JPH07280985A - Method for co-extraction of uranium, plutonium and neptunium - Google Patents

Method for co-extraction of uranium, plutonium and neptunium

Info

Publication number
JPH07280985A
JPH07280985A JP6620694A JP6620694A JPH07280985A JP H07280985 A JPH07280985 A JP H07280985A JP 6620694 A JP6620694 A JP 6620694A JP 6620694 A JP6620694 A JP 6620694A JP H07280985 A JPH07280985 A JP H07280985A
Authority
JP
Japan
Prior art keywords
plutonium
nitric acid
acid solution
neptunium
hexavalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6620694A
Other languages
Japanese (ja)
Other versions
JP2971729B2 (en
Inventor
Shinichi Nemoto
慎一 根本
Hirotaka Sanyoushi
裕孝 算用子
Kenji Kikuchi
憲治 菊池
Junya Tomohiro
淳也 友広
Akio Togashi
昭夫 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP6620694A priority Critical patent/JP2971729B2/en
Publication of JPH07280985A publication Critical patent/JPH07280985A/en
Application granted granted Critical
Publication of JP2971729B2 publication Critical patent/JP2971729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To extract and collect neptunium coexisting in a nitric acid solution of spent nuclear fuel, along with uranium and plutonium, in the co- decontamination process employing purex wet process. CONSTITUTION:A nitric acid solution of spent nuclear fuel, wherein at least 10wt.% of total plutonium exists in the form of hexavalent plutonium, is brought into contact with a TBP extraction agent. When the amount of hexavalent plutonium is not sufficient in the nitric acid solution, the nitric acid solution is heated in the range between 70 deg.C and the boiling point of the nitric acid solution thus achieving a predetermined amount of hexavalent plutonium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、使用済核燃料の再処
理方法であるピューレックス湿式再処理法において、使
用済核燃料中に存在する超ウラン元素の一つであるネプ
ツニウムを、ウラン及びプルトニウムと共に抽出・回収
する方法に関するものである。
TECHNICAL FIELD The present invention relates to a purex wet reprocessing method for reprocessing spent nuclear fuel, in which neptunium, which is one of the transuranium elements present in the spent nuclear fuel, is added together with uranium and plutonium. It relates to a method of extracting and recovering.

【0002】[0002]

【従来の技術】ピューレックス湿式再処理法の主要な目
的は、使用済核燃料中に含まれるウラン及びプルトニウ
ムを核分裂生成物から分離回収することにある。この場
合に、使用済核燃料に同様に含まれている超ウラン元素
の一つであるネプツニウムは、回収対象物とはされてお
らず、その一部はウラン及びプルトニウムと共に核分裂
生成物から分離されるか、あるいは核分裂生成物と共に
ウラン及びプルトニウムから分離されて高レベル廃液側
に排出されている。
BACKGROUND OF THE INVENTION The main purpose of the Purex wet reprocessing method is to separate and recover uranium and plutonium contained in spent nuclear fuel from fission products. In this case, neptunium, which is one of the transuranium elements also contained in the spent nuclear fuel, is not targeted for recovery, and part of it is separated from fission products along with uranium and plutonium. Alternatively, it is separated from uranium and plutonium together with fission products and discharged to the high-level liquid waste side.

【0003】ピューレックス湿式再処理法を実施するに
際しては、先ず使用済核燃料を硝酸に溶解し、溶液組成
を調整したのち、ミキサー・セトラー、遠心抽出器ある
いはパルスコラムのごとき多段抽出器内で30%TBP
(リン酸トリブチル)抽出剤と接触させる。これにより
使用済核燃料の硝酸溶解液中のウラン及びプルトニウム
は抽出剤相(有機相)に抽出され、核分裂生成物は硝酸
溶液相(水相)に残り高レベル廃液として除去される。
この工程はピューレックス湿式再処理法における共除染
工程という。しかしながらネプツニウムは長半減期核種
であるため、これを核分裂生成物と共に高レベル廃液側
に排出させることは廃棄物管理上問題となる。
In carrying out the Purex wet reprocessing method, the spent nuclear fuel is first dissolved in nitric acid to adjust the solution composition, and then the mixture is set in a multistage extractor such as a mixer / settler, a centrifugal extractor or a pulse column. % TBP
Contact with (tributyl phosphate) extractant. As a result, uranium and plutonium in the nitric acid solution of spent nuclear fuel are extracted in the extractant phase (organic phase), and fission products remain in the nitric acid solution phase (aqueous phase) and are removed as high-level waste liquid.
This step is called a co-decontamination step in the Purex wet reprocessing method. However, since neptunium is a long-lived nuclide, it is a problem in waste management to discharge this together with fission products to the high-level liquid waste side.

