JPH07281015A - Manufacture of laminated optical grating - Google Patents

Manufacture of laminated optical grating

Info

Publication number
JPH07281015A
JPH07281015A JP9568094A JP9568094A JPH07281015A JP H07281015 A JPH07281015 A JP H07281015A JP 9568094 A JP9568094 A JP 9568094A JP 9568094 A JP9568094 A JP 9568094A JP H07281015 A JPH07281015 A JP H07281015A
Authority
JP
Japan
Prior art keywords
laminated
grating
optical grating
laminated optical
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9568094A
Other languages
Japanese (ja)
Inventor
Hideo Shingu
秀夫 新宮
Keiichi Ishihara
慶一 石原
Toru Otsuki
徹 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9568094A priority Critical patent/JPH07281015A/en
Publication of JPH07281015A publication Critical patent/JPH07281015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To manufacture a laminated optical grating such as a laminated diffraction grating in a short time by simple operation. CONSTITUTION:After thin plate like grating raw material 11 and 12 (for example, a soda glass plate and a lead glass plate having a thickness of 0.1mm) different in an optical property are alternately laminated with each other, they are pressurized and thinned in the lamination direction by a press, or after thin plate like composite grating materials composed of a laminated structure of thin plate-like or thin film-like grating raw materials (for example, a soda glass plate having a thickness of 0.1mm and an Au thin film having a thickness of 50 angstroms) different in an optical property are laminated with each other, they are pressurized and thinned in the lamination direction by the press, and a laminated optical grating 13 is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一般的には、光学的
に異質である、すなわち屈折率、反射率などの光学的性
質が異なる少なくとも2種類の格子素材(格子形成用素
材)の薄膜(極薄膜を含む)を、例えば2種類の場合に
は交互の一つ置きのように、所定の順序で反復して(規
則的に)配列(並設)してなる、分光素子、非線形光学
素子や偏光素子等用の積層型(体積)光学格子の作製
(製造)方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to thin films of at least two kinds of grating materials (materials for forming a grating) which are optically different from each other, that is, have different optical properties such as refractive index and reflectance. Spectral element, non-linear optics, in which (including ultra-thin films) are arranged (arranged) in a repeating order (regularly) in a predetermined order, for example, in the case of two types, alternate ones The present invention relates to an improvement in a method for producing (manufacturing) a laminated (volume) optical grating for an element, a polarizing element and the like.

【0002】[0002]

【従来の技術】この種の積層型光学格子には、例えば分
光素子用としての積層型回折格子があるが、従来におい
ては、光学的に異質の2種類以上の格子素材、例えば金
属や酸化物などを、真空蒸着、スパッタリング、イオン
プレーティングなどの物理的蒸着(PVD)や、熱分
解、還元などの化学的蒸着(CVD)等の薄膜付着技術
を介して、薄膜として順次積層していくことによって作
製されている。
2. Description of the Related Art A laminated optical grating of this type includes, for example, a laminated diffraction grating for a spectroscopic element, but in the past, two or more optically different grating materials, for example, metal or oxide. And the like are sequentially laminated as thin films through thin film deposition techniques such as physical vapor deposition (PVD) such as vacuum deposition, sputtering and ion plating, and chemical vapor deposition (CVD) such as thermal decomposition and reduction. It is made by.

【0003】[0003]

【発明が解決しようとする課題】したがって従来の積層
型光学格子の作製方法には、薄膜付着操作を薄膜の積層
数だけ反復しなければならず、厄介であるとともに、長
時間かかるという問題がある。
Therefore, in the conventional method for producing a laminated optical grating, the thin film deposition operation must be repeated for the number of laminated thin films, which is troublesome and takes a long time. .

