K1 and the second headland portion K2. During the transition, the relay work site part R1b is run while the relay work site part R1b is run, and finally the final work site part R1a is run from the second headland part K2 toward the entrance Mi. However, it is set to work on the final work site portion R1a.

【0021】具体的には、先ず、上記終端位置Penか
ら第二枕地部分K2の2つの作業行程R2のうちの内側
の作業行程R2の始端部に移動すべく、右側の操向制御
用光センサS1の検出情報に基づいて誘導用ビーム光A
1に誘導されながら、上記終端位置Penから図の一番
右側の誘導用ビーム光A2を前方側センサS2aが受光
する位置まで後進した後、前進状態に切り換えて90度
右旋回し、更に、受光用の操向制御用光センサS1を左
側の操向制御用光センサS1に切り換え、その左側の操
向制御用光センサS1の受光情報に基づいて誘導用ビー
ム光A2に誘導されながら、横から投射される誘導用ビ
ーム光A1をトリガー用の後方側センサS2bが受光し
た位置から所定距離の位置まで後進状態で走行して植付
開始位置に至る。そして、その作業行程R2を、前進状
態で左側の操向制御用光センサS1の検出情報に基づい
て誘導用ビーム光A2に誘導されながら自動走行する。
Specifically, first, in order to move from the end position Pen to the start end of the inner working stroke R2 of the two working strokes R2 of the second headland portion K2, the steering control light on the right side is moved. Based on the detection information of the sensor S1, the guiding light beam A
While being guided to 1, the vehicle travels backward from the end position Pen to the position where the front-side sensor S2a receives the guidance light beam A2 on the rightmost side in the figure, then switches to the forward state and turns 90 degrees to the right, and further receives light. The steering control optical sensor S1 for light is switched to the steering control optical sensor S1 on the left side, and while being guided by the guiding beam light A2 based on the light reception information of the steering control optical sensor S1 on the left side, The projected guiding light beam A1 travels in a backward state from a position where a rear sensor S2b for trigger receives a predetermined distance to a planting start position. Then, the work process R2 is automatically traveled in the forward traveling state while being guided by the guiding beam light A2 based on the detection information of the left steering control optical sensor S1.

【0022】以後、第二枕地部分K2の内側の作業行程
R2、中継用作業地部分R1bの内側の行程R1b、第
一枕地部分K1の内側の作業行程R2、第一枕地部分K
1の外側の作業行程R2、中継用作業地部分R1bの外
側の行程R1b、及び、第二枕地部分K2の外側の作業
行程R2をその順序で、各行程の終端部で次の行程の始
端部へ旋回移動しながら自動走行し、最後に、最終作業
地部分R1aを前進状態で直進走行して出入口Miから
作業地外に退出する。
Thereafter, the working stroke R2 inside the second headland portion K2, the inner stroke R1b inside the relay working ground portion R1b, the inner working stroke R2 inside the first headland portion K1, and the first headland portion K.
1, the work stroke R2 outside, the work stroke R1b outside the relay work land portion R1b, and the work stroke R2 outside the second headland portion K2, in that order, at the beginning of the next stroke at the end of each stroke. The vehicle automatically travels while swinging to the other part, and finally travels straight through the final work site portion R1a in a forward state and exits from the work site through the entrance Mi.

【0023】尚、前記往復作業及び前記枕地作業におけ
る各作業行程の夫々を前進状態で行わせるために、作業
車Vを一行程分前進走行させたのち、180度又は90
度向き変更させながら隣接する行程に移動させる旋回を
行わせている。即ち、前記往復作業における各作業行程
R1間及び前記枕地作業における各作業行程R2間の移
動のための旋回では、180度向き変更され、前記往復
作業の作業行程R1から前記枕地作業の作業行程R2へ
の移動、枕地作業の作業行程R2と前記中継用作業地部
分R1b間の移動及び枕地作業の作業行程R2から前記
最終作業地部分R1aへの移動のための旋回では、90
度向き変更される。
In order to perform each of the work steps in the reciprocating work and the headland work in the forward state, the work vehicle V is moved forward by one stroke, and then 180 degrees or 90 degrees.
The turning is performed to move to the adjacent stroke while changing the direction. That is, in the turning for moving between the respective work strokes R1 in the reciprocating work and between the respective work strokes R2 in the headland work, the direction is changed by 180 degrees, and the work of the headland work is changed from the work stroke R1 of the reciprocating work. In the turning for moving to the stroke R2, moving between the work stroke R2 for headland work and the relay work land portion R1b, and moving for moving from the work stroke R2 for headland work to the final work land portion R1a, 90
The direction is changed.

【0024】前記作業車Vの構成について説明すれば、
図2〜図4に示すように、左右一対の前輪3及び後輪4
を備えた車体5の後部に、平行四連式のリンク機構20
を介して、対地作業部としての苗植え付け装置6が、リ
フトシリンダ13により駆動昇降自在に連結されてい
る。苗植え付け装置6は、一定ストロークで往復横移動
する苗載せ台21、苗載せ台21の下端部から苗を一株
づつ取り出して植え付ける植付機構22、後部支点周り
で上下揺動自在に支持される3個の接地フロート19等
を備えて構成されている。そして、植え付け作業中にお
いて、この苗植え付け装置6の対地高さを設定値に維持
する対地高さ制御、及び、車体5の車体左右方向での傾
斜にかかわらず苗植え付け装置6を対地水平姿勢に維持
するローリング制御が、後述の制御装置16にて行われ
るように構成されている。
Explaining the structure of the work vehicle V,
As shown in FIGS. 2 to 4, a pair of left and right front wheels 3 and rear wheels 4 are provided.
In the rear part of the vehicle body 5 provided with the
A seedling planting device 6 as a ground work unit is connected via a lift cylinder 13 so as to be driven up and down. The seedling planting device 6 is supported by a seedling stand 21 that moves back and forth laterally with a constant stroke, a planting mechanism 22 that takes out and plant seedlings one by one from the lower end of the seedling stand 21, and is vertically swingable around a rear fulcrum. It is configured to include three ground floats 19 and the like. Then, during the planting work, the height of the ground of the seedling planting device 6 is maintained at a set value, and the seedling planting device 6 is placed in a horizontal posture regardless of the inclination of the vehicle body 5 in the lateral direction of the vehicle body. The rolling control for maintaining is configured to be performed by the control device 16 described later.