【0004】上記の共除染工程を図1を参照してさらに
説明する。多段抽出器は一般に抽出段群すなわち抽出部
と、洗浄段群すなわち洗浄部とから構成されている。使
用済核燃料の硝酸溶液からなる給液(ウラン、プルトニ
ウム、ネプツニウム、核分裂生成物を含む)を抽出器中
間部の供給段に導入すると、抽出部においてTBP抽出
剤と向流接触して給液中のウラン(抽出されやすい6価
に調整されている)およびプルトニウム(抽出されやす
い4価に調整されている)は抽出剤に抽出され、核分裂
生成物は硝酸溶液に残留して高レベル廃液として排出さ
れる。ウランとプルトニウムを装荷した抽出剤はさらに
洗浄部へ送られ洗浄液(硝酸)と向流接触して核分裂生
成物等の不純物がさらに除去される。
The above co-decontamination process will be further described with reference to FIG. A multi-stage extractor is generally composed of an extraction stage group or extraction section and a cleaning stage group or cleaning section. When a liquid feed (containing uranium, plutonium, neptunium, and fission products) consisting of a nitric acid solution of spent nuclear fuel is introduced into the feed stage in the middle part of the extractor, the TBP extractant is countercurrently contacted in the extractor to feed the liquid. Uranium (adjusted to easily extractable hexavalent) and plutonium (adjustable to extractable tetravalent) are extracted by the extractant, and fission products remain in nitric acid solution and discharged as high-level waste liquid. To be done. The extractant loaded with uranium and plutonium is further sent to the washing section and comes into countercurrent contact with the washing solution (nitric acid) to further remove impurities such as fission products.

【0005】この共除染工程におけるネプツニウムの挙
動は安定しておらず、高レベル廃液側に排出されたり、
ウラン・プルトニウム装荷抽出剤側に混入する。装荷抽
出剤側に混入したネプツニウムは不純物となり、その取
扱も面倒となる。この原因は、硝酸溶液中ではネプツニ
ウムの原子価が5価と6価の平衡関係を保ち、条件によ
っては5価が多くなったり6価が多くなったりするため
である。つまり、ネプツニウム5価は抽出剤に抽出され
ないため高レベル廃液側へ排出され、ネプツニウム6価
はウランやプルトニウムと共に抽出剤に抽出されること
になる。
The behavior of neptunium in this co-decontamination process is not stable and is discharged to the high-level waste liquid side,
It is mixed in the uranium / plutonium loading extractant side. Neptunium mixed in the loaded extractant side becomes an impurity, and its handling becomes troublesome. This is because the valence of neptunium in the nitric acid solution maintains the equivalence of pentavalent and hexavalent, and depending on the condition, the pentavalent or hexavalent may increase. That is, since the pentavalent neptunium is not extracted by the extractant, it is discharged to the high-level waste liquid side, and the hexavalent neptunium is extracted by the extractant together with uranium and plutonium.

【0006】抽出器の抽出部におけるネプツニウム5価
と6価の平衡関係は次式で表わすことができる。 抽出剤にはネプツニウム6価(NpO2 2+)が抽出され
るため、式(1) は右側に進行し、従って抽出部ではネプ
ツニウム5価の6価への酸化が生じる。
The equilibrium relationship between pentavalent and hexavalent neptunium in the extractor of the extractor can be expressed by the following equation. Since neptunium hexavalent (NpO 2 2+ ) is extracted to the extractant, the formula (1) proceeds to the right side, and therefore, the neptunium pentavalent hexavalent oxidation occurs in the extraction part.

【0007】図1の抽出部で抽出剤に抽出されたネプツ
ニウム6価は次いで洗浄部へ運ばれるが、抽出部で硝酸
等の分解により生じた亜硝酸(NO2 )も抽出剤に抽出
されて洗浄部へ運ばれる。そのため洗浄部ではネプツニ
ウム6価と亜硝酸とがある濃度で共存することになり、
亜硝酸によるネプツニウム6価の5価への還元反応が生
じて式(1) は左側に進行し、ネプツニウム5価は高レベ
ル廃液側に排出されてしまう。
The neptunium hexavalent extracted in the extractant in the extraction section of FIG. 1 is then carried to the washing section, and nitrite (NO 2 ) generated by decomposition of nitric acid in the extraction section is also extracted in the extractant. Carried to the cleaning department. Therefore, neptunium hexavalent and nitrous acid coexist at a certain concentration in the cleaning section,
The reduction reaction of neptunium hexavalent to pentavalent by nitrous acid occurs, and equation (1) proceeds to the left side, and neptunium pentavalent is discharged to the high-level waste liquid side.