【0004】この発明は上記のような問題に鑑み、積層
型光学格子、例えば積層型回折格子を簡単な操作で短時
間に作製することを目的としている。
In view of the above problems, it is an object of the present invention to fabricate a laminated optical grating, for example, a laminated diffraction grating in a short time by a simple operation.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明の第1の方法によれば、図1に模式的に
示すように、光学的に異質の少なくとも2種類の薄板状
の格子素材11、12を反復的に積み重ねた後、矢印で
示すように積み重ね方向に加圧して薄肉化(薄厚化)す
る。
In order to achieve the above-mentioned object, according to the first method of the present invention, as shown schematically in FIG. After repeatedly stacking the grid materials 11 and 12 in (1), pressure is applied in the stacking direction as indicated by the arrow to thin the wall.

【0006】またこの発明の第2の方法によれば、図2
に摸式的に示すように、光学的に異質の少なくとも2種
類の格子素材22、23を少なくとも一つの反復配列単
位積層した薄板状の複合格子材21を積み重ねた後、矢
印で示すように積み重ね方向に加圧して薄肉化する。
According to the second method of the present invention, as shown in FIG.
As shown schematically in FIG. 1, after stacking a thin plate-like composite lattice material 21 in which at least two optically different lattice materials 22 and 23 are laminated in at least one repeating arrangement unit, and then stacking them as indicated by arrows. Pressurize in the direction to thin the wall.

【0007】薄板状の複合格子材21は、図2のよう
に、1種類の格子素材22を薄板状のベース材とし、こ
れに他の格子素材23を薄膜状に積層したものを包含す
るほか、上記の第1または第2の方法で作製した積層型
光学格子13または24や、その他の方法で作製した薄
板状の積層型光学格子も含む。
As shown in FIG. 2, the thin plate-shaped composite lattice material 21 includes one kind of lattice material 22 as a thin plate-shaped base material, and another lattice material 23 laminated in a thin film on the base material. Also, it includes a laminated optical grating 13 or 24 manufactured by the above-mentioned first or second method, or a thin plate-shaped laminated optical grating manufactured by another method.

【0008】薄板状の格子素材11、12、22や薄膜
状の格子素材23としては、ガラス(普通ガラスや石英
ガラス)、プラスチック、金属(半金属を含む)、合
金、これらの酸化物や窒化物、化合物等の非晶質物質、
微結晶物質、結晶物質など、種々の材料を用いることが
できる。なおこれらの材料のうち、特に図2のような複
合格子材21のベース材を形成する格子素材22として
は、ガラス、プラスチックを用いることができ、薄膜状
の格子素材23としては、金属、合金、これらの酸化物
や窒化物、化合物を用いることができる。
As the thin plate-shaped grid materials 11, 12, 22 and the thin film-shaped grid material 23, glass (ordinary glass or quartz glass), plastic, metal (including semimetal), alloy, oxides or nitrides of these Amorphous substances such as substances and compounds,
Various materials such as a microcrystalline substance and a crystalline substance can be used. Among these materials, glass and plastic can be used as the grid material 22 forming the base material of the composite grid material 21 as shown in FIG. 2, and the thin film grid material 23 can be metal or alloy. , These oxides, nitrides, and compounds can be used.

【0009】積み重ねた薄板状の格子素材11、12
や、薄膜状の複合格子材21、あるいは積層型光学格子
13、24を含む積層型光学格子類の積み重ね方向の加
圧は、プレス型による圧縮延伸のほか、ローラーによる
圧延、ダイス型による引き抜き延伸など、任意の薄肉、
延伸化操作によって行なうことができ、またこの加圧は
必要に応じて、材料の加熱状態で行なうことができる。
Stacked thin plate-like lattice materials 11 and 12
The pressure in the stacking direction of the thin-film composite lattice material 21 or the laminated optical lattices including the laminated optical lattices 13 and 24 may be compressed by a press die, rolled by a roller, or drawn by a die die. Any thin wall, such as
It can be carried out by a stretching operation, and this pressurization can be carried out while the material is heated, if necessary.

【0010】図2の複合格子材21における格子素材2
2に対する薄膜状の格子素材23の積層付着は、真空蒸
着、スパッタリング法、イオンプレーティング、熱分
解、還元などの薄膜付着技術によって、格子素材22の
全面にあるいはその一部に行なうことができる。
The grid material 2 in the composite grid material 21 of FIG.
The thin film-like lattice material 23 can be laminated and adhered onto the entire surface of the lattice material 22 or a part thereof by a thin film adhesion technique such as vacuum deposition, sputtering, ion plating, thermal decomposition and reduction.