【0025】作業車Vに装備されるセンサ類について説
明すれば、図5に示すように、前後輪3,4夫々の操向
角を検出するポテンショメータ利用の操向角検出センサ
R1,R2と、変速装置11の変速状態に基づいて間接
的に前後進状態及び車速を検出するポテンショメータ利
用の車速センサR3と、変速装置11の出力軸の回転数
を計数して走行距離を検出するためのエンコーダS3
と、作業車Vの車体方位を検出する地磁気利用の方位セ
ンサS4と、植え付け装置6に設置されてその車体左右
方向での対地傾斜角つまり対地傾斜状態を検出する傾斜
状態検出手段としての重錘式の傾斜センサS6と、車体
左右中央に位置する接地フロート19の接地圧変動に基
づく上下揺動量を検出するポテンショメータ型のフロー
トセンサS7と、植え付け装置6の車体5への接続箇所
に設置される後述のポテンショメータS5とが設けられ
ている。
The sensors mounted on the work vehicle V will be described. As shown in FIG. 5, steering angle detection sensors R1 and R2 using potentiometers for detecting steering angles of the front and rear wheels 3 and 4, respectively. A vehicle speed sensor R3 that uses a potentiometer to indirectly detect the forward / backward traveling state and the vehicle speed based on the speed change state of the transmission 11, and an encoder S3 for detecting the traveling distance by counting the number of rotations of the output shaft of the transmission 11.
And a direction sensor S4 using geomagnetism for detecting the vehicle body direction of the work vehicle V, and a weight as a tilt state detecting means installed in the planting device 6 for detecting a ground inclination angle in the vehicle body left-right direction, that is, a ground inclination state. Type inclination sensor S6, a potentiometer-type float sensor S7 that detects the amount of vertical swing of the grounding float 19 located in the center of the vehicle body left and right based on fluctuations in the grounding pressure, and the planting device 6 is installed at the connection point to the vehicle body 5. A potentiometer S5 described later is provided.

【0026】又、図5に示すように、前後輪3,4は、
左右を一対として各別に操向操作自在に構成され、操向
用の油圧シリンダ7,8と、それらに対する電磁操作式
の制御弁9,10とが設けられている。つまり、前輪3
又は後輪4の一方のみを操向する2輪ステアリング形
式、前後輪3,4を逆位相で且つ同角度に操向する4輪
ステアリング形式、前後輪3,4を同位相で且つ同角度
に操向する平行ステアリング形式の3種類のステアリン
グ形式を選択使用できるようになっている。以上より、
両油圧シリンダ7,8及び両制御弁9,10によって、
作業車Vの車体5を操向させる操向手段7〜10が構成
される。
Further, as shown in FIG. 5, the front and rear wheels 3, 4 are
Steering hydraulic cylinders 7 and 8 and electromagnetically-operated control valves 9 and 10 for the steering hydraulic cylinders 7 and 8 are provided separately for each pair of left and right. That is, front wheel 3
Alternatively, a two-wheel steering system that steers only one of the rear wheels 4, a four-wheel steering system that steers the front and rear wheels 3, 4 in opposite phases and at the same angle, and the front and rear wheels 3, 4 in the same phase and at the same angle It is possible to select and use three types of steering steering types, namely, parallel steering type steering. From the above,
By both hydraulic cylinders 7, 8 and both control valves 9, 10,
Steering means 7 to 10 for steering the vehicle body 5 of the work vehicle V are configured.

【0027】図5中、11はエンジンEからの出力を変
速して前後輪3,4の夫々を同時に駆動する油圧式無段
変速装置、12はその変速操作用の電動モータ、13は
前記リフトシリンダ、14はその制御弁、15はエンジ
ンEによる植え付け装置6の駆動を断続する電磁操作式
の植え付けクラッチ、16は作業車Vの走行並びに植え
付け装置6の作動を制御するためのマイクロコンピュー
タ利用の制御装置であって、前述の各種センサによる検
出情報及び予め記憶された作業データに基づいて、変速
用モータ12、各制御弁9,10,14、及び、植え付
けクラッチ15等を制御するように構成されている。
In FIG. 5, 11 is a hydraulic continuously variable transmission that shifts the output from the engine E to drive the front and rear wheels 3 and 4 simultaneously, 12 is an electric motor for gear shifting operation, and 13 is the lift. Cylinder, 14 is its control valve, 15 is an electromagnetically operated planting clutch that intermittently drives the planting device 6 by the engine E, 16 is a microcomputer-based control for controlling the traveling of the work vehicle V and the operation of the planting device 6. The control device is configured to control the speed change motor 12, the control valves 9, 10, 14 and the planting clutch 15 based on the detection information from the various sensors and the work data stored in advance. Has been done.

【0028】前記苗植え付け装置6の対地高さ制御につ
いて説明すると、前記制御装置16が、前記フロートセ
ンサS7の情報に基づいて、その検出値が設定値になる
ように前記制御装置16が制御弁14を作動させること
で、苗植え付け装置6の対地高さが設定高さに維持され
る。ここで、上記設定値は、泥土の硬軟条件に応じて接
地フロート19の感知荷重を変更させて、接地フロート
19が目標基準姿勢になるように設定される。
The ground height control of the seedling planting device 6 will be described. The control device 16 controls the control valve so that the detected value becomes a set value based on the information of the float sensor S7. By operating 14 the ground height of the seedling planting device 6 is maintained at the set height. Here, the set value is set such that the ground load 19 has a target reference posture by changing the sensing load of the ground contact float 19 in accordance with the hardness condition of the mud.

【0029】前記苗植え付け装置6のローリング制御に
ついて説明すると、図2及び図4に示すように、苗植え
付け装置6が車体前後方向に沿う軸芯Z周りに回動自在
な状態で、即ち、車体左右方向に傾斜自在な状態で車体
5に保持される一方、前記リンク機構20における後部
縦リンク20aに取り付けられるブラケット23に横向
き姿勢でネジ軸24を回動自在に架設支承し、このネジ
軸24を電動モータ25により回動駆動するように構成
するとともに、ネジ軸24に緩衝バネ26を介して苗植
え付け装置6に連動連結される雌ネジ部27を螺合外嵌
させ、電動モータ25を正逆転駆動することで雌ネジ部
27を車体左右方向に移動させて、苗植え付け装置6が
車体5に対して前記軸芯Z周りで相対回転するように構
成してある。以上より、ネジ軸24、電動モータ25、
緩衝バネ26及び雌ネジ部27等によって、苗植え付け
装置6を車体5に対して車体左右方向に傾斜させる傾斜
手段Mが構成される。又、前記制御装置16を利用し
て、前記傾斜センサS6の情報に基づいて前記傾斜手段
Mを作動させて苗植え付け装置6を車体左右方向におい
て対地水平姿勢に維持する水平維持手段101が構成さ
れている。具体的には、傾斜センサS6の検出角が対地
水平姿勢に対応する設定角になるように電動モータ25
を駆動制御する。
The rolling control of the seedling planting device 6 will be described. As shown in FIGS. 2 and 4, the seedling planting device 6 is rotatable about an axis Z along the longitudinal direction of the vehicle body, that is, the vehicle body. While being held by the vehicle body 5 so as to be tiltable in the left-right direction, a screw shaft 24 is rotatably erected in a horizontal posture on a bracket 23 attached to the rear vertical link 20a of the link mechanism 20. Is configured to be rotationally driven by an electric motor 25, and a female screw portion 27 interlockingly coupled to the seedling planting device 6 via a buffer spring 26 is screwed onto the screw shaft 24 to externally mount the electric motor 25. By driving in the reverse direction, the female screw portion 27 is moved in the left-right direction of the vehicle body, and the seedling planting device 6 is configured to rotate relative to the vehicle body 5 around the axis Z. From the above, the screw shaft 24, the electric motor 25,
The buffer spring 26, the female screw portion 27, and the like constitute a tilting means M for tilting the seedling planting device 6 in the vehicle body left-right direction with respect to the vehicle body 5. Further, by using the control device 16, the horizontal maintaining means 101 for operating the inclining means M based on the information of the inclination sensor S6 to maintain the seedling planting device 6 in a horizontal posture with respect to the ground in the lateral direction of the vehicle body is configured. ing. Specifically, the electric motor 25 is set so that the detection angle of the tilt sensor S6 becomes the set angle corresponding to the horizontal attitude to the ground.
Drive control.