【0008】洗浄部でのネプツニウム6価の5価への還
元を防止するためには、洗浄部に運ばれる亜硝酸を極力
少なくすればよい。そこで特公昭52−26318号公
報で提案されている方法においては、洗浄部での亜硝酸
濃度を低下させるために例えば亜硝酸分解剤としてヒド
ラジンを給液供給段から抽出器洗浄部へ導入する方法を
採用している。これによって、洗浄部での亜硝酸濃度を
低下させて亜硝酸によるネプツニウム5価への還元を抑
え、給液中に存在していたネプツニウムの抽出剤への回
収率を約90%まで上昇させている。
In order to prevent the reduction of neptunium hexavalent to pentavalent in the cleaning section, the amount of nitrous acid carried to the cleaning section should be minimized. Therefore, in the method proposed in Japanese Patent Publication No. 52-26318, a method of introducing hydrazine, for example, as a nitrous acid decomposing agent from the feed liquid supply stage into the extractor cleaning section in order to reduce the nitrite concentration in the cleaning section. Has been adopted. As a result, the concentration of nitrite in the cleaning section is reduced to suppress the reduction of heptonite to pentavalent neptunium, and the recovery rate of neptunium existing in the liquid supply to the extractant is increased to about 90%. There is.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上述した
従来技術においては、条件によって複雑に変化する亜硝
酸濃度を微妙に調整しながら、亜硝酸分解剤であるヒド
ラジンを洗浄部に供給しなければならず、実用上必ずし
も満足すべき方法とはいえない。例えば、ヒドラジンを
大過剰に供給した場合には、ヒドラジンの還元作用によ
ってプルトニウムが3価に還元されてしまい、プルトニ
ウムが効率よく回収できず、ピューレックス湿式再処理
法の本来の目的であるプルトニウムの回収に悪影響を及
ぼすことにもなる。
However, in the above-mentioned prior art, hydrazine, which is a nitrous acid decomposing agent, must be supplied to the cleaning section while delicately adjusting the nitrous acid concentration that changes intricately depending on the conditions. However, it is not always a satisfactory method for practical use. For example, when hydrazine is supplied in a large excess, plutonium is reduced to trivalent due to the reducing action of hydrazine, plutonium cannot be efficiently recovered, and the original purpose of the Purex wet reprocessing method is to reduce plutonium. It will also have an adverse effect on recovery.

【0010】そこでこの発明は、ピューレックス湿式再
処理法の共除染工程において、従来技術におけるように
亜硝酸分解剤を使用する亜硝酸濃度の微妙な調整を必要
とすることなく、使用済核燃料の硝酸溶液中に共存する
ネプツニウムをウラン及びネプツニウムと共に効率よく
抽出・回収することができる改良された方法を提供する
ことを目的としてなされたものである。
Therefore, the present invention provides a spent nuclear fuel in the co-decontamination step of the Purex wet reprocessing method, which does not require the delicate adjustment of the nitrite concentration using a nitrite decomposing agent as in the prior art. The purpose of the present invention is to provide an improved method capable of efficiently extracting and recovering neptunium coexisting in the nitric acid solution together with uranium and neptunium.

【0011】[0011]

【課題を解決するための手段】すなわちこの発明による
ウラン、プルトニウム及びネプツニウムの共抽出方法
は、使用済核燃料の硝酸溶液をTBP抽出剤と接触させ
て硝酸溶液中のネプツニウムをウラン及びプルトニウム
と共に抽出剤相に抽出する方法において、使用済核燃料
の硝酸溶液中に含有するプルトニウム全量の少なくとも
10重量%以上がプルトニウム6価として存在している
硝酸溶液をTBP抽出剤と接触させることを特徴とする
ものである。
[MEANS FOR SOLVING THE PROBLEMS] That is, the method for co-extracting uranium, plutonium and neptunium according to the present invention comprises contacting a nitric acid solution of spent nuclear fuel with a TBP extractant to extract neptunium in the nitric acid solution together with uranium and plutonium. In the method of extracting into a phase, a nitric acid solution in which at least 10% by weight or more of the total amount of plutonium contained in the nitric acid solution of the spent nuclear fuel is present as plutonium hexavalent is contacted with a TBP extractant. is there.