【0011】[0011]

【作用】この発明においては、積み重ねた薄板状の格子
素材11、12、図2のような複合格子材21、あるい
は複合格子材の一つとしての薄板状の積層型光学格子1
3、24などの加圧により、それぞれが薄厚化された状
態で一体化され、これにより各格子素材が種々厚さの薄
膜状態で規則的に積層並設した種々のサイズの積層型光
学格子、例えば積層型回折格子が作製される。
In the present invention, stacked thin plate-like grating materials 11 and 12, a composite grating material 21 as shown in FIG. 2, or a thin plate-like laminated optical grating 1 as one of the composite grating materials.
Laminated optical gratings of various sizes, which are integrated in a thinned state by pressurization of 3, 24, etc., whereby the lattice materials are regularly laminated and arranged in a thin film state of various thicknesses, For example, a laminated diffraction grating is manufactured.

【0012】[0012]

【実施例】【Example】

実施例1 図3に略示するように、厚さ0.1mmで屈折率が1.
53のソーダガラス板31と、厚さ0.1mmで屈折率
が1.87の鉛ガラス板12とを交互に50枚ずつ計1
00枚積み重ねて、20mmの高さにした状態で、75
0℃の温度に保持した炉に装入し、該炉中において上下
からプレス型により0.1MPaの圧力で30分間加圧
して、全体の厚さが2.0mmの第1(段階)の積層型
光学格子板33となるまで圧縮変形させた。次いでこの
第1の積層型光学格子板33を同じ炉中において十重に
折り重ねて、全体の高さを20mmとした後、同じ条件
でプレスして、全体の厚さが2.0mmの第2の積層型
光学格子板34を作製した。この光学格子板34は、屈
折率1.53のソーダガラスの薄膜と、屈折率1.87
の鉛ガラスの薄膜が1.0μmの間隔で計1,000枚
積層した構造で、これから切断して成形した適当なサイ
ズ(例えば3mm角×2.5mm厚)の積層型光学格子
ブロックに白色光を投射したところ、屈折率が異なる薄
膜層を多数回通過することによる光路程の差によって干
渉が生じ、透過光、反射光において虹色の発色が認めら
れた。
Example 1 As shown in FIG. 3, the thickness is 0.1 mm and the refractive index is 1.
A soda glass plate 31 of 53 and a lead glass plate 12 having a thickness of 0.1 mm and a refractive index of 1.87 are alternately arranged for a total of 50 sheets in total of 1 sheet.
With 100 sheets stacked and a height of 20 mm, 75
It is charged into a furnace maintained at a temperature of 0 ° C., and a first die (stage) lamination having an overall thickness of 2.0 mm is obtained by pressurizing the furnace from above and below with a press die at a pressure of 0.1 MPa for 30 minutes. The mold optical lattice plate 33 was compressed and deformed. Next, this first laminated optical grating plate 33 was folded tenfold in the same furnace to make the total height 20 mm, and then pressed under the same conditions to make the total thickness 2.0 mm. The laminated optical grating plate 34 of No. 2 was produced. The optical grating plate 34 includes a thin film of soda glass having a refractive index of 1.53 and a refractive index of 1.87.
The lead glass thin film has a structure in which a total of 1,000 sheets are laminated at intervals of 1.0 μm, and white light is applied to a laminated optical grating block of an appropriate size (eg, 3 mm square × 2.5 mm thick) cut and molded from this. When projected on, interference was caused due to the difference in optical path length caused by passing through a thin film layer having different refractive index many times, and rainbow color was observed in transmitted light and reflected light.

【0013】実施例2 図4に略示したように、実施例1で用いたものと同じ厚
さ0.1mmのソーダガラス板41の一面に、スパッタ
リングによりAuを50オングストロームの厚さ蒸着し
た複合格子材としてのAu薄膜42付きソーダーガラス
板41を、100枚積み重ねて、10mmの高さにした
状態で、800℃の温度に保持された炉に装入し、該炉
中において上下からプレス型により0.1MPaの圧力
で30分間加圧して、Au極薄膜を含む全体の厚さが
2.5mmの第1(段階)の積層型光学格子板43を作
製した。この第1の積層型光学格子板33のAu極薄膜
は約100nmの粒子となって平面的に分布するととも
に、25μmの間隔で光反射面を形成する形になった。
Example 2 As shown in FIG. 4, a composite of Au deposited by sputtering to a thickness of 50 Å on one surface of a soda glass plate 41 having the same thickness as that used in Example 1 and having a thickness of 0.1 mm. 100 sheets of soda glass plates 41 with Au thin film 42 as a grid material were stacked and placed in a furnace maintained at a temperature of 800 ° C. with a height of 10 mm, and press molds were pressed from above and below in the furnace. Then, a pressure of 0.1 MPa was applied for 30 minutes to prepare a first (step) laminated optical grating plate 43 having a total thickness of 2.5 mm including the ultrathin Au film. The Au ultra-thin film of the first laminated optical grating plate 33 became particles of about 100 nm and was distributed in a plane, and also formed a light reflection surface at intervals of 25 μm.

【0014】次いでこのAu極薄膜付きの第1の積層型
光学格子板43を同じ炉内において四重に折り重ねて、
全体の高さを10mmにした状態で、上記と同一の条件
の加圧を行なった。これにより6.25μmの間隔で4
00個の光反射面形成用のAu極薄膜を有するとともに
全厚が2.5mmの第2の積層型光学格子板44が作製
された。
Next, the first laminated optical grating plate 43 with the Au ultra-thin film is folded in four in the same furnace,
Pressing was performed under the same conditions as above, with the entire height being 10 mm. As a result, 4 at intervals of 6.25 μm
A second laminated optical grating plate 44 having an Au ultrathin film for forming a light-reflecting surface and having a total thickness of 2.5 mm was prepared.

【0015】さらにこのAu極薄膜付きの第2の積層型
回折格子板44を炉内において四重に折り重ねた状態
で、上記と同一の条件下の加圧を行なった。これにより
全厚が2.5mmで、かつ間隔が約1.25μmで1,
600個のAu極薄膜(光反射面)を有する第3の積層
型光学格子板45ができた。
Further, the second laminated diffraction grating plate 44 with the Au ultra-thin film was quadruple folded in the furnace, and pressure was applied under the same conditions as described above. This gives a total thickness of 2.5 mm and a spacing of about 1.25 μm.
A third laminated optical grating plate 45 having 600 Au ultrathin films (light reflecting surface) was completed.

【0016】これらの第1〜第3の積層型光学格子板4
3、44、45から切断して成形した適当な大きさ(例
えば3mm角×2.5mm厚)の積層型光学格子ブロッ
クに、Au極薄膜、すなわち光反射面に平行に、波長が
670nmのレーザー光線を通過させて、回折性能を調
査したところ、光反射面の間隔(Au極薄膜間隔)dと
光回折角度θとの間には、ブラッグの回折条件、すなわ
ち2dsinθ=λ(ただしλはレーザー光線の波長)
が成り立つことが確認された。
These first to third laminated optical grating plates 4
A laser beam having a wavelength of 670 nm is formed in parallel with the Au ultra-thin film, that is, the light reflecting surface, on a laminated optical grating block of an appropriate size (for example, 3 mm square × 2.5 mm thickness) cut and molded from 3, 44, 45. As a result of investigating the diffraction performance by passing through, the Bragg diffraction condition, that is, 2d sin θ = λ (where λ is the laser beam wavelength)
It was confirmed that

【0017】またこれらの光学格子ブロックに白色光線
を透過させた場合には、白色光線中に含まれる光の波長
に応じた回折角度で回折現象が生じ、虹色の発色が認め
られた。
When a white ray was transmitted through these optical grating blocks, a diffraction phenomenon occurred at a diffraction angle according to the wavelength of the light contained in the white ray, and iridescent coloring was observed.

【0018】さらにこれらの光学格子ブロックの光吸収
スペクトルを測定したところ、500nm付近に吸収ピ
ークが現われ、10-7esu台の大きな3次非線形感受
率を示した。
Further, when the optical absorption spectra of these optical grating blocks were measured, an absorption peak appeared at around 500 nm and showed a large third-order nonlinear susceptibility of the order of 10 -7 esu.

【0019】またこれらの光学格子ブロックによる偏光
率を測定したところ、200以上の大きな値を示した。
When the polarization ratios of these optical grating blocks were measured, a large value of 200 or more was shown.

【0020】実施例3 Auの代わりに、Pt、Pd、Al、Ag、Cu、S
n、Pb、Si、Cをスパッタリングにより蒸着した以
外は、実施例2と同じ条件で、3種類の極薄膜付きの積
層型光学格子ブロックを作製し、それぞれについて、実
施例2と同じレーザー光線と白色光線を透過させたとこ
ろ、同様の結果が得られた。
Example 3 Instead of Au, Pt, Pd, Al, Ag, Cu, S
Except that n, Pb, Si, and C were vapor-deposited by sputtering, a laminated optical grating block with three types of ultrathin films was produced under the same conditions as in Example 2, and the same laser beam and white color as in Example 2 were produced for each. Similar results were obtained when light rays were transmitted.

【0021】実施例4 酸素ガス雰囲気中におけるSnのスパッタリングによ
り、20nmの酸化錫の薄膜を付着したソーダーガラス
板からなる複合格子材を、100枚積み重ねた状態で、
実施例2と同じ条件下で、加熱、加圧して、光に透明な
Sn酸化物の極薄膜の粒子が分布した光反射面を有する
積層型光学格子ブロックを3種類作製した。これらの光
学格子はどの方向からも透明であるが、ブラッグの回折
条件を満たす角度と波長についてのみ、回折を起こし、
発色現象が認められた。
Example 4 By stacking 100 composite lattice materials made of soda glass plates to which a thin film of tin oxide having a thickness of 20 nm was deposited by Sn sputtering in an oxygen gas atmosphere,
Under the same conditions as in Example 2, heating and pressurization were performed to prepare three types of laminated optical grating blocks having a light reflecting surface on which light-transparent ultrathin Sn oxide particle particles are distributed. Although these optical gratings are transparent from any direction, they diffract only at angles and wavelengths that satisfy Bragg's diffraction conditions,
A coloring phenomenon was observed.

【0022】実施例5 Snの代わりに、Ag、Al、Cu、Pb、Ti、Z
r、Sb、As、Zn及び弗化物、燐酸塩を用いて、実
施例4と同一の条件のもとで、それぞれ3種類の積層型
光学格子ブロックを作製したところ、実施例4と同一の
結果が得られた。
Example 5 Instead of Sn, Ag, Al, Cu, Pb, Ti, Z
Using r, Sb, As, Zn, and fluoride and phosphate under the same conditions as in Example 4, three types of laminated optical grating blocks were produced, respectively, and the same results as in Example 4 were obtained. was gotten.

【0023】実施例6 SnSbの酸化物やITOをスパッタリングにより付着
させる以外は、実施例4と同一の条件下で、それぞれ3
種類の積層型光学格子ブロックを作製したところ、これ
らは透明で、導電性を有していた。
Example 6 Under the same conditions as in Example 4, except that the SnSb oxide or ITO was deposited by sputtering, 3
When various kinds of laminated optical grating blocks were produced, they were transparent and had conductivity.

【0024】[0024]

【発明の効果】以上説明したところから明らかなよう
に、この発明の方法によれば、基本的には、薄板状の格
子素材や複合格子材の積み重ね状態の加圧操作という制
御の容易な操作によって、積層型回折格子等の積層型光
学格子を作製するので、広範囲にわたる格子素材の積層
薄膜数、薄膜厚さ、光学格子サイズ(厚さ、長さ、幅)
のものを、簡単にかつ短時間に、したがって安価にしか
も高精度で作製することができる。
As is apparent from the above description, according to the method of the present invention, basically, an operation that is easy to control, that is, a pressing operation in a stacked state of thin plate-like lattice materials or composite lattice materials is performed. Since a laminated optical grating such as a laminated diffraction grating is manufactured according to the above, the number of laminated thin films of a wide range of grating materials, thin film thickness, and optical grating size (thickness, length, width)
Can be manufactured easily and in a short time, and therefore inexpensively and with high precision.

【0025】またこの発明の方法によれば、使用可能な
格子素材に実質上制限がないとともに、それぞれを任意
の量使用することができ、したがって必要に応じて、透
明なものや着色したもの、あるいは導電気性や強磁性を
有する光学格子を作製したり、また高価な格子素材につ
いては、その使用量を大幅に削減したりすることができ
る。
Further, according to the method of the present invention, there is virtually no limit to the usable lattice material, and each can be used in an arbitrary amount. Therefore, if necessary, a transparent or colored material, Alternatively, it is possible to manufacture an optical grating having conductive properties or ferromagnetism, or to significantly reduce the amount of expensive grating material used.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の方法の摸式的な説明図であ
る。
FIG. 1 is a schematic explanatory view of a first method of the present invention.

【図2】この発明の第2の方法の摸式的な説明図であ
る。
FIG. 2 is a schematic explanatory view of a second method of the present invention.

【図3】この発明の実施例1の方法の摸式的な説明図で
ある。
FIG. 3 is a schematic explanatory view of a method according to a first embodiment of the present invention.

【図4】この発明の実施例2の方法の摸式的な説明図で
ある。
FIG. 4 is a schematic explanatory view of a method according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 薄板状の格子素材 12 薄板状の格子素材 13 積層型光学格子 21 薄板状の複合格子材 22 薄板状の格子素材 23 薄膜状の格子素材 24 積層型光学格子 31 ソーダーガラス板 32 鉛ガラス板 33 第1の積層型光学素子 34 第2の積層型光学素子 41 ソーダーガラス板 42 Au薄板 43 第1の積層型光学格子板 44 第2の積層型光学格子板 45 第3の積層型光学格子板 11 Laminated Lattice Material 12 Laminated Lattice Material 13 Laminated Optical Grating 21 Laminated Composite Lattice Material 22 Laminated Lattice Material 23 Thin Film Lattice Material 24 Laminated Optical Grating 31 Soda Glass Plate 32 Lead Glass Plate 33 First laminated optical element 34 Second laminated optical element 41 Soda glass plate 42 Au thin plate 43 First laminated optical lattice plate 44 Second laminated optical lattice plate 45 Third laminated optical lattice plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光学的に異質の少なくとも2種類の薄板
状の格子素材を反復的に積み重ねた後、積み重ね方向に
加圧して薄肉化することを特徴とする、積層型光学格子
の作製方法。
1. A method for producing a laminated optical grating, which comprises repeatedly stacking at least two types of thin plate-like grating materials which are optically different from each other, and then applying pressure in the stacking direction to reduce the thickness.
【請求項2】 光学的に異質の少なくとも2種類の格子
素材を少なくとも一つの反復配列単位積層した薄板状の
複合格子材を積み重ねた後、積み重ね方向に加圧して薄
肉化することを特徴とする、積層型光学格子の作製方
法。
2. A thin plate-like composite lattice material in which at least two optically different lattice materials are laminated in at least one repeating arrangement unit is stacked, and then pressure is applied in the stacking direction to reduce the thickness. , Method for manufacturing stacked optical grating.
【請求項3】 薄板状の複合格子材が、1種類の格子素
材を薄板状のベース材とし、これに他の格子素材を薄膜
状に積層したものである、請求項2記載の積層型光学格
子の作製方法。
3. The laminated optical system according to claim 2, wherein the thin-plate composite lattice material is one in which one kind of lattice material is used as a thin-plate base material, and another lattice material is laminated in a thin film form on the base material. How to make a lattice.
【請求項4】 薄板状の複合格子材が、積層型光学格子
である、請求項2記載の積層型光学格子の作製方法。
4. The method for producing a laminated optical grating according to claim 2, wherein the thin plate-shaped composite grating material is a laminated optical grating.
【請求項5】 積層型光学格子が、請求項1の方法で作
製したものである、請求項4記載の積層型光学格子の作
製方法。
5. The method for producing a laminated optical grating according to claim 4, wherein the laminated optical grating is produced by the method according to claim 1.
【請求項6】 積層型光学格子が、請求項2の方法で作
製したものである、請求項4記載の積層型光学格子の作
製方法。
6. The method for producing a laminated optical grating according to claim 4, wherein the laminated optical grating is produced by the method according to claim 2.
JP9568094A 1994-04-08 1994-04-08 Manufacture of laminated optical grating Pending JPH07281015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9568094A JPH07281015A (en) 1994-04-08 1994-04-08 Manufacture of laminated optical grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9568094A JPH07281015A (en) 1994-04-08 1994-04-08 Manufacture of laminated optical grating