【0030】又、図4及び図6に示すように、前記苗植
え付け装置6と車体5との接続箇所において、前記後部
縦リンク20aに連設された円筒状の軸部材28の外周
面にギア部28aが形成され、そのギア部28aに咬合
する回転ギア29と、その回転ギア29の回転軸の回転
角を検出するポテンショメータS5とが植え付け装置6
側に設置されている。尚、上記ポテンショメータS5
は、円環状の抵抗体等に形成された固定部S5aと、前
記回動角の変化に連動して固定部S5aに対して相対回
転する摺動電極に形成された回転部S5bとから構成さ
れ、この例では、固定部S5a及び回転部S5bが、共
に苗植え付け装置6に取り付けられている。そして、苗
植え付け装置6が車体5に対して前記軸芯Z周りで相対
回転すると、その回転量に応じて回転ギア29が回転し
てその回転角がポテンショメータS5にて検出される。
以上より、上記ポテンショメータS5が、前記植え付け
装置6に対する車体5の前記軸芯Z周りでの回動角を検
出する回動角検出手段を構成し、同時に、植え付け装置
6に対する車体5の車体左右方向での傾斜角を検出する
傾斜角検出手段を構成する。
Further, as shown in FIGS. 4 and 6, at the connecting portion between the seedling planting device 6 and the vehicle body 5, a gear is formed on the outer peripheral surface of the cylindrical shaft member 28 which is connected to the rear vertical link 20a. The portion 28a is formed, and the rotary gear 29 that meshes with the gear portion 28a and the potentiometer S5 that detects the rotation angle of the rotation shaft of the rotary gear 29 are included in the planting device 6.
It is installed on the side. The above potentiometer S5
Is composed of a fixed portion S5a formed on an annular resistor or the like, and a rotating portion S5b formed on a sliding electrode that rotates relative to the fixed portion S5a in association with the change in the rotation angle. In this example, the fixed portion S5a and the rotating portion S5b are both attached to the seedling planting device 6. When the seedling planting device 6 rotates relative to the vehicle body 5 around the axis Z, the rotary gear 29 rotates in accordance with the amount of rotation, and the rotation angle is detected by the potentiometer S5.
As described above, the potentiometer S5 constitutes a rotation angle detecting means for detecting a rotation angle of the vehicle body 5 about the axis Z with respect to the planting device 6, and at the same time, the vehicle body left-right direction of the vehicle body 5 with respect to the planting device 6. Inclination angle detecting means for detecting the inclination angle in the above.

【0031】又、図2及び図3に示すように、作業車V
には、第1ビーム光投射装置B1及び第2ビーム光投射
装置B2にて投射される誘導用ビーム光A1,A2夫々
に対する車体横幅方向でのずれを検出すべく、その誘導
用ビーム光A1,A2を受光する操向制御用光センサS
1と、作業車Vが第1ビーム光投射装置B1又は第2ビ
ーム光投射装置B2からの誘導用ビーム光A1,A2に
沿って自動走行しているときに、その誘導用ビーム光A
1,A2に交差する第2ビーム光投射装置B2又は第1
ビーム光投射装置B1からの誘導用ビーム光A2,A1
並びに第3ビーム光投射装置B3からのビーム光A3を
受光するトリガー用光センサS2とが設けられている。
尚、上記操向制御用光センサS1は、車体左右何れの側
の誘導用ビーム光A1,A2も受光できるように、車体
前部の左右両側部に、平面視において前輪3の両軸芯を
結ぶ線上に位置させて左右一対設けられ、トリガー用光
センサS2は、平面視における車体左右中央の上部に位
置する前後一対のセンサS2a,S2bからなり、その
前方側センサS2aは前輪3の両軸芯を結ぶ線上よりも
所定距離前方に位置し、後方側センサS2bは後輪4の
両軸芯を結ぶ線上に位置している。尚、トリガー用光セ
ンサS2は、車体左右両側からのビーム光A1,A2,
A3に対する受光の有無のみを検出し、受光位置は検出
できないようになっている。
As shown in FIGS. 2 and 3, the work vehicle V
In order to detect the deviation in the vehicle body lateral direction with respect to the guidance beam lights A1 and A2 projected by the first beam light projection device B1 and the second beam light projection device B2, the guidance beam lights A1 and A1 are detected. Steering control optical sensor S for receiving A2
1, and when the work vehicle V is automatically traveling along the guidance beam lights A1 and A2 from the first beam light projection device B1 or the second beam light projection device B2, the guidance beam light A
1st A2, 2nd beam light projection device which intersects A2 or 1st
Guidance beam lights A2 and A1 from the beam light projection device B1
In addition, a trigger optical sensor S2 for receiving the beam light A3 from the third beam light projector B3 is provided.
The steering control optical sensor S1 has both axial cores of the front wheel 3 in plan view on both left and right sides of the front part of the vehicle body so that the guiding beam lights A1, A2 on either the left or right side of the vehicle body can be received. The pair of left and right trigger optical sensors S2 are arranged on the connecting line, and the trigger optical sensor S2 is composed of a pair of front and rear sensors S2a and S2b located above the center of the vehicle body in the plan view. It is located a predetermined distance forward of the line connecting the cores, and the rear sensor S2b is located on the line connecting the two axis cores of the rear wheel 4. The trigger optical sensor S2 is provided with beam lights A1, A2 and
Only the presence or absence of light reception for A3 is detected, and the light reception position cannot be detected.