【0012】使用済核燃料の硝酸溶液中のプルトニウム
は、ネプツニウムに比べて大過剰に存在する。例えば代
表的な液体金属高速増殖炉の場合にはPu/Np=約4
00、代表的な加圧水型原子炉の場合にはPu/Np=
約12である。また、ネプツニウムの酸化還元電位とプ
ルトニウムの酸化還元電位はきわめて類似した値を有す
る。従って、硝酸溶液中のプルトニウム全量の少なくと
も10重量%以上が6価に酸化されている条件では、共
存するネプツニウムは実質的に全量が6価に酸化されて
いることになる。
Plutonium in the nitric acid solution of spent nuclear fuel is present in a large excess as compared with neptunium. For example, in the case of a typical liquid metal fast breeder reactor, Pu / Np = about 4
00, Pu / Np = for a typical pressurized water reactor
It is about 12. Further, the redox potential of neptunium and the redox potential of plutonium have very similar values. Therefore, under the condition that at least 10% by weight or more of the total amount of plutonium in the nitric acid solution is oxidized to be hexavalent, it means that substantially all the coexisting neptunium is oxidized to be hexavalent.

【0013】一方、硝酸溶液中のプルトニウム6価はプ
ルトニウム4価と次式(2) のような平衡関係を有してい
る。 この式(2) から、プルトニウム6価は亜硝酸によって4
価に還元されることがわかる。従って、大過剰のプルト
ニウム6価が存在する系では、プルトニウム6価が亜硝
酸の分解剤として作用することになる。本発明者らは種
々の実験によって、硝酸溶液中のプルトニウム全量の少
なくとも10重量%以上がプルトニウム6価として存在
していれば、式(2) のように亜硝酸の分解剤として作用
するのに十分なプルトニウム6価の量となること、従っ
て亜硝酸によるネプツニウム6価の5価への還元反応を
確実に阻止できることを見出し、この発明を完成させた
ものである。
On the other hand, the valence of plutonium in the nitric acid solution has an equilibrium relationship with the valence of plutonium as shown in the following equation (2). From this equation (2), plutonium hexavalent is 4
It can be seen that the value is reduced. Therefore, in a system in which a large excess of plutonium hexavalent is present, the plutonium hexavalent acts as a decomposing agent for nitrous acid. According to various experiments, the present inventors have found that if at least 10% by weight or more of the total amount of plutonium in the nitric acid solution is present as a hexavalent plutonium, it acts as a decomposing agent for nitrous acid as shown in formula (2). The present invention has been completed by finding that the amount of hexavalent plutonium is sufficient, and therefore the reduction reaction of neptunium hexavalent to pentavalent by nitrous acid can be reliably prevented.

【0014】従来から、硝酸溶液中のプルトニウムは亜
硝酸ナトリウム等の原子価調整剤を用いて4価に調整し
た後に抽出剤と接触させているが、この発明においては
硝酸溶液中のプルトニウムの大部分を6価の状態で抽出
剤と接触させる。プルトニウム6価はプルトニウム4価
に比べて抽出性は低いが、この発明によれば、式(2)に
従って亜硝酸によりプルトニウム6価は4価に還元され
ることになるため、プルトニウムの高抽出効率を維持す
ることができる。
Conventionally, plutonium in a nitric acid solution is brought into contact with an extracting agent after being adjusted to be tetravalent by using a valency adjusting agent such as sodium nitrite. The part is contacted with the extractant in a hexavalent state. Plutonium hexavalent has a lower extractability than plutonium tetravalent, but according to the present invention, since plutonium hexavalent is reduced to tetravalent by nitrous acid according to the formula (2), plutonium has a high extraction efficiency. Can be maintained.