Publications (1)

Publication Number Publication Date
JPH07281015A true JPH07281015A (en) 1995-10-27

Family

ID=14144221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9568094A Pending JPH07281015A (en) 1994-04-08 1994-04-08 Manufacture of laminated optical grating

Country Status (1)

Country Link
JP (1) JPH07281015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322739A (en) * 2006-05-31 2007-12-13 Konica Minolta Holdings Inc Optical system for optical communication and optical communication apparatus
CN108859461A (en) * 2018-06-05 2018-11-23 广东昂斯新材料技术有限公司 A kind of compound membrane preparation method of TPU grating with 2D security pattern
CN113085406A (en) * 2021-03-31 2021-07-09 福建骏昇光学科技有限公司 3D grating printing preparation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322739A (en) * 2006-05-31 2007-12-13 Konica Minolta Holdings Inc Optical system for optical communication and optical communication apparatus
CN108859461A (en) * 2018-06-05 2018-11-23 广东昂斯新材料技术有限公司 A kind of compound membrane preparation method of TPU grating with 2D security pattern
CN113085406A (en) * 2021-03-31 2021-07-09 福建骏昇光学科技有限公司 3D grating printing preparation process

Similar Documents

Publication Publication Date Title
EP0577732B1 (en) Infrared filter
US11506538B2 (en) Optical filter, optical filter system, spectrometer and method of fabrication thereof
EP1767964B1 (en) Heat-reflecting pane with zero-order diffractive filter
US7787182B2 (en) Diffractive optical security device
CA2052865C (en) Transparent anti-reflective coating
EP1862827A1 (en) Nano-structured Zero-order diffractive filter
CN102248721A (en) Optical laminated product and fitting
JP2018507429A (en) IR reflective film
US20140055847A1 (en) Ir reflectors for solar light management
JP2023178283A (en) Ultra-thin thin-film optical interference filter
US20030002097A1 (en) Network structure using high dispersion volume holography
JPH07281015A (en) Manufacture of laminated optical grating
WO2013005745A1 (en) Window glass
Shiraishi et al. Silver-film subwavelength gratings for polarizers in the terahertz and mid-infrared regions
WO2013172080A1 (en) Optical device and method for manufacturing same
US6393868B1 (en) Process for the production of sequences of interface layers
JP2001305337A (en) Optical filter and method for manufacturing the optical filter
JPH01213599A (en) Reflection type diffraction grating
JPH07294730A (en) Production of polarizing element
JPH0253001A (en) Production of multilayer film for soft x-rays and vacuum ultraviolet rays
CN115079327B (en) Optical film with polarization and filtering functions and preparation method thereof
US4838628A (en) Process and apparatus for production of an optical element
JPH03295834A (en) Heat ray reflecting glass
CN117406328A (en) Holographic diffraction grating of middle-long wave infrared band and manufacturing method thereof
US20080137194A1 (en) Diffractive Filter