【0032】前記操向制御用光センサS1について説明
を加えれば、図7にも示すように、車体前後方向に間隔
dを置いて且つ上下方向にも間隔を隔てる状態で並置さ
れた前後一対の受光部としての光センサS1a,S1b
から構成され、前後一対の光センサS1a,S1bの夫
々は、複数個の受光素子Dを車体横幅方向に並設したも
のであって、横幅方向でのセンサ中心に位置する受光素
子D0の位置を基準として、誘導用ビーム光A1,A2
の車体横幅方向での受光位置即ち受光素子Dの位置X
1,X2夫々を検出できるように構成されている。又、
誘導用ビーム光A1,A2が車体前後の何れの方向から
入射される場合でも差のない状態で受光できるようにす
るために、車体前後の各方向からの入射光を両光センサ
S1a,S1b夫々の受光面に向けて反射する反射鏡1
8を備えている。
The steering control optical sensor S1 will be described in more detail. As shown in FIG. 7, a pair of front and rear wheels are arranged side by side with a distance d in the longitudinal direction of the vehicle body and an interval in the vertical direction. Optical sensors S1a and S1b as light receiving parts
Each of the pair of front and rear photosensors S1a and S1b has a plurality of light receiving elements D arranged side by side in the lateral direction of the vehicle body, and the position of the light receiving element D0 located at the sensor center in the lateral direction is As a reference, the guiding light beams A1, A2
Light receiving position in the lateral direction of the vehicle body, that is, position X of the light receiving element D
1 and X2 can be detected respectively. or,
In order to allow the guiding beam lights A1 and A2 to be received in the same direction regardless of the front and rear directions of the vehicle body, the incident light beams from the front and rear directions of the vehicle body are respectively detected by the two optical sensors S1a and S1b. Reflector 1 that reflects toward the light receiving surface of
Eight.

【0033】前記操向制御用光センサS1による車体横
幅方向での車体5のずれ検出の制御構成について説明す
れば、図7に示すように、操向制御用光センサS1の前
後一対の光センサS1a,S1bの夫々の受光素子の位
置X1,X2とその車体前後方向での間隔dとに基づい
て、下式から、誘導用ビーム光A1,A2の投射方向に
対する車体5の傾きφと横幅方向における位置の偏位x
とを求める。
The control configuration for detecting the deviation of the vehicle body 5 in the lateral direction of the vehicle body by the steering control optical sensor S1 will be described. As shown in FIG. 7, a pair of optical sensors before and after the steering control optical sensor S1 are provided. Based on the positions X1 and X2 of the respective light receiving elements S1a and S1b and the distance d in the vehicle front-rear direction, the inclination φ and the lateral width direction of the vehicle body 5 with respect to the projection direction of the guiding beam lights A1 and A2 are calculated from the following equations. Position deviation at x
And ask.

【0034】[0034]

【数1】φ=tan-1(|X1−X2|/d) x=X1## EQU1 ## φ = tan -1 (| X1-X2 | / d) x = X1

【0035】そして、前記制御装置16は、前記操向制
御用光センサS1等の各種センサの検出情報及び予め設
定された作業予定情報に基づいて、前記操向手段7〜1
0及び前記植え付け部6等の各種装置の作動を制御する
ように構成されている。即ち、前記制御装置16を利用
して、前記操向制御用光センサS1の受光情報に基づい
て作業車Vが前記作業行程R1,R2の夫々に沿って自
動走行するように前記操向手段7〜10の作動を制御す
る制御手段100が構成され、この制御手段100は、
前記傾斜センサS6及び前記ポテンショメータS5の検
出情報に基づいて前記車体5の車体横幅方向でのローリ
ング角を判別し、そのローリング角情報に基づいて前記
操向制御用光センサS1の前記誘導用ビーム光A1,A
2に対する車体横幅方向でのずれ量を補正した補正後の
ずれ情報に基づいて前記操向手段7〜10を作動させる
ように構成されている。
Then, the control device 16 controls the steering means 7-1 based on the detection information of various sensors such as the steering control optical sensor S1 and preset work schedule information.
0 and the operation of various devices such as the planting section 6 are controlled. That is, using the control device 16, the steering means 7 is arranged so that the work vehicle V automatically travels along each of the work strokes R1 and R2 based on the light reception information of the steering control optical sensor S1. Control means 100 for controlling the operations of 10 to 10 is configured, and the control means 100 is
The rolling angle of the vehicle body 5 in the lateral direction of the vehicle body is determined based on the detection information of the tilt sensor S6 and the potentiometer S5, and the guiding beam light of the steering control optical sensor S1 is determined based on the rolling angle information. A1, A
The steering means 7 to 10 are operated based on the corrected shift information obtained by correcting the shift amount of the vehicle body 2 in the lateral direction of the vehicle body.

【0036】以下、上記ずれ量の傾斜補正について具体
的に説明する。前記傾斜センサS6にて検出される植え
付け装置6の対地傾斜角、及び、前記ポテンショメータ
S5にて検出される植え付け装置6に対する車体5の前
記軸芯Z周りの回動角の両検出角度を加減算することに
よって車体5のローリング角が求められる。そして、図
8に示すように、上記接続箇所と操向制御用光センサS
1の車体上での高さの差がL1、上記接続箇所(車体左
右中央)から操向制御用光センサS1の受光部中央まで
の車体上での横方向の距離がL2で、車体のローリング
角をθとして、車体が傾いている状態における上記接続
箇所から操向制御用光センサS1の受光部中央までの横
方向の距離L3が求まり、このL3から車体5が傾いて
いないときの横方向の距離L2を引いた量ΔLが補正量
になる。従って、傾斜補正後の偏位x’は、上記偏位x
に補正量ΔLを加えた値x’として求められる。因み
に、θ=0のときはΔL=L2−L2=0であって、
x’=xとなる。
The inclination correction of the deviation amount will be specifically described below. Both the angle of inclination of the planting device 6 detected by the tilt sensor S6 and the angle of rotation of the vehicle body 5 about the axis Z with respect to the planting device 6 detected by the potentiometer S5 are added or subtracted. Thus, the rolling angle of the vehicle body 5 is obtained. Then, as shown in FIG. 8, the connection point and the steering control optical sensor S are connected.
1, the difference in height on the vehicle body is L1, the lateral distance on the vehicle body from the connection point (center of the vehicle body left and right) to the center of the light receiving portion of the steering control optical sensor S1 is L2, and rolling of the vehicle body is performed. When the angle is θ, a lateral distance L3 from the connection point in the state where the vehicle body is inclined to the center of the light receiving portion of the steering control optical sensor S1 is obtained, and the lateral direction when the vehicle body 5 is not inclined from this L3 The correction amount is the amount ΔL obtained by subtracting the distance L2. Therefore, the deviation x ′ after the tilt correction is the deviation x
Is obtained by adding the correction amount ΔL to the value x ′. Incidentally, when θ = 0, ΔL = L2-L2 = 0, and
x ′ = x.

【0037】[0037]

【数2】L3=L1×sinθ+L2×cosθ ΔL=(L3−L2) x’=x+ΔL(2) L3 = L1 × sin θ + L2 × cos θ ΔL = (L3-L2) x ′ = x + ΔL

【0038】尚、この例では、前記横幅方向における位
置の偏位xは、前記一対の光センサS1a,S1bの一
方(S1a)の受光位置としているが、前記傾きφによ
る誤差が生じないようにするために、前記一対の光セン
サS1a,S1b夫々の受光位置X1,X2の平均値を
用いるようにしてもよい。そして、前記作業車Vは、前
記傾きφと前記偏位x’とが共に零となるように、目標
操向角を設定して操向制御されることになる。但し、本
実施例では、各作業行程における直進走行時には、前輪
3のみを操向する2輪ステアリング形式で操向制御す
る。
In this example, the position deviation in the lateral width direction is the light receiving position of one of the pair of photosensors S1a and S1b (S1a), but an error due to the inclination φ should not occur. In order to do so, the average value of the light receiving positions X1 and X2 of the pair of optical sensors S1a and S1b may be used. Then, the work vehicle V is steering-controlled by setting a target steering angle so that both the inclination φ and the deviation x ′ are zero. However, in the present embodiment, steering control is performed by a two-wheel steering system in which only the front wheels 3 are steered during straight traveling in each work stroke.

【0039】又、前記制御装置16は、作業車Vが前記
往復作業及び前記枕地作業における各作業行程の夫々を
前進状態で行うように作業車Vを一行程分前進走行させ
たのち、前記作業車Vが第1ビーム光投射装置B1又は
第2ビーム光投射装置B2からの誘導用ビーム光A1,
A2に沿って自動走行しているときに、その誘導用ビー
ム光A1,A2に交差する第2ビーム光投射装置B2又
は第1ビーム光投射装置B1からの誘導用ビーム光A
2,A1を受光するトリガー用光センサS2の受光情報
に基づいて、各行程の終端部から隣接する次の行程の始
端部に向けての180度又は90度の旋回動作の開始位
置を設定するように構成されている。
Further, the control device 16 causes the work vehicle V to travel forward by one stroke so that the work vehicle V performs each of the work strokes in the reciprocating work and the headland work in the forward movement state. The work vehicle V uses the first beam light projection device B1 or the second beam light projection device B2 for guiding the beam light A1,
When the vehicle automatically travels along A2, the guiding beam light A from the second beam light projecting device B2 or the first beam light projecting device B1 intersects with the guiding beam lights A1 and A2.
2, based on the light reception information of the trigger optical sensor S2 that receives A1, sets the start position of the turning operation of 180 degrees or 90 degrees from the end of each stroke to the start of the next adjacent stroke. Is configured.

【0040】次に、図9及至図11に示すフローチャー
トに基づいて、前記制御装置16の動作について説明す
る。全体の処理フローは、図9に示すように、図示しな
いRS232C等の通信部やアクチュエータ類(前記変
速用モータ12、各制御弁9,10,14、及び、植え
付けクラッチ15等)に対する初期化処理を行った後、
作業プランをセットする作業プランセット処理を行う。
次に、上記作業プランセット処理にてセットされた作業
プランに基づいて対応する制御データを読み込み、且
つ、その制御データに基づいて実際に車体制御を実行す
る車体制御処理を行う。上記車体制御処理による作業プ
ランの実行状態が、作業プランチェック処理にてチェッ
クされ、1つの作業プランの終了が確認されると、地上
側等に対する必要な通信処理を行った後、作業終了の指
示があれば終了処理を行い、それ以外のときは、上記作
業プランセット処理からのフローを繰り返す。尚、上記
フローの進行を制御するために、上記作業プランセット
処理にて新しい作業プランがセットされると、プランフ
ラグがセットされ、作業プランチェック処理にて作業プ
ランの終了が確認されると、プランフラグがリセットさ
れる。
Next, the operation of the control device 16 will be described with reference to the flow charts shown in FIGS. As shown in FIG. 9, the entire process flow is an initialization process for a communication unit such as RS232C (not shown) and actuators (the shift motor 12, the control valves 9, 10, 14 and the planting clutch 15). After doing
Set work plan Perform work plan set process.
Next, the corresponding control data is read based on the work plan set in the work plan setting process, and the vehicle body control process is executed to actually execute the vehicle body control based on the control data. The execution status of the work plan by the vehicle body control process is checked by the work plan check process, and when the completion of one work plan is confirmed, after performing the necessary communication process to the ground side, the work end instruction is given. If there is, end processing is performed, and otherwise, the flow from the work plan set processing is repeated. In order to control the progress of the flow, when a new work plan is set in the work plan setting process, the plan flag is set, and when the work plan check process confirms the end of the work plan, The plan flag is reset.

【0041】上記車体制御処理では、図10に示すよう
に、先ず、プランフラグがセットされているか否かを調
べ、プランフラグがリセットのときは処理を行わない。
プランフラグがセット状態のときは、上記作業プランセ
ット処理でセットしたコントロール内容を読み出し、そ
れに該当する処理が実際にあるか否かを調べる。上記コ
ントロール内容に該当する処理としては、図に示すよう
に、作業車Vを停止させる停止処理、作業車Vを前進又
は後進状態で前記エンコーダS3による距離計測情報に
基づいて設定距離直進させる直進処理(距離計測で終
了)、作業車Vを前進又は後進状態でトリガー用センサ
S2が誘導用ビーム光A1,A2を設定回数検出する位
置まで直進させる直進処理(光源計測で終了)、各作業
行程R1,R2の終端部から次の行程の始端部に旋回移
動させる旋回処理、誘導用ビーム光A1,A2を操向制
御用センサS1が適正に受光する状態にするための軌道
収束処理、及び、苗補給の指示や植付け装置6の駆動制
御を行う苗供給装置処理の各処理が用意されている。
尚、上記旋回処理及び軌道収束処理では、車体は4輪ス
テリングにて操向制御される。
In the vehicle body control process, as shown in FIG. 10, first, it is checked whether or not the plan flag is set, and when the plan flag is reset, the process is not performed.
When the plan flag is in the set state, the control contents set in the work plan setting process are read out and it is checked whether or not the process corresponding thereto is actually present. As the process corresponding to the above control content, as shown in the figure, a stop process for stopping the work vehicle V, a straight-forward process for moving the work vehicle V forward or backward in a straight line based on the distance measurement information by the encoder S3. (End with distance measurement), straight forward processing (end with light source measurement) for moving the work vehicle V forward or backward to a position where the trigger sensor S2 detects the guiding beam lights A1, A2 a set number of times (end with light source measurement), each work stroke R1 , R2, a turning process for turning from the end of R2 to the start of the next stroke, orbit converging for making the steering control sensor S1 properly receive the guidance beam lights A1, A2, and seedling Each processing of the seedling supply device processing for instructing the supply and controlling the driving of the planting device 6 is prepared.
In the turning process and the trajectory converging process, the steering of the vehicle body is controlled by four-wheel steering.

【0042】次に、前記直進処理及び軌道収束処理等に
おいて、操向制御用センサS1の受光情報に基づいて、
作業車Vを誘導用ビーム光A1,A2に誘導させながら
各作業行程R1,R2に沿って自動走行させるための操
向制御について説明する。図11に示すように、先ず、
前記傾斜センサS6及び前記ポテンショメータS5の検
出情報に基づく車体5のローリング角データを入手し、
このローリング角に応じて操向制御用センサS1の受光
情報に基づく車体5の車体横幅方向でのずれ量を傾斜補
正処理する。そして、その補正後のずれ情報に応じてス
テアリング角を設定して操向操作する。具体的には、4
輪ステアリング(4WS)状態か否かに応じて、4輪ス
テアリングの場合は、車体5の傾きφと横幅方向の偏位
x’とから後輪4及び前輪3の切れ角を計算して、その
切れ角になるように後輪4及び前輪3をセットするが、
2輪ステアリングの場合は、上記傾きφと横幅方向の偏
位x’とから前輪3の切れ角を計算してその切れ角にな
るように前輪4をセットし、後輪4は中立状態にセット
する。
Next, in the straight-ahead processing, the trajectory convergence processing, etc., based on the light reception information of the steering control sensor S1,
Steering control for automatically traveling along the work strokes R1 and R2 while guiding the work vehicle V to the guidance beam lights A1 and A2 will be described. As shown in FIG. 11, first,
Obtaining rolling angle data of the vehicle body 5 based on the detection information of the tilt sensor S6 and the potentiometer S5,
Depending on this rolling angle, the amount of deviation in the vehicle body lateral width direction of the vehicle body 5 based on the light reception information of the steering control sensor S1 is subjected to inclination correction processing. Then, the steering angle is set according to the corrected shift information, and the steering operation is performed. Specifically, 4
In the case of four-wheel steering, the turning angles of the rear wheels 4 and the front wheels 3 are calculated from the inclination φ of the vehicle body 5 and the lateral displacement deviation x ′ according to whether the vehicle is in the four-wheel steering (4WS) state. Set the rear wheel 4 and front wheel 3 so that they have a sharp corner,
In the case of two-wheel steering, the front wheel 4 is set so that the cutting angle of the front wheel 3 is calculated from the inclination φ and the lateral displacement x'and the rear wheel 4 is set to the neutral state. To do.

【0043】〔別実施例〕上記実施例では、対地作業部
としての植え付け装置6を車体左右方向に傾斜自在な状
態で保持させるに、植え付け装置6を車体前後方向に沿
う軸芯Z周りに回動自在な状態で車体5に保持させるよ
うにしたが、対地作業部の車体による保持構成はこれに
限らない。例えば、車体5から植え付け装置6の保持用
に後方に延びる四連式のリンク機構20において、その
下側の2本のリンクを車体左右方向に位置固定する一方
で上側の2本のリンクの先端側を車体左右方向に傾斜移
動させることで、植え付け装置6を車体左右方向に傾斜
させるようにしてもよい。そして、この場合に対地作業
部を車体5に対して車体左右方向に傾斜させる傾斜手段
Mは、前述のネジ軸24、電動モータ25、緩衝バネ2
6及び雌ネジ部27等からなるものではなく、上記上側
の2本のリンク及びこれを傾斜移動させるアームや駆動
用のモータ等から構成され、又、対地作業部に対する車
体5の車体左右方向での傾斜角を検出する傾斜角検出手
段は、前記軸芯Z周りの回動角を検出する回動角検出手
段ではなく、例えば、上記上側の2本のリンクの先端側
の傾斜移動量を検出するストロークセンサ等にて構成さ
れる。
[Other Embodiments] In the above embodiment, in order to hold the planting device 6 as the ground working part in a state in which it can be tilted in the left-right direction of the vehicle body, the planting device 6 is rotated around the axis Z along the longitudinal direction of the vehicle body. Although the vehicle body 5 is held in a freely movable state, the holding structure of the ground working unit by the vehicle body is not limited to this. For example, in a four-link mechanism 20 extending rearward from the vehicle body 5 for holding the planting device 6, the lower two links are positionally fixed in the lateral direction of the vehicle body while the tips of the upper two links are fixed. The planting device 6 may be tilted in the left-right direction of the vehicle body by tilting the side in the left-right direction of the vehicle body. Then, in this case, the inclining means M for inclining the ground working part in the vehicle body left-right direction with respect to the vehicle body 5 is the screw shaft 24, the electric motor 25, and the buffer spring 2 described above.
6 and the female screw portion 27, etc., but is composed of the above two links, an arm for inclining and moving the links, a driving motor, and the like. The tilt angle detecting means for detecting the tilt angle is not the turning angle detecting means for detecting the turning angle around the axis Z, but for example, the tilt movement amount on the tip side of the upper two links is detected. It is composed of a stroke sensor and the like.

【0044】又、上記実施例では、植え付け装置6を車
体前後方向に沿う軸芯Z周りに回動自在な状態で車体5
に保持させる場合に、その軸芯Z周りの回動角を検出す
る回動角検出手段をポテンショメータS5にて構成した
が、これに限るものではなく、例えば、図4において、
車体左右方向に移動する雌ネジ部27の移動量を検出す
るように、一方端を雌ネジ部27に他方端をブラケット
23に支持させたストロークセンサ等にて構成してもよ
い。又、回動角検出手段をポテンショメータS5にて構
成する場合においても、その固定部S5a及び回転部S
5bを、上記実施例のように、共に苗植え付け装置6に
取り付けるのではなく、例えば、ポテンショメータS5
の回転軸を前記軸芯Zと同軸状に配置して、固定部S5
a及び回転部S5bのいずれか一方を車体5側(軸部材
28)に、他方を植え付け装置6側に取り付けるように
したり、あるいは、固定部S5a及び回転部S5bを共
に車体5側に取り付けるようにしてもよい。
Further, in the above-mentioned embodiment, the planting device 6 is rotatable about the axis Z along the longitudinal direction of the vehicle body.
The rotation angle detecting means for detecting the rotation angle around the axis Z when the sensor is held by the potentiometer S5 is not limited to this. For example, in FIG.
A stroke sensor or the like having one end supported by the female screw portion 27 and the other end supported by the bracket 23 may be configured so as to detect the amount of movement of the female screw portion 27 that moves in the vehicle body left-right direction. Further, even when the rotation angle detecting means is constituted by the potentiometer S5, the fixed portion S5a and the rotating portion S5 thereof are also included.
5b are not attached to the seedling planting device 6 together as in the above-described embodiment, but instead, for example, potentiometer S5.
Of the fixed part S5 by arranging the rotating shaft of the
Either one of a and the rotating portion S5b is attached to the vehicle body 5 side (the shaft member 28) and the other is attached to the planting device 6 side, or both the fixed portion S5a and the rotating portion S5b are attached to the vehicle body 5 side. May be.

【0045】又、上記実施例では、対地作業部(植え付
け装置6)の車体左右方向での対地傾斜状態を検出する
傾斜状態検出手段を、重錘式の傾斜センサS6にて構成
したが、これに限るものではない。
Further, in the above embodiment, the inclination state detecting means for detecting the inclination state of the ground working portion (planting device 6) in the left-right direction of the vehicle body is constituted by the weight-type inclination sensor S6. It is not limited to.

【0046】又、上記実施例では、作業車Vが走行行程
としての作業行程R1,R2に沿って作業(圃場に対す
る苗植付け作業)を行いながら自動走行する場合につい
て説明したが、誘導用ビーム光を投射させて作業車走行
用の誘導経路を設定し、その誘導経路の走行行程夫々に
沿って作業車Vを誘導用ビーム光に誘導される状態で作
業を行わずに単に自動走行させるような場合にも適用で
きる。
Further, in the above embodiment, the case where the work vehicle V automatically travels while performing work (seedling planting work on the field) along the work strokes R1 and R2 as the travel strokes has been described. To set a guide route for traveling the work vehicle, and to automatically travel the work vehicle V along each traveling path of the guide route without performing work in a state of being guided by the beam light for guidance. It can also be applied in cases.

【0047】又、上記実施例では、誘導用の各ビーム光
A1,A2,A3を投射する各ビーム光投射手段B1,
B2,B3をレーザー光発生装置で構成したが、レーザ
ー光発生装置以外のビーム光発生装置でもよい。
Further, in the above embodiment, each beam light projecting means B1 for projecting each beam light A1, A2, A3 for guidance.
Although B2 and B3 are configured by laser light generators, beam light generators other than laser light generators may be used.

【0048】又、上記実施例では、操向制御用光センサ
S1を、車体前後方向に間隔を置いて並置されて誘導用
ビーム光A1,A2の車体横幅方向での受光位置を夫々
検出する前後一対の光センサS1a,S1bにて構成
し、この一対の光センサS1a,S1bの一方(S1
a)の受光位置X1によって車体横幅方向における位置
偏位xを、一対の光センサS1a,S1bの車体横幅方
向での受光位置X1,X2の差及び車体前後方向での間
隔情報dに基づいて車体の傾きφを夫々求めて、この位
置偏位x及び傾きφを誘導用ビーム光A1,A2に対す
る車体横幅方向でのずれ情報としているが、操向制御用
光センサS1の構成はこれに限るものではない。例え
ば、一対の光センサではなく1個の光センサで構成し、
その受光位置によって求めた車体横幅方向での位置偏位
xを誘導用ビーム光A1,A2に対する車体横幅方向で
のずれ情報としてもよい。
Further, in the above embodiment, the steering control optical sensors S1 are arranged side by side in the vehicle front-rear direction at intervals to detect the light receiving positions of the guiding beam lights A1, A2 in the vehicle lateral direction, respectively. It is composed of a pair of optical sensors S1a and S1b, and one of the pair of optical sensors S1a and S1b (S1
The position deviation x in the lateral direction of the vehicle body based on the light receiving position X1 of a) is determined based on the difference between the light receiving positions X1 and X2 in the lateral direction of the vehicle body of the pair of optical sensors S1a and S1b and the distance information d in the vehicle longitudinal direction. Of the steering angle, and the positional deviation x and the inclination φ are used as deviation information in the vehicle body lateral direction with respect to the guiding beam lights A1 and A2. However, the configuration of the steering control optical sensor S1 is not limited to this. is not. For example, instead of a pair of optical sensors, one optical sensor is used,
The positional deviation x in the vehicle lateral direction obtained from the light receiving position may be used as the deviation information in the vehicle lateral direction with respect to the guiding light beams A1 and A2.

【0049】又、上記実施例では、作業車Vのステアリ
ングを4輪ステアリング可能に構成して、操向手段7〜
10を、前輪3及び後輪4を各別に操向操作するための
油圧シリンダ及びその制御弁で構成したが、操向手段7
〜10はこれに限るものではなく、種々の手段が可能で
ある。
Further, in the above embodiment, the steering of the work vehicle V is constructed so as to be capable of four-wheel steering, and the steering means 7 to 7 are used.
10 is composed of a hydraulic cylinder and its control valve for steering the front wheel 3 and the rear wheel 4 separately.
-10 are not limited to this, and various means are possible.

【0050】又、上記実施例では、本発明をビーム光誘
導式作業車としての田植え用の作業車に適用し、対地作
業部を苗植え付け装置6にて構成したものを例示した
が、田植え用以外のトラクター等の農作業用の作業車及
び農作業用以外の各種作業車等にも適用できるものであ
って、その際の対地作業部等の各部の具体構成は、作業
車の目的や作業条件等に合わせて種々変更される。
In the above embodiment, the present invention is applied to a work vehicle for rice planting as a beam light guide type work vehicle, and the ground working part is constituted by the seedling planting device 6. It can also be applied to agricultural work vehicles such as tractors other than the above, and various work vehicles other than agricultural work, and the specific configuration of each part such as the ground work section at that time is the purpose and working conditions of the work vehicle. It is variously changed according to.

【0051】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】走行経路の全体及び誘導用ビーム光の投射位置
を示す平面図
FIG. 1 is a plan view showing an entire traveling route and a projection position of a guidance light beam.

【図2】作業車及び誘導用ビーム光投射手段の概略側面
FIG. 2 is a schematic side view of a work vehicle and a beam light projection means for guidance.

【図3】作業車及び誘導用ビーム光検出センサを示す概
略平面図
FIG. 3 is a schematic plan view showing a work vehicle and a guidance beam light detection sensor.

【図4】植え付け部に対する対地水平姿勢の維持手段を
説明する背面図
FIG. 4 is a rear view for explaining a means for maintaining a horizontal posture with respect to the planting part.

【図5】制御構成のブロック図FIG. 5 is a block diagram of a control configuration.

【図6】回動角検出手段を示す側面断面図FIG. 6 is a side sectional view showing a rotation angle detecting means.

【図7】操向制御用光センサの受光位置の説明図FIG. 7 is an explanatory diagram of a light receiving position of a steering control optical sensor.

【図8】車体横幅方向でのずれ検出値を傾斜補正する説
明図
FIG. 8 is an explanatory view for correcting inclination of a deviation detection value in the vehicle width direction.

【図9】制御作動のフローチャートFIG. 9 is a flowchart of control operation.

【図10】制御作動のフローチャートFIG. 10 is a flowchart of control operation.

【図11】制御作動のフローチャートFIG. 11 is a flowchart of control operation.

【符号の説明】[Explanation of symbols]

V 作業車 B1,B2 ビーム光投射手段 S1 操向制御用光センサ 5 車体 7〜10 操向手段 100 制御手段 6 対地作業部 M 傾斜手段 S6 傾斜状態検出手段 101 水平維持手段 S5 傾斜角検出手段 S5 回動角検出手段 S5 ポテンショメータ S5a 固定部 S5b 回転部 V Work vehicle B1, B2 Beam light projection means S1 Steering control optical sensor 5 Vehicle body 7-10 Steering means 100 Control means 6 Ground working part M Tilt means S6 Tilt state detection means 101 Horizontal maintenance means S5 Tilt angle detection means S5 Rotation angle detecting means S5 Potentiometer S5a Fixed part S5b Rotating part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 作業車(V)が走行行程に沿って自動走
行するように前記走行行程の長手方向に沿って誘導用ビ
ーム光を投射するビーム光投射手段(B1,B2)が、
地上側に設けられ、 前記ビーム光投射手段(B1,B2)にて投射される誘
導用ビーム光に対する車体横幅方向でのずれを検出すべ
く、その誘導用ビーム光を受光する操向制御用光センサ
(S1)と、 前記作業車(V)の車体(5)を操向させる操向手段
(7〜10)と、 前記操向制御用光センサ(S1)の受光情報に基づいて
前記作業車(V)が前記走行行程に沿って自動走行する
ように前記操向手段(7〜10)の作動を制御する制御
手段(100)と、 車体左右方向に傾斜自在な状態で前記車体(5)に保持
された対地作業部(6)と、その対地作業部(6)を前
記車体(5)に対して車体左右方向に傾斜させる傾斜手
段(M)と、前記対地作業部(6)の車体左右方向での
対地傾斜状態を検出する傾斜状態検出手段(S6)と、
前記傾斜状態検出手段(S6)の情報に基づいて前記傾
斜手段(M)を作動させて前記対地作業部(6)を車体
左右方向において対地水平姿勢に維持する水平維持手段
(101)とが、前記作業車(V)に設けられたビーム
光誘導式作業車用の走行制御装置であって、 前記対地作業部(6)に対する前記車体(5)の車体左
右方向での傾斜角を検出する傾斜角検出手段(S5)が
設けられ、 前記制御手段(100)は、前記傾斜状態検出手段(S
6)及び前記傾斜角検出手段(S5)の検出情報に基づ
いて前記車体(5)の車体左右方向でのローリング角を
判別し、そのローリング角情報に基づいて前記操向制御
用光センサ(S1)の前記誘導用ビーム光に対する車体
横幅方向でのずれ量を補正した補正後のずれ情報に基づ
いて前記操向手段(7〜10)を作動させるように構成
されているビーム光誘導式作業車用の走行制御装置。
1. Beam light projecting means (B1, B2) for projecting a guiding beam of light along the longitudinal direction of the traveling stroke so that the work vehicle (V) automatically travels along the traveling stroke,
Steering control light which is provided on the ground side and receives the guidance light beam so as to detect a deviation in the vehicle body lateral direction with respect to the guidance light beam projected by the light beam projection means (B1, B2). A sensor (S1), a steering means (7 to 10) for steering the vehicle body (5) of the work vehicle (V), and the work vehicle based on light reception information of the steering control optical sensor (S1). (V) control means (100) for controlling the operation of the steering means (7 to 10) so that the vehicle automatically travels along the traveling stroke; and the vehicle body (5) in a state in which the vehicle body can be tilted in the lateral direction. A ground working part (6) held by the ground, a tilting means (M) for tilting the ground working part (6) in the left-right direction of the vehicle body with respect to the vehicle body (5), and a vehicle body of the ground working part (6). An inclination state detecting means (S6) for detecting an inclination state to the ground in the left-right direction,
Horizontal maintaining means (101) for operating the inclining means (M) based on the information of the inclining state detecting means (S6) to maintain the earth working unit (6) in a horizontal posture with respect to the vehicle body in the left-right direction; A traveling control device for a beam light guide type work vehicle provided on the work vehicle (V), comprising: an inclination for detecting an inclination angle of the vehicle body (5) in a vehicle body left-right direction with respect to the ground working unit (6). An angle detecting means (S5) is provided, and the control means (100) controls the tilt state detecting means (S).
6) and the rolling angle of the vehicle body (5) in the lateral direction of the vehicle body based on the detection information of the inclination angle detecting means (S5), and based on the rolling angle information, the steering control optical sensor (S1). ) A beam light guide type work vehicle configured to operate the steering means (7 to 10) based on the corrected shift information obtained by correcting the shift amount in the vehicle body lateral direction with respect to the guidance beam light. Control device for car.
【請求項2】 前記対地作業部(6)が、車体前後方向
に沿う軸芯周りに回転自在な状態で前記車体(5)に保
持され、前記傾斜角検出手段(S5)が、前記対地作業
部(6)に対する前記車体(5)の前記軸芯周りでの回
動角を検出する回動角検出手段(S5)にて構成されて
いる請求項1記載のビーム光誘導式作業車用の走行制御
装置。
2. The ground work section (6) is held by the vehicle body (5) in a rotatable state about an axis extending in the longitudinal direction of the vehicle body, and the inclination angle detecting means (S5) is used for the ground work. The beam light guide type working vehicle according to claim 1, further comprising a rotation angle detection means (S5) for detecting a rotation angle of the vehicle body (5) about the axis with respect to the portion (6). Travel control device.
【請求項3】 前記回動角検出手段(S5)が、前記対
地作業部(6)又は前記車体(5)に取り付けた固定部
(S5a)と、前記対地作業部(6)又は前記車体
(5)に取り付けられて前記回動角の変化に連動して前
記固定部(S5a)に対して相対回転する回転部(S5
b)とからなるポテンショメータ(S5)にて構成され
ている請求項2記載のビーム光誘導式作業車用の走行制
御装置。
3. The fixed part (S5a) attached to the ground working part (6) or the vehicle body (5) by the rotation angle detecting means (S5), and the ground working part (6) or the vehicle body (5). 5) is attached to the rotating part (S5) that rotates relative to the fixed part (S5a) in association with the change in the rotation angle.
The travel control device for a beam light guide type working vehicle according to claim 2, wherein the travel control device comprises a potentiometer (S5) including b).
JP6069160A 1994-04-07 1994-04-07 Traveling controller for light beam guided work vehicle Pending JPH07281746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6069160A JPH07281746A (en) 1994-04-07 1994-04-07 Traveling controller for light beam guided work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6069160A JPH07281746A (en) 1994-04-07 1994-04-07 Traveling controller for light beam guided work vehicle

Publications (1)

Publication Number Publication Date
JPH07281746A true JPH07281746A (en) 1995-10-27

Family

ID=13394674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6069160A Pending JPH07281746A (en) 1994-04-07 1994-04-07 Traveling controller for light beam guided work vehicle

Country Status (1)

Country Link
JP (1) JPH07281746A (en)

Similar Documents

Publication Publication Date Title
JPH07281742A (en) Traveling controller for beam light guided work vehicle
JPH0944240A (en) Guide device for moving vehicle
JP6860387B2 (en) Work platform
JP6974148B2 (en) Traveling work machine
KR20190066528A (en) Travel working machine
JP2019176801A (en) Field work vehicle
JPH07281746A (en) Traveling controller for light beam guided work vehicle
JPH07291140A (en) Steering controller for working vehicle
JPH07281743A (en) Method for traveling work vehicle for ground work and controller therefor
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JP2021132592A (en) Automatic steering device
JP3046718B2 (en) Beam light guiding device for work vehicles
JPH0944241A (en) Beam light guidance device for moving object
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JP3044160B2 (en) Light receiving device and traveling control device for beam light guided work vehicle
JPH0723612A (en) Detector for revolving state of working vehicle
JPH07281745A (en) Traveling controller for light beam guided work vehicle
JPH0876843A (en) Light receiving device and travel controller for beam light guide type working vehicle
JPH0723614A (en) Detector for revolving state of working vehicle
JPH0723613A (en) Detector for revolving state of working vehicle
JP3005151B2 (en) Traveling control device for beam-guided work vehicle
JPH0723615A (en) Detector for revolving state of working vehicle
JP2006288286A (en) Rice transplanter
JPH06149352A (en) Traveling controller for beam light guidance type working car
JPH0723611A (en) Detector for revolving state of working vehicle