【0015】使用済核燃料の硝酸溶液中にプルトニウム
6価が所定量以上含まれている場合には、プルトニウム
の原子価調整等を施すことなくこの硝酸溶液を抽出器へ
の給液として用いることができる。一方、使用済核燃料
の硝酸溶液中のプルトニウム6価がプルトニウム全量の
10%に満たない場合には、この硝酸溶液を70℃以上
で加熱することによって容易にプルトニウム6価に酸化
することができる。70℃より低い温度では殆ど酸化は
起こらない。加熱温度が高くなるにつれて、酸化速度が
早くなり、処理能力の面からは有利になるが、加熱温度
が硝酸溶液の沸点より高くなると、加熱容器の材料腐食
速度が増加し加熱容器の寿命短縮につながる。かような
観点から加熱温度は70℃から硝酸溶液の沸点までの温
度範囲内とすることが好ましい。加熱によってプルトニ
ウムの全量を6価とした硝酸溶液を常温で放置すると、
図2のグラフに示したように、硝酸の分解で生成した亜
硝酸の影響により、時間と共に硝酸溶液中のプルトニウ
ム6価は自然還元されてその割合が低下していく。従っ
て、硝酸溶液中のプルトニウム6価の割合が10%より
低くならないうちに、TBP抽出剤による抽出操作を施
す必要がある。
When the nitric acid solution of the spent nuclear fuel contains more than a predetermined amount of plutonium hexavalent, it is possible to use this nitric acid solution as a liquid supply to the extractor without adjusting the valence of plutonium. it can. On the other hand, when the plutonium hexavalent value in the nitric acid solution of the spent nuclear fuel is less than 10% of the total amount of plutonium, the nitric acid solution can be easily oxidized to the plutonium hexavalent value by heating at 70 ° C. or higher. Almost no oxidation occurs at temperatures below 70 ° C. The higher the heating temperature, the faster the oxidation rate, which is advantageous in terms of processing capacity.However, when the heating temperature is higher than the boiling point of the nitric acid solution, the material corrosion rate of the heating container increases and the life of the heating container is shortened. Connect From such a viewpoint, it is preferable that the heating temperature be within a temperature range from 70 ° C. to the boiling point of the nitric acid solution. When a nitric acid solution in which the total amount of plutonium is hexavalent by heating is left at room temperature,
As shown in the graph of FIG. 2, due to the influence of nitrous acid generated by the decomposition of nitric acid, the hexavalent plutonium in the nitric acid solution is spontaneously reduced and the ratio thereof decreases. Therefore, it is necessary to perform the extraction operation with the TBP extractant before the ratio of the hexavalent plutonium in the nitric acid solution becomes lower than 10%.

【0016】[0016]

【実施例】8段の抽出部とそれに続く8段の洗浄部から
構成された合計16段を有するミキサー・セトラー型多
段抽出器の8段目から、表1記載の組成を有する硝酸溶
液A〜D(使用済核燃料硝酸溶液の模擬溶液)を給液と
して供給し、1段目の抽出部から供給したTBP抽出剤
(n−ドデカンで30%に希釈したTBP)と向流接触
させた。一方、16段目の洗浄部から洗浄液(3M硝
酸)を供給し、抽出部から洗浄部へ送られてくる装荷抽
出剤と向流接触させた。
EXAMPLES From the eighth stage of a mixer-settler type multi-stage extractor having a total of 16 stages consisting of an eight-stage extraction section and an eight-stage washing section, a nitric acid solution A having the composition shown in Table 1 to D (simulated solution of spent nuclear fuel nitric acid solution) was supplied as a feed liquid, and was brought into countercurrent contact with the TBP extractant (TBP diluted to 30% with n-dodecane) supplied from the first-stage extraction section. On the other hand, a cleaning liquid (3M nitric acid) was supplied from the 16th stage cleaning section to make countercurrent contact with the loaded extractant sent from the extraction section to the cleaning section.

【0017】表1中の給液A、B、Cは、硝酸溶液を約
80℃に加熱することによって含有するプルトニウムの
全量を6価に酸化した後、そのまま放置してプルトニウ
ム6価を自然還元させることによって、プルトニウム6
価の残存率が40%または20%となるようにして調製
したものである。
The feed liquids A, B, and C in Table 1 were prepared by heating a nitric acid solution to about 80 ° C. to oxidize the total amount of plutonium contained therein to hexavalent, and then allowed to stand as it was to spontaneously reduce the hexavalent plutonium. Plutonium 6
It was prepared so that the residual value ratio was 40% or 20%.

【0018】給液Dは、硝酸溶液を約80℃に加熱して
含有するプルトニウムの全量を6価に酸化した後、原子
価調整剤として亜硝酸ナトリウム(NaNO2 )を添加
してプルトニウム6価の全量を4価に還元することによ
って調製したものである。
The feed solution D was prepared by heating a nitric acid solution to about 80 ° C. to oxidize the total amount of plutonium contained therein to hexavalent, and then adding sodium nitrite (NaNO 2 ) as a valence adjuster to add hexavalent plutonium. Was prepared by reducing the total amount of the above to tetravalent.

【0019】[0019]

【表1】 給液組成 Pu (g/l) 39 39 45 20 Pu6+/T−Pu 40% 20% 20% 0% U (g/l) 140 140 110 81 HNO3 (M) 5.00 5.00 5.61 2.92 Np (mg/l) 35 35 63 28 Np (%) 100 100 100 100 流量 (ml/h) 100 100 100 150 TABLE 1 supply fluid composition A B C D Pu (g / l) 39 39 45 20 Pu 6+ / T-Pu 40% 20% 20% 0% U (g / l) 140 140 110 81 HNO 3 (M ) 5.00 5.00 5.61 2.92 Np (mg / l) 35 35 63 63 28 Np (%) 100 100 100 100 Flow rate (ml / h) 100 100 100 100 150

【0020】多段抽出器内での上記操作によって16段
目の洗浄部から得られる装荷抽出剤の組成の分析結果を
表2に、1段目の抽出部から排出される高レベル廃液の
組成の分析結果を表3に、それぞれ示す。
Table 2 shows the analysis results of the composition of the loaded extractant obtained from the washing section of the 16th stage by the above operation in the multistage extractor, and Table 2 shows the composition of the high-level waste liquid discharged from the extracting section of the 1st stage. The analysis results are shown in Table 3, respectively.

【0021】[0021]

【表2】 装荷抽出剤組成 Pu (g/l) 12 12 20 21 U (g/l) 43 44 28 67 HNO3 (M) − − − − Np (mg/l) 12 12 25 3.4 Np (%) 100 100 100 14.1a) 流量 (ml/h) 300 300 250 170 TABLE 2 loaded extraction agent composition A B C D Pu (g / l) 12 12 20 21 U (g / l) 43 44 28 67 HNO 3 (M) - - - - Np (mg / l) 12 12 25 3.4 Np (%) 100 100 100 14.1 a) Flow rate (ml / h) 300 300 250 250 170

【0022】[0022]

【表3】 高レベル廃液組成 Pu (g/l) NDb) ND ND ND U (g/l) ND ND ND ND HNO3 (M) 4.95 5.09 4.55 3.26 Np (mg/l) ND ND ND 9.6 Np (%) 0 0 0 46.7a) 流量 (ml/h) 196 196 200 205 註 a)抽出器内でのアキュムレーションにより物質収支
とれず。 b)ND:検出されず。
Table 3 High-level liquid waste composition A B C D Pu (g / l) ND b) ND ND ND U (g / l) ND ND ND ND HNO 3 (M) 4.95 5.09 4.55 3. 26 Np (mg / l) ND ND ND 9.6 Np (%) 0 0 0 46.7 a) Flow rate (ml / h) 196 196 200 205 Note a) Mass balance cannot be achieved due to accumulation in the extractor. b) ND: Not detected.

【0023】表1、表2および表3からわかるように、
プルトニウム6価をネプツニウムと共存させた給液A,
B,Cにおいては、ネプツニウムの抽出器内でのアキュ
ムレーションも見られず、ネプツニウムの全量がウラン
及びプルトニウムと共に抽出剤に抽出されており、高レ
ベル廃液側に排出されていないことがわかる。これに対
して給液Dにおいては、給液中にプルトニウム6価が存
在しない条件で抽出剤と接触させたため、抽出器内で硝
酸の分解により生成した亜硝酸によってネプツニウムが
5価に還元されてしまう。その結果、ネプツニウムの1
4.1%のみが抽出剤に抽出され、46.7%が高レベ
ル廃液側に排出され、残りは抽出器内にアキュムレーシ
ョンしてしまう。
As can be seen from Table 1, Table 2 and Table 3,
Liquid A with plutonium hexavalent coexisting with neptunium
In B and C, no accumulation of neptunium in the extractor was observed, and it can be seen that the total amount of neptunium was extracted by the extractant together with uranium and plutonium, and was not discharged to the high-level waste liquid side. On the other hand, in the liquid feed D, since the liquid feed was brought into contact with the extractant under the condition that the hexavalent plutonium did not exist in the liquid feed, neptunium was reduced to pentavalent nitrite by the decomposition of nitric acid in the extractor. I will end up. As a result, 1 of neptunium
Only 4.1% is extracted by the extractant, 46.7% is discharged to the high-level waste liquid side, and the rest is accumulated in the extractor.

【0024】[0024]

【発明の効果】以上説明したようにこの発明によれば、
使用済核燃料の硝酸溶液中に存在するプルトニウムの所
定量以上をプルトニウム6価の状態としてネプツニウム
と共存させることによって、硝酸溶液とTBP抽出剤と
の向流接触に際して、ウラン及びプルトニウムと共にネ
プツニウムも効果的かつ安定に抽出剤に抽出され、高回
収率で回収することができる。
As described above, according to the present invention,
Neptunium is effective together with uranium and plutonium in countercurrent contact between the nitric acid solution and the TBP extractant by allowing more than a predetermined amount of plutonium existing in the nitric acid solution of spent nuclear fuel to coexist with neptunium in a plutonium hexavalent state. Moreover, it can be stably extracted by the extractant and can be recovered at a high recovery rate.

【0025】その結果、ネプツニウムは高レベル廃液側
には実質的に排出されないため、ネプツニウムの60〜
70%以上が高レベル廃液側に排出されていた従来のピ
ューレックス湿式再処理法の共除染工程で提起されてい
た廃棄物管理上の問題を低減することができる。
As a result, since neptunium is not substantially discharged to the high-level liquid waste side, 60 to 60% of neptunium is discharged.
It is possible to reduce the problem of waste management that has been posed in the co-decontamination process of the conventional Purex wet reprocessing method in which 70% or more is discharged to the high-level liquid waste side.

【0026】また、硝酸溶液中のプルトニウム6価の量
を調整するためには、単に硝酸溶液を加熱するだけでよ
いから、プルトニウム原子価調整に従来から慣用されて
いた原子価調整剤等を使用する必要がない。
Further, in order to adjust the amount of plutonium hexavalent in the nitric acid solution, it suffices to simply heat the nitric acid solution. Therefore, a valence adjuster or the like conventionally used for adjusting the plutonium valence is used. You don't have to.

【図面の簡単な説明】[Brief description of drawings]

【図1】ピューレックス湿式再処理法の共除染工程の概
念を示す説明図。
FIG. 1 is an explanatory view showing the concept of a co-decontamination process of a Purex wet reprocessing method.

【図2】硝酸溶液中のプルトニウム6価の時間の経過に
よる自然還元を示すグラフ。
FIG. 2 is a graph showing spontaneous reduction of plutonium hexavalent in a nitric acid solution over time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 友広 淳也 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 (72)発明者 富樫 昭夫 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junya Tomohiro 4-3 Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture Inside the Tokai Plant, Reactor and Nuclear Fuel Development Corporation (72) Akio Togashi, Tokai-mura, Naka-gun, Ibaraki Prefecture Muramatsu No. 4 33 Tokai Plant, Reactor and Nuclear Fuel Development Corp.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 使用済核燃料の硝酸溶液をTBP抽出剤
と接触させて硝酸溶液中のネプツニウムをウラン及びプ
ルトニウムと共に抽出剤相に抽出する方法において、使
用済核燃料の硝酸溶液中に含有するプルトニウム全量の
少なくとも10重量%以上がプルトニウム6価として存
在している硝酸溶液をTBP抽出剤と接触させることを
特徴とするウラン、プルトニウム及びネプツニウムの共
抽出方法。
1. A method of contacting a nitric acid solution of a spent nuclear fuel with a TBP extractant to extract neptunium in the nitric acid solution into an extractant phase together with uranium and plutonium, and a total amount of plutonium contained in the nitric acid solution of the spent nuclear fuel. A method for coextracting uranium, plutonium and neptunium, which comprises contacting a nitric acid solution containing at least 10% by weight of plutonium as hexavalent with a TBP extractant.
【請求項2】 使用済核燃料の硝酸溶液をTBP抽出剤
と接触させて硝酸溶液中のネプツニウムをウラン及びプ
ルトニウムと共に抽出剤相に抽出する方法において、使
用済核燃料の硝酸溶液を加熱することによって硝酸溶液
中に含有するプルトニウム重量の少なくとも10%以上
をプルトニウム6価とし、この硝酸溶液をTBP抽出剤
と接触させることを特徴とするウラン、プルトニウム及
びネプツニウムの共抽出方法。
2. A method of contacting a nitric acid solution of spent nuclear fuel with a TBP extractant to extract neptunium in the nitric acid solution into an extractant phase together with uranium and plutonium, by heating the nitric acid solution of the spent nuclear fuel. A coextraction method for uranium, plutonium and neptunium, characterized in that at least 10% or more by weight of plutonium contained in the solution is plutonium hexavalent, and the nitric acid solution is brought into contact with a TBP extractant.
【請求項3】 硝酸溶液を70℃から硝酸溶液の沸点ま
での温度範囲内で加熱する請求項2記載の共抽出方法。
3. The co-extraction method according to claim 2, wherein the nitric acid solution is heated within a temperature range from 70 ° C. to the boiling point of the nitric acid solution.
JP6620694A 1994-04-04 1994-04-04 Method for co-extraction of uranium, plutonium and neptunium Expired - Fee Related JP2971729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6620694A JP2971729B2 (en) 1994-04-04 1994-04-04 Method for co-extraction of uranium, plutonium and neptunium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6620694A JP2971729B2 (en) 1994-04-04 1994-04-04 Method for co-extraction of uranium, plutonium and neptunium

Publications (2)

Publication Number Publication Date
JPH07280985A true JPH07280985A (en) 1995-10-27
JP2971729B2 JP2971729B2 (en) 1999-11-08

Family

ID=13309138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6620694A Expired - Fee Related JP2971729B2 (en) 1994-04-04 1994-04-04 Method for co-extraction of uranium, plutonium and neptunium

Country Status (1)

Country Link
JP (1) JP2971729B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541763A (en) * 2006-07-03 2009-11-26 アレヴァ・エヌセー Separation process of chemical elements from uranium obtained from nitrate aqueous phase (PHASEAQUEUSENITRIQUE) in uranium extraction cycle
JP2013533465A (en) * 2010-05-27 2013-08-22 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Process for reprocessing spent nuclear fuel that does not require a plutonium reduction back-extraction operation
CN112853128A (en) * 2020-12-30 2021-05-28 中国原子能科学研究院 Method and device for continuously adjusting neptunium valence and acidity in feed liquid of Purex process 1CU
CN114774720A (en) * 2022-03-11 2022-07-22 清华大学 Method for preparing pentavalent plutonium ions and method for extracting and separating plutonium ions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541763A (en) * 2006-07-03 2009-11-26 アレヴァ・エヌセー Separation process of chemical elements from uranium obtained from nitrate aqueous phase (PHASEAQUEUSENITRIQUE) in uranium extraction cycle
JP2013533465A (en) * 2010-05-27 2013-08-22 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Process for reprocessing spent nuclear fuel that does not require a plutonium reduction back-extraction operation
CN112853128A (en) * 2020-12-30 2021-05-28 中国原子能科学研究院 Method and device for continuously adjusting neptunium valence and acidity in feed liquid of Purex process 1CU
CN114774720A (en) * 2022-03-11 2022-07-22 清华大学 Method for preparing pentavalent plutonium ions and method for extracting and separating plutonium ions
CN114774720B (en) * 2022-03-11 2023-12-08 清华大学 Method for preparing pentavalent plutonium ion and method for extracting and separating plutonium ion

Also Published As

Publication number Publication date
JP2971729B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
Blake Jr et al. Solvent extraction of uranium and other metals by acidic and neutral organophosphorus compounds
JPH0980194A (en) Separation method for trivalent actinide and rare earth element
US3987145A (en) Ferric ion as a scavenging agent in a solvent extraction process
US20160314861A1 (en) Method for processing spent nuclear fuel comprising a step for decontaminating uranium (vi) from at least one actinide (iv) by complexing this actinide (iv)
CN1130733C (en) Nuclear fuel reprocessing
EP1685573A2 (en) Method for separating uranium (vi) from actinides (iv) and/or (vi) and the use thereof
Natarajan Reprocessing of spent fast reactor nuclear fuels
JP2971729B2 (en) Method for co-extraction of uranium, plutonium and neptunium
FR2748951A1 (en) PROCESS FOR THE SELECTIVE SEPARATION OF ACTINIDES (III) AND LANTHANIDES (III)
US3949049A (en) Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes
US3276850A (en) Method of selectively reducing plutonium values
US2951740A (en) Processing of neutron-irradiated uranium
US3962401A (en) Method of recovering neptunium from spent nuclear fuel
JPH0672946B2 (en) Method for separating technetium present in organic solvents with zirconium and one or more other metals such as uranium or plutonium, in particular for reprocessing irradiated nuclear fuel
RU2514947C2 (en) Method for re-extraction of plutonium from organic solution of tributyl phosphate
JP2551683B2 (en) Method for separating uranium and plutonium from uranium-plutonium mixed solution
Govindan et al. Partitioning of uranium and plutonium by acetohydroxamic acid
JP3159887B2 (en) Reprocessing of spent nuclear fuel
RU2767931C1 (en) Method for extraction purification of uranium extract from technetium
RU2623943C1 (en) Extraction mixture for the recovery of tpe and ree from high-active rafinat of npp snf processing and the method of its use (versions)
CA1163447A (en) Maintaining reductive strip efficiency in uranium recovery processes
US2893822A (en) Separation of uranium from other metals
JP7108519B2 (en) Isolation method for minor actinides
JP2565032B2 (en) U / Pu distribution method in Purex method
US4839101A (en) Process for improving the effectiveness of the removal of zirconium from a nuclear fuel and/or fertile material solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees