JPH07280765A - Conductivity measuring sensor - Google Patents

Conductivity measuring sensor

Info

Publication number
JPH07280765A
JPH07280765A JP10055994A JP10055994A JPH07280765A JP H07280765 A JPH07280765 A JP H07280765A JP 10055994 A JP10055994 A JP 10055994A JP 10055994 A JP10055994 A JP 10055994A JP H07280765 A JPH07280765 A JP H07280765A
Authority
JP
Japan
Prior art keywords
sample water
water flow
flow passage
measurement
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10055994A
Other languages
Japanese (ja)
Other versions
JP2579281B2 (en
Inventor
Hiroaki Yuzuriha
弘昭 杠葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARETSUKU DENSHI KK
Original Assignee
ARETSUKU DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARETSUKU DENSHI KK filed Critical ARETSUKU DENSHI KK
Priority to JP6100559A priority Critical patent/JP2579281B2/en
Publication of JPH07280765A publication Critical patent/JPH07280765A/en
Application granted granted Critical
Publication of JP2579281B2 publication Critical patent/JP2579281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the conductivity of a solution at high precision and carry out precise temperature correction. CONSTITUTION:A conductivity measuring sensor is composed of a pair of electric power source electrodes 1b, 1c put on both sides of a power source 10 for a.c. power supply, a pair of measurement electrodes, 1d, 1e put at a distance L mutually in the center of the electric power electrodes 1b, 1c for voltage measurement, a measurement tube 1 composed of insulating tubes 1a, 1a,... put between the electrodes and having a hollow cylindrical shape, a measurement tube 2 having the same structure as that of the measurement tube 1, and an insulating cover 3 and insulating members 4, 5 which form a test water flowing route 8 by connecting the insides 1f, 2f of the two measurement tubes 1, 2 with U-shape in series and at the same time which expose the electrode faces of all the electrodes only to the test water flowing route 8. A temperature sensor 7 is installed in the space 3a formed by connecting the insides 1f, 2f of the respective measurement tubes 1, 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶液の導電率、例えば
海水の塩分を算出するためのパラメータの一つである海
水の導電率を、海水に直接接触する電極間の電気抵抗値
を測定することによって導き出す電極方式の導電率測定
センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the electrical conductivity of a solution, for example, the electrical conductivity of seawater, which is one of the parameters for calculating the salt content of seawater, and the electrical resistance between electrodes that are in direct contact with seawater. The present invention relates to an electrode-type conductivity measuring sensor that is derived by

【0002】[0002]

【従来の技術】従来、溶液、例えば海水の導電率測定セ
ンサとして、図7から図10に示すような電極方式の導
電率測定センサが使用されている。図7及び図8に示す
導電率測定センサ21は、4極方式と呼ばれているもの
で、図7はその使用状態を示す側面図、図8は断面斜視
図である。図7及び図8において、21aは樹脂等の絶
縁体からなる棒状体で、同図に示すように、この棒状体
21aの略両端には対をなす電源電極21b、21c
が、またこの対をなす電源電極21b、21cの間には
互いにLなる間隔を隔てた状態で対をなす測定用電極2
1d、21eが、即ち合計4つの電極が各々棒状体21
aの表面に巻きつくように設けられている。なお、各電
源電極21b、21c、測定用電極21d、21eは、
例えば白金黒等によって形成されている。
2. Description of the Related Art Conventionally, as a conductivity measuring sensor for a solution such as seawater, an electrode type conductivity measuring sensor as shown in FIGS. 7 to 10 has been used. The conductivity measuring sensor 21 shown in FIGS. 7 and 8 is called a four-pole type, FIG. 7 is a side view showing its usage state, and FIG. 8 is a sectional perspective view. In FIGS. 7 and 8, reference numeral 21a denotes a rod-shaped body made of an insulating material such as resin. As shown in FIG.
However, between the pair of power supply electrodes 21b and 21c, the pair of measurement electrodes 2 are separated from each other by a distance L.
1d and 21e, that is, four electrodes in total
It is provided so as to be wound around the surface of a. The power supply electrodes 21b and 21c and the measurement electrodes 21d and 21e are
For example, it is formed of platinum black or the like.

【0003】この導電率測定センサ21は、図7に示す
ように、海水30に浸した状態で使用される。そして、
この状態で電源電極21b、21c間に交流電源10を
供給し、このとき海水30を介して流れる電流Iを(電
流計11によって)測定すると共に、海水30中の一部
分、即ちここでは間隔Lにおける電圧降下Vを(電圧計
12によって)測定することによって、間隔Lにおける
海水30の抵抗値を求めることができ、ひいては海水3
0の導電率χを算出することができる。数1に、この導
電率χの算出式を示す。
As shown in FIG. 7, the conductivity measuring sensor 21 is used in a state of being immersed in seawater 30. And
In this state, the AC power supply 10 is supplied between the power supply electrodes 21b and 21c, the current I flowing through the seawater 30 at this time is measured (by the ammeter 11), and a part of the seawater 30, that is, at the interval L here, is measured. By measuring the voltage drop V (by means of the voltmeter 12), the resistance value of the seawater 30 in the interval L can be determined, and thus the seawater 3
A conductivity χ of 0 can be calculated. Equation 1 shows the formula for calculating the conductivity χ.

【0004】[0004]

【数1】χ=L/(S・R)=(L・I)/(S/V)[Equation 1] χ = L / (SR) = (LI) / (S / V)

【0005】但し、数1において、Sは、海水30中を
流れる電流Iの間隔Lにおける電流経路の断面積、即ち
海水30のうち導電率χの測定対象となっている海水3
0(以下、試水という。)そのものの断面積である。図
7の場合、一般に、海水30中を流れる電流Iは棒状体
21aの略表面を流れるとされているので、試水の断面
積Sは棒状体21aの略外周に近似する。
However, in the equation 1, S is the cross-sectional area of the current path at the interval L of the current I flowing in the seawater 30, that is, the seawater 3 of the seawater 30 whose conductivity χ is to be measured.
It is the cross-sectional area of 0 (hereinafter referred to as sample water) itself. In the case of FIG. 7, generally, the current I flowing in the seawater 30 is said to flow substantially on the surface of the rod-shaped body 21a, so that the cross-sectional area S of the sample water approximates the substantially outer periphery of the rod-shaped body 21a.

【0006】また、溶液、即ち海水30の導電率χは、
海水30の温度によっても変化するので、高い精度で海
水30の導電率χを求めるためには、高い精度で海水3
0の温度測定を行う必要がある。図7に示す27がその
温度センサで、この温度センサ27によって測定した海
水30の温度を基に、導電率χを算出する際の温度補正
を行っている。
The conductivity χ of the solution, that is, the seawater 30, is
Since it also changes depending on the temperature of the seawater 30, in order to obtain the conductivity χ of the seawater 30 with high accuracy, the seawater 3 with high accuracy is required.
It is necessary to make a zero temperature measurement. Reference numeral 27 shown in FIG. 7 denotes the temperature sensor, which performs temperature correction when calculating the conductivity χ based on the temperature of the seawater 30 measured by the temperature sensor 27.

【0007】なお、図7及び図8に示すように、測定用
電極21d、21eの幅t2 は電源電極21b、21c
の幅t1 よりも狭くしてある。なぜなら、この測定用電
極21d、21eに接続された電圧計12は高入力イン
ピーダンスであるので測定用電極21d、21eの電極
面を大きくする必要がないのと共に、測定用電極21
d、21eの電極面が汚れることによって、結果的に間
隔Lが変化してしまうという影響を抑えるためである。
As shown in FIGS. 7 and 8, the width t 2 of the measuring electrodes 21d and 21e is set to the power supply electrodes 21b and 21c.
The width is smaller than the width t 1 . Because the voltmeter 12 connected to the measuring electrodes 21d and 21e has a high input impedance, it is not necessary to enlarge the electrode surface of the measuring electrodes 21d and 21e, and the measuring electrode 21
This is to suppress the influence that the distance L changes as a result of the electrode surfaces of d and 21e becoming dirty.

【0008】図9は、3極方式と呼ばれる導電率測定セ
ンサの使用状態を示す側面図である。同図に示すよう
に、この3極方式の導電率測定センサ121は、図7及
び図8に示す4極方式の導電率測定センサ21で2つ設
けられていた測定用電極21d、21eを1つ(図9で
は測定用電極21eを)省いた構成のものである。そし
て、対をなす電源電極のうち一方の電源電極(図9では
電源電極21c)を、測定用電極として兼用するもので
ある。従って、図9に示すように、測定用電極21dと
電源電極21cとの間が、導電率χの測定部分となる間
隔Lになる。これ以外については、図7及び図8に示す
4極方式の導電率測定センサ21と同様であり、海水の
導電率についても上記数1から算出することができる。
FIG. 9 is a side view showing a usage state of a conductivity measuring sensor called a three-pole type. As shown in the figure, this three-pole type conductivity measuring sensor 121 has two measuring electrodes 21d and 21e provided in the four-pole type conductivity measuring sensor 21 shown in FIGS. One (measurement electrode 21e in FIG. 9) is omitted. One of the paired power supply electrodes (power supply electrode 21c in FIG. 9) also serves as the measurement electrode. Therefore, as shown in FIG. 9, an interval L between the measurement electrode 21d and the power supply electrode 21c is a portion for measuring the conductivity χ. Other than this, the conductivity is the same as that of the four-pole conductivity measuring sensor 21 shown in FIGS. 7 and 8, and the conductivity of seawater can also be calculated from the above mathematical expression 1.

【0009】図10は、2極方式と呼ばれる導電率測定
センサの使用状態を示す側面図である。同図に示すよう
に、この2極方式の導電率測定センサ221は、図7及
び図8に示す4極方式の導電率測定センサ21で設けら
れていた対をなす測定用電極21d、21eを両方とも
省き、対をなす電源電極21b、21cを測定用電極と
して兼用したものである。従って、図10に示すよう
に、2つの電源電極21b、21c間が、導電率χの測
定部分となる間隔Lになる。この他については、図7及
び図8に示す4極方式の導電率測定センサ21と同様で
あり、海水の導電率についても上記数1から算出するこ
とができる。
FIG. 10 is a side view showing a usage state of a conductivity measuring sensor called a two-pole type. As shown in the figure, this two-pole type conductivity measuring sensor 221 has the pair of measuring electrodes 21d and 21e provided in the four-pole type conductivity measuring sensor 21 shown in FIGS. Both are omitted, and the paired power supply electrodes 21b and 21c are also used as measurement electrodes. Therefore, as shown in FIG. 10, the distance L between the two power supply electrodes 21b and 21c becomes the measurement portion of the conductivity χ. The other points are the same as those of the four-pole type conductivity measuring sensor 21 shown in FIGS. 7 and 8, and the conductivity of seawater can also be calculated from the above mathematical expression 1.

【0010】なお、図9に示す3極方式の導電率測定セ
ンサ121、及び図10に示す2極方式の導電率測定セ
ンサ221は、図7及び図8に示す4極式の導電率測定
センサ21に比べて、測定用電極21d、21eの一方
又は両方を省いた分だけ構造が簡単であり、製造コスト
が易いという利点を有している。しかし、この利点とは
逆に、測定用電極としての兼用している電源電極21b
及び21cの電極面が汚れたとき、間隔Lが変化してし
まうと共に、その汚れによって生じる電圧降下が電圧計
12の測定値Vに影響するため、図7及び図8の4極式
の導電率測定センサ21よりも精度が悪くなるという欠
点がある。
The three-pole type conductivity measuring sensor 121 shown in FIG. 9 and the two-pole type conductivity measuring sensor 221 shown in FIG. 10 are the four-pole type conductivity measuring sensor shown in FIGS. 7 and 8. Compared with No. 21, the structure is simple and the manufacturing cost is easy because only one or both of the measurement electrodes 21d and 21e are omitted. However, contrary to this advantage, the power supply electrode 21b that also serves as a measurement electrode is used.
When the electrode surfaces of the electrodes 21 and 21c are soiled, the distance L changes and the voltage drop caused by the soiling affects the measured value V of the voltmeter 12. There is a drawback that the accuracy is worse than that of the measurement sensor 21.

【0011】[0011]

【発明が解決しようとする課題】上述したように、上記
図7から図10に示す従来の導電率測定センサにおいて
は、海水30中を流れる電流Iは棒状体21aの略表面
を流れるものと定めており、棒状体21aの略外周に近
似した値を試水の断面積Sとし、これを数1に代入して
導電率χを算出している。しかし、電流Iは、厳密には
棒状体21aの表面に限らず海水30中のあらゆる方向
に流れており、例えば図7、図9及び図10の矢印28
に示すような棒状態21aの表面から比較的離れた海水
30中を流れる成分もあるので、実際には上記のように
試水の断面積Sを確定することはできない。従って、数
1によって算出された導電率χは、あくまで近似値であ
るため、高い精度の導電率χの値を得ることができない
という問題がある。
As described above, in the conventional conductivity measuring sensor shown in FIGS. 7 to 10, it is determined that the current I flowing in the seawater 30 flows substantially on the surface of the rod 21a. Therefore, a value approximating the outer circumference of the rod-shaped body 21a is defined as the cross-sectional area S of the sample water, and this is substituted into Equation 1 to calculate the conductivity χ. However, strictly speaking, the current I is flowing not only on the surface of the rod-shaped body 21a but in all directions in the seawater 30, and for example, the arrow 28 in FIGS. 7, 9 and 10.
Since there is also a component that flows in the seawater 30 that is relatively far from the surface of the rod state 21a as shown in, the cross-sectional area S of the sample water cannot be actually determined as described above. Therefore, since the conductivity χ calculated by the equation 1 is just an approximate value, there is a problem that a highly accurate value of the conductivity χ cannot be obtained.

【0012】また、上記従来技術おいては、試水の温度
を測定するための温度センサ27は、試水の導電率χを
測定している部分、即ち間隔Lの部分から比較的離れた
場所に設けられている。従って、この温度センサ27
は、導電率χの測定対象となる試水そのものの温度を測
定しているとは限らない。一方、試水そのものの温度を
測定するために、温度センサ27を間隔L内に配置する
と、この間隔Lにおける導電率χが変化してしまうの
で、結果的には、この温度センサ27を間隔L内に配置
することはできない。その上、この温度センサ27は、
その表面が海水30に対して開放された状態に設けられ
ているので、海水30の流れに晒されて、この海水30
の流れの影響をまともに受けてしまい、これによって安
定した試水の温度測定を行うことができない。つまり、
上記従来の導電率測定センサでは、試水そのものの温度
を測定することができないので、正確な温度補正を実現
することができず、結果的に高い精度で導電率χを求め
ることができないという問題がある。
Further, in the above-mentioned prior art, the temperature sensor 27 for measuring the temperature of the sample water is located relatively far from the part measuring the conductivity χ of the sample water, that is, the part of the interval L. It is provided in. Therefore, this temperature sensor 27
Does not necessarily measure the temperature of the sample water itself, which is the target of measurement of the conductivity χ. On the other hand, if the temperature sensor 27 is arranged within the interval L in order to measure the temperature of the test water itself, the conductivity χ at this interval L will change, and as a result, the temperature sensor 27 will be separated by the interval L. It cannot be placed inside. Moreover, this temperature sensor 27
Since the surface of the seawater 30 is open to the seawater 30, the surface of the seawater 30 is exposed to the flow of the seawater 30.
The temperature of the sample water is affected by the flow of water, which makes stable temperature measurement of the sample water impossible. That is,
In the above-mentioned conventional conductivity measuring sensor, since the temperature of the sample water itself cannot be measured, accurate temperature correction cannot be realized, and as a result, the conductivity χ cannot be obtained with high accuracy. There is.

【0013】本発明は、導電率χを測定する試水の断面
積を確定することによって、高い精度で導電率χを算出
することができ、また測定対象となっている試水そのも
のの温度を測定することによって、正確な温度補正を行
うことができる導電率測定センサを提供することを目的
とする。
In the present invention, the conductivity χ can be calculated with high accuracy by determining the cross-sectional area of the sample water for measuring the conductivity χ, and the temperature of the sample water itself to be measured can be calculated. An object of the present invention is to provide a conductivity measuring sensor capable of performing accurate temperature correction by measuring.

【0014】[0014]

【課題を解決するための手段】第1の発明の導電率測定
センサは、絶縁体から成り内部に試水流通路を形成する
と共に上記試水流通路の入口及び出口として上記内部に
通ずる2つの開口部を有する中空体と、電極面が上記試
水流通路内にのみ露出する状態に上記試水流通路に沿っ
て各々所定の間隔を隔てて設けた対をなす測定用電極
と、上記測定用電極の対を挟んで各々予め定めた間隔を
隔てると共に電極面が上記試水流通路にのみ露出する状
態に設けた対をなす電源電極とを具備し、上記試水流通
路の方向に対して直角な上記試水流通路の断面積が少な
くとも上記対をなす測定用電極間において一定に構成さ
れたセルを偶数個有し、上記偶数個のセルの各上記試水
流通路を各々直列に接続する接続部を備え、上記電源電
極に電源を供給したとき、上記各セル内の上記対をなす
電源電極が各々逆の極性になる状態に、かつ隣接する上
記セル間においては各々隣り合う上記電源電極の極性が
同じ極性になる状態に構成したことを特徴とするもので
ある。
A conductivity measuring sensor according to a first aspect of the present invention comprises an insulator, which forms a sample water flow passage therein, and two sensors which communicate with the inside as an inlet and an outlet of the sample water flow passage. A hollow body having an opening, a pair of measuring electrodes provided at predetermined intervals along the sample water flow passage so that the electrode surface is exposed only in the sample water flow passage, and the measurement And a pair of power supply electrodes that are provided at a predetermined interval with the electrode pair sandwiched therebetween and the electrode surfaces are exposed only in the sample water flow passage, and with respect to the direction of the sample water flow passage. Has an even number of cells whose cross-sectional area of the test water flow passages that are perpendicular to each other is at least constant between at least the pair of measurement electrodes, and the test water flow passages of the even number of cells are connected in series. A power supply was supplied to the above-mentioned power supply electrode by providing a connecting portion for connection. When the pair of power supply electrodes in each cell have opposite polarities, and between the adjacent cells, the power supply electrodes adjacent to each other have the same polarity. It is a feature.

【0015】第2の発明の導電率測定センサは、第1の
発明の導電率測定センサにおいて、上記試水流通路内に
おいて上記対をなす測定用電極間の外側に位置する上記
試水流通路内、又は上記接続部内に温度センサを設けた
ことを特徴とするものである。
A conductivity measuring sensor according to a second invention is the conductivity measuring sensor according to the first invention, wherein the sample water flow passage is located outside the pair of measuring electrodes in the sample water flow passage. A temperature sensor is provided inside or inside the connection portion.

【0016】第3の発明の導電率測定センサは、絶縁体
から成り内部に試水流通路を形成すると共に上記試水流
通路の入口及び出口として上記内部に通ずる2つの開口
部を有する中空体と、電極面が上記試水流通路内にのみ
露出する状態に設けた測定用電極と、電極面が上記試水
流通路内にのみ露出する状態に上記試水流通路に沿って
上記測定用電極から所定の間隔を隔てて設けた電源兼測
定用電極と、上記測定用電極の上記電源兼測定用電極が
位置する側とは反対側に上記電源兼測定用電極から予め
定めた間隔を隔てると共に電極面が上記試水流通路にの
み露出する状態に設けた電源電極とを具備し、上記試水
流通路の方向に対して直角な上記試水流通路の断面積が
少なくとも上記測定用電極と電源兼測定用電極との間に
おいて一定に構成されたセルを偶数個有し、上記偶数個
のセルの各上記試水流通路を各々直列に接続する接続部
を備え、上記電源兼測定用電極及び上記電源電極に電源
を供給したとき、上記各セル内の上記電源兼測定用電極
及び上記電源電極の極性が各々逆の極性になる状態に、
かつ隣接する上記セル間においては各々隣り合う上記電
源兼測定用電極又は上記電源電極が同じ極性になる状態
に構成したことを特徴とするものである。
A conductivity measuring sensor according to a third aspect of the present invention is a hollow body which is made of an insulating material and forms a sample water flow passage therein, and which has two openings communicating with the inside as an inlet and an outlet of the sample water flow passage. And an electrode for measurement provided in a state where the electrode surface is exposed only in the sample water flow passage, and for measurement along the sample water flow passage in a state in which the electrode surface is exposed only in the sample water flow passage A power source / measurement electrode provided at a predetermined distance from the electrode, and a predetermined distance from the power source / measurement electrode on the opposite side of the measurement electrode from the side where the power source / measurement electrode is located. And a power electrode provided such that the electrode surface is exposed only in the sample water flow passage, and the cross-sectional area of the sample water flow passage perpendicular to the direction of the sample water flow passage is at least the measurement electrode. Between the power supply and measurement electrode And an even number of cells, each of which has a connecting portion for connecting each of the sample water flow passages of the even number of cells in series, and when the power is supplied to the power / measurement electrode and the power electrode, In the state where the polarities of the power source / measurement electrode and the power source electrode in each cell are opposite to each other,
In addition, between the adjacent cells, the adjacent power source / measurement electrode or the power source electrode has the same polarity.

【0017】第4の発明の導電率測定センサは、第3の
発明の導電率測定センサにおいて、上記試水流通路内に
おいて上記セル毎の上記測定用電極と電源兼測定用電極
間の外側に位置する上記試水流通路内、又は上記接続部
内に温度センサを設けたことを特徴とするものである。
A conductivity measuring sensor according to a fourth aspect of the present invention is the conductivity measuring sensor according to the third aspect, wherein the conductivity measuring sensor is provided outside the measurement electrode and the power source / measurement electrode of each cell in the sample water flow passage. It is characterized in that a temperature sensor is provided in the sample water flow passage located therein or in the connection portion.

【0018】第5の発明の導電率測定センサは、絶縁体
から成り内部に試水流通路を形成すると共に上記試水流
通路の入口及び出口として上記内部に通ずる2つの開口
部を有する中空体と、電極面が上記試水流通路内にのみ
露出する状態に上記試水流通路に沿って各々所定の間隔
を隔てて設けた対をなす電源兼測定用電極とを具備し、
上記試水流通路の方向に対して直角な上記試水流通路の
断面積が上記対をなす電源兼測定用電極間において一定
に構成されたセルを偶数個有し、上記偶数個のセルの各
上記試水流通路を各々直列に接続する接続部を備え、上
記電源兼測定用電極に電源を供給したとき、上記各セル
内の上記対をなす電源兼測定用電極が各々逆の極性にな
る状態に、かつ隣接する上記セル間においては各々隣り
合う上記電源兼測定用電極の極性が同じ極性になる状態
に構成したことを特徴とするものである。
A conductivity measuring sensor according to a fifth aspect of the present invention is a hollow body which is made of an insulating material and has a sample water flow passage formed therein and has two openings communicating with the inside as an inlet and an outlet of the sample water flow passage. And a pair of power supply and measurement electrodes provided at predetermined intervals along the sample water flow passage in a state where the electrode surface is exposed only in the sample water flow passage,
The cross-sectional area of the sample water flow path perpendicular to the direction of the sample water flow path has an even number of cells that are uniformly configured between the pair of power source / measurement electrodes, and the even number of cells Each of the sample water flow passages is provided with a connecting portion that is connected in series, and when power is supplied to the power supply / measurement electrode, the pair of power supply / measurement electrodes in each cell have opposite polarities. In this state, and between the adjacent cells, the polarities of the adjacent power supply / measurement electrodes are the same.

【0019】第6の発明の導電率測定センサは、第5の
発明の導電率測定センサにおいて、上記試水流通路内に
おいて上記セル毎の上記対をなす電源兼測定用電極間の
外側に位置する上記試水流通路内、又は上記接続部内に
温度センサを設けたことを特徴とするものである。
A conductivity measuring sensor according to a sixth aspect of the present invention is the conductivity measuring sensor according to the fifth aspect, wherein the conductivity measuring sensor is located outside the pair of power source / measurement electrodes for each cell in the sample water flow passage. The temperature sensor is provided in the sample water flow passage or the connection portion.

【0020】[0020]

【作用】第1の発明によれば、各セルは、中空体と、対
をなす電源電極と、対をなす測定用電極とによって、4
極方式の導電率測定センサを構成しており、各電極の電
極面は中空体の内部に形成された試水流通路内を通る試
水にのみ接触する。そして、偶数個のセルの各試水流通
路は直列の状態で1本に接続されており、各セルの各電
源電極に電源を供給したとき、各セル毎の対をなす電源
電極は各々逆の極性になり、また隣接するセル間の隣り
合う電源電極は各々同じ極性になる。つまり、電源を供
給することによって流れる電流は各セル毎の電源電極間
にのみ流れ、また、1本に接続された試水流通路全体の
入口側及び出口側に位置する電源電極は必然的に同じ極
性になるので、この試水流通路全体の入口側及び出口側
に位置する電源電極間に電流は流れない。その上、導電
率の測定部分となる上記対をなす測定用電極間における
試水流通路の断面積は一定である。従って、各セル毎に
おける電流経路の断面積、即ち試水そのものの断面積が
確定される。
According to the first aspect of the invention, each cell is composed of a hollow body, a pair of power supply electrodes, and a pair of measurement electrodes.
The electrode-type conductivity measuring sensor is configured so that the electrode surface of each electrode comes into contact with only the sample water passing through the sample water flow passage formed inside the hollow body. Each sample water flow passage of an even number of cells is connected in series in one line, and when power is supplied to each power supply electrode of each cell, the power supply electrodes forming a pair for each cell are reversed. And adjacent power supply electrodes between adjacent cells have the same polarity. That is, the current flowing by supplying the power flows only between the power supply electrodes of each cell, and the power supply electrodes located at the inlet side and the outlet side of the entire test water flow passage connected to one cell are inevitably inevitable. Since the polarities are the same, no current flows between the power supply electrodes located on the inlet side and the outlet side of the entire test water flow passage. Moreover, the cross-sectional area of the sample water flow passage between the pair of measurement electrodes, which is a portion for measuring the conductivity, is constant. Therefore, the cross-sectional area of the current path in each cell, that is, the cross-sectional area of the sample water itself is determined.

【0021】第2の発明によれば、第1の発明の導電率
測定センサにおいて、各セル毎の対をなす測定用電極間
以外の試水流通路内、又は接続部内に温度センサを設け
ているので、試水流通路内を通る試水そのものの温度を
測定することができる。
According to the second invention, in the conductivity measuring sensor of the first invention, a temperature sensor is provided in the sample water flow passage other than between the pair of measuring electrodes for each cell, or in the connecting portion. Therefore, the temperature of the sample water itself passing through the sample water flow passage can be measured.

【0022】第3の発明によれば、各セルは、中空体
と、電源電極と、電源兼測定用電極と、測定用電極とに
よって、3極方式の導電率測定センサを構成しており、
各電極の電極面は中空体の内部に形成された試水流通路
内を通る試水にのみ接触する。そして、偶数個のセルの
各試水流通路は直列の状態で1本に接続されており、各
セルの各電源電極及び電源兼測定用電極に電源を供給し
たとき、各セル毎の電源電極及び電源兼測定用電極は各
々逆の極性になり、また隣接するセル間の隣り合う電源
電極又は電源兼測定用電極は各々同じ極性になる。つま
り、電源を供給することによって流れる電流は各セル毎
の電源電極と電源兼測定用電極間にのみ流れ、また、1
本に接続された試水流通路全体の入口側及び出口側に位
置する電源電極又は電源兼測定用電極は必然的に同じ極
性になるので、この試水流通路全体の入口側及び出口側
に位置する電極間に電流は流れない。その上、導電率の
測定部分である電源兼測定用電極と測定用電極間におけ
る試水流通路の断面積は一定である。従って、各セル毎
における電流経路の断面積、即ち試水そのものの断面積
が確定される。
According to the third aspect of the invention, each cell constitutes a three-pole type conductivity measuring sensor by the hollow body, the power source electrode, the power source / measurement electrode, and the measurement electrode.
The electrode surface of each electrode contacts only the sample water passing through the sample water flow passage formed inside the hollow body. Each sample water flow passage of an even number of cells is connected in series in one line, and when power is supplied to each power supply electrode and power supply / measurement electrode of each cell, the power supply electrode of each cell is connected. The power supply and measurement electrodes have opposite polarities, and the adjacent power supply electrodes or power supply and measurement electrodes between adjacent cells have the same polarity. That is, the current flowing by supplying the power flows only between the power electrode and the power / measurement electrode of each cell, and
Since the power source electrodes or power source / measurement electrodes located on the inlet side and outlet side of the entire test water flow passage connected to the book inevitably have the same polarity, there are No current flows between the positioned electrodes. In addition, the cross-sectional area of the sample water flow passage between the measurement electrode and the power source / measurement electrode, which is the portion for measuring the conductivity, is constant. Therefore, the cross-sectional area of the current path in each cell, that is, the cross-sectional area of the sample water itself is determined.

【0023】第4の発明によれば、第3の発明の導電率
測定センサにおいて、各セル毎の測定用電極と電源兼測
定用電極との間以外の試水流通路内、又は接続部内に温
度センサを設けているので、試水流通路内を通る試水そ
のものの温度を測定することができる。
According to the fourth aspect of the invention, in the conductivity measuring sensor of the third aspect, in the test water flow passage other than between the measurement electrode and the power source / measurement electrode of each cell, or in the connection part. Since the temperature sensor is provided, the temperature of the sample water itself passing through the sample water flow passage can be measured.

【0024】第5の発明によれば、各セルは、中空体
と、対をなす電源兼測定用電極とによって、2極方式の
導電率測定センサを構成しており、各電源兼測定用電極
の電極面は中空体の内部に形成された試水流通路内を通
る試水にのみ接触する。そして、偶数個のセルの各試水
流通路は直列の状態で1本に接続されており、各セルの
各電源兼測定用電極に電源を供給したとき、各セル毎の
対をなす電源兼測定用電極は各々逆の極性になり、また
隣接するセル間の隣り合う電源兼測定用電極は各々同じ
極性になる。つまり、電源を供給することによって流れ
る電流は各セル毎の電源兼測定用電極間にのみ流れ、ま
た、1本に接続された試水流通路全体の入口側及び出口
側に位置する電源兼測定用電極は必然的に同じ極性にな
るので、この試水流通路全体の入口側及び出口側に位置
する電源兼測定用電極に電流は流れない。その上、導電
率の測定部分である対をなす電源兼測定用電極間におけ
る試水流通路の断面積は一定である。従って、各セル毎
における電流経路の断面積、即ち試水そのものの断面積
が確定される。
According to the fifth aspect of the invention, each cell constitutes a conductivity measuring sensor of the two-pole type by the hollow body and the paired power source / measurement electrode. The electrode surface of (1) contacts only the sample water passing through the sample water flow passage formed inside the hollow body. Each sample water flow passage of an even number of cells is connected in series in one line, and when power is supplied to each power source / measurement electrode of each cell, it also serves as a pair of power source / cell for each cell. The measurement electrodes have opposite polarities, and the adjacent power supply / measurement electrodes between adjacent cells have the same polarity. In other words, the current that flows when the power is supplied flows only between the power / measurement electrodes of each cell, and the power / measurement located on the inlet and outlet sides of the entire sample water flow passage connected to one cell. Since the working electrodes inevitably have the same polarity, no current flows through the power supply / measuring electrodes located on the inlet side and the outlet side of the entire test water flow passage. Moreover, the cross-sectional area of the sample water flow passage between the pair of power source / measuring electrodes, which is a portion for measuring conductivity, is constant. Therefore, the cross-sectional area of the current path in each cell, that is, the cross-sectional area of the sample water itself is determined.

【0025】第6の発明によれば、第5の発明の導電率
測定センサにおいて、各セル毎の対をなす電源兼測定用
電極間以外の試水流通路内、又は接続部内に温度センサ
を設けているので、試水流通路内を通る試水そのものの
温度を測定することができる。
According to the sixth invention, in the conductivity measuring sensor of the fifth invention, a temperature sensor is provided in the test water flow passage other than between the pair of power source / measuring electrodes for each cell, or in the connecting portion. Since it is provided, the temperature of the sample water itself passing through the sample water flow passage can be measured.

【0026】[0026]

【実施例】本第1の発明に係る導電率測定センサの第1
実施例を図1から図3を参照して説明する。図1は、こ
の導電率測定センサの使用状態を示す断面図で、同図に
おける1、2を測定管と呼ぶ。この測定管1、2は、同
じ構造から成り、これらの構造を示す測定管1の断面斜
視図を図2に示す。
[First Embodiment] A first conductivity measuring sensor according to the first invention.
An embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view showing a usage state of this conductivity measuring sensor, and reference numerals 1 and 2 in FIG. 1 are called measuring tubes. The measuring tubes 1 and 2 have the same structure, and a sectional perspective view of the measuring tube 1 showing these structures is shown in FIG.

【0027】図2において、この測定管1を構成してい
る1a、1a、・・・は外径D及び内径dの円筒形から
成る絶縁体で形成された絶縁管、1b、1cは外径D及
び内径dの環状形を有する電源電極、1d、1eは外径
D及び内径dの環状形を有する測定用電極である。そし
て、同図に示すように、この測定管1は、その両端に電
源電極1b、1cが位置するように、また略中央に測定
用電極1d、1eが各々Lなる間隔を隔てて位置するよ
うに、各電極間に絶縁管1a、1a、・・・を介在させ
たサンドイッチ構造とすることによって、外径D及び内
径dから成る中空円柱を形成している。つまり、この測
定管1は、図8に示す従来の導電率測定センサの内部を
くり抜いたような形状をしており、このくり抜かれた内
部1fにも電源電極1b、1c、及び測定用電極1d、
1eの各電極面が露出するように構成すると共に、これ
らの4つの電極を有する4極方式の導電率測定センサを
形成している。なお、本実施例においては、絶縁管1
a、1a、・・・はセラミック、電源電極1b、1c、
及び測定用電極1d、1eは各々カーボンで形成されて
いる。また、測定管1及び2の外径Dは約8mm、内径
dは約4mm、間隔Lは約18mmとしている。そし
て、上記のとおり、この測定管1と測定管2とは同じ構
造を有している。
In FIG. 2, reference numerals 1a, 1a, ... Constituting the measuring pipe 1 are insulating pipes made of a cylindrical insulator having an outer diameter D and an inner diameter d, and 1b and 1c are outer diameters. Power electrodes 1d and 1e having an annular shape of D and inner diameter d are measuring electrodes having an annular shape of outer diameter D and inner diameter d. As shown in the figure, the measuring tube 1 is arranged such that the power supply electrodes 1b and 1c are located at both ends thereof, and the measuring electrodes 1d and 1e are located at substantially L centers with an interval of L. In addition, a hollow cylinder having an outer diameter D and an inner diameter d is formed by forming a sandwich structure in which insulating tubes 1a, 1a, ... Are interposed between the electrodes. That is, the measuring tube 1 has a shape like the inside of the conventional conductivity measuring sensor shown in FIG. 8, and the power source electrodes 1b, 1c and the measuring electrode 1d are also included in the hollowed inside 1f. ,
The electrode surface of 1e is configured to be exposed, and a four-pole type conductivity measurement sensor having these four electrodes is formed. In this embodiment, the insulating tube 1
a, 1a, ... Are ceramics, power supply electrodes 1b, 1c,
The measurement electrodes 1d and 1e are each made of carbon. The outer diameter D of the measuring tubes 1 and 2 is about 8 mm, the inner diameter d is about 4 mm, and the interval L is about 18 mm. Then, as described above, the measuring pipe 1 and the measuring pipe 2 have the same structure.

【0028】この測定管1、2は、図1に示すように、
例えば樹脂など絶縁体によって形成された絶縁カバー3
及び絶縁部材4、5によって、各電極が測定管1及び2
の内部1f及び2f以外の空間に露出しないようにモー
ルドされている。そして、測定管1の内部1fの電源電
極1b側は絶縁部材4の開口部4aと連続しており、測
定管2の内部2fの電源電極2b側は絶縁部材5の開口
部5aと連続している。また、測定管1の内部1fの電
源電極1c側と測定管2の内部2fの電源電極2f側と
は、絶縁カバー3によって相互に接続されている。従っ
て、絶縁部材4及び5の開口部4a及び5aに連続して
いる測定管1及び2の各内部1f及び2fは、絶縁カバ
ー3によって形成された空間3aを介してU字状に直列
状態で接続されている。更に、この絶縁カバー3の空間
3a部分には、温度センサ7が設けられている。また、
絶縁管1の電源電極1cと測定管2の電源電極2cと
は、短絡線6によって導通状態になっている。
The measuring tubes 1 and 2 are, as shown in FIG.
Insulation cover 3 formed of an insulator such as resin
And the insulating members 4 and 5 allow the electrodes to be connected to the measuring tubes 1 and 2 respectively.
It is molded so as not to be exposed in a space other than the interiors 1f and 2f. The power supply electrode 1b side of the inside 1f of the measuring tube 1 is continuous with the opening 4a of the insulating member 4, and the power supply electrode 2b side of the inside 2f of the measuring tube 2 is continuous with the opening 5a of the insulating member 5. There is. Further, the power supply electrode 1c side of the inside 1f of the measuring tube 1 and the power supply electrode 2f side of the inside 2f of the measuring tube 2 are connected to each other by an insulating cover 3. Therefore, the insides 1f and 2f of the measuring tubes 1 and 2 which are continuous with the openings 4a and 5a of the insulating members 4 and 5 are connected in a U-shape in a serial state via the space 3a formed by the insulating cover 3. It is connected. Further, a temperature sensor 7 is provided in the space 3a of the insulating cover 3. Also,
The power supply electrode 1c of the insulating tube 1 and the power supply electrode 2c of the measuring tube 2 are electrically connected by the short-circuit wire 6.

【0029】なお、絶縁管1a及び2aと、絶縁カバー
3と、絶縁部材4及び5とが、請求項に記載の中空体に
対応する。また、測定管1及び2と、絶縁カバー3と、
絶縁部材4及び5とによって、請求項に記載のセルに対
応するものが2つ形成される。そして、測定管1及び2
の各内部1f及び2fを絶縁カバー3によって接続され
た部分が、請求項に記載の接続部に対応する。
The insulating tubes 1a and 2a, the insulating cover 3, and the insulating members 4 and 5 correspond to the hollow body described in the claims. Also, the measuring tubes 1 and 2, the insulating cover 3,
The insulating members 4 and 5 form two members corresponding to the cells described in the claims. And measuring tubes 1 and 2
A portion in which each of the insides 1f and 2f is connected by the insulating cover 3 corresponds to the connecting portion described in the claims.

【0030】次に、この導電率測定センサの作用につい
て説明する。図1において、絶縁部材4の開口部4aか
ら海水、即ち試水を例えばポンプ装置等の強制循環装置
(図示せず)によって供給する。この供給された試水
は、測定管1の内部1fと空間3aと測定管2の内部2
aとを介して、絶縁部材5の開口部5aから排出され
る。つまり、測定管1の内部1fと空間3aと測定管2
の内部2aとによって、絶縁部材4及び5の開口部4a
及び5aを各々試水吸入口及び試水排出口とする試水流
通路8が形成される。
Next, the operation of this conductivity measuring sensor will be described. In FIG. 1, seawater, that is, sample water is supplied from the opening 4a of the insulating member 4 by a forced circulation device (not shown) such as a pump device. The supplied sample water is used for measuring the inside 1f of the measuring pipe 1, the space 3a, and the inside 2 of the measuring pipe 2.
It is discharged from the opening 5a of the insulating member 5 via a. That is, the inside 1f of the measuring tube 1, the space 3a, and the measuring tube 2
The interior 2a of the insulating member 4 and the opening 4a of the insulating member 4
5 and 5a are formed as sample water inlets and sample water outlets, respectively.

【0031】そして、図1に示す状態で測定管1の電源
電極1b、1c間、及び測定管2の電源電極2b、2c
間に、例えば周波数が10kHz程の交流電源10を各々
供給する。ここで、この交流電源10は、電源電極1b
に対しては電流計11を介して供給され、また電源電極
2bに対しては電流計11gを介して供給される。そし
て、各電流計11、11aの入力インピーダンスは略0
に等しいので、電源電極1bと2bとは略導通状態にな
る。従って、電源電極1bと2b、及び電源電極1cと
2cとは各々同電位(同極)になり、これによって、こ
れらの電源電極1bと2b間、電源電極1cと2c間
に、電流が流れることはない。つまり、2つの測定管1
及び2間を相互に流れ込む電流はないので、電源電極1
c及び1d間に流れる電流I1 は、測定管1の内部1f
にある試水のみを流れ、また電源電極2c及び2d間に
流れる電流I2 は、測定管2の内部2fにある試水のみ
を流れる。また、各電流I1 及びI2 が流れる試水の断
面積Sは、各測定管1及び2の内部1f及び2fの断面
積、即ち直径dなる円の面積である。従って、この試水
の断面積Sを流れる電流I1 及びI2 を(電流計11及
び11gによって)測定すると共に、試水の一部分、即
ち間隔Lにおける電圧降下V1 及びV2 を(電圧計12
及び12gによって)測定することによって、間隔Lに
おける試水の抵抗値Rを求めることができ、従来と同様
に、数1から試水の導電率χを算出することができる。
Then, in the state shown in FIG. 1, between the power supply electrodes 1b and 1c of the measuring tube 1 and between the power supply electrodes 2b and 2c of the measuring tube 2.
In the meantime, for example, the AC power supplies 10 having a frequency of about 10 kHz are supplied. Here, this AC power supply 10 is provided with a power supply electrode 1b.
To the power electrode 2b via the ammeter 11g. The input impedance of each ammeter 11, 11a is approximately 0.
Therefore, the power supply electrodes 1b and 2b are brought into a substantially conductive state. Therefore, the power supply electrodes 1b and 2b and the power supply electrodes 1c and 2c have the same potential (same polarity), which allows current to flow between the power supply electrodes 1b and 2b and between the power supply electrodes 1c and 2c. There is no. That is, two measuring tubes 1
Since there is no current that flows between each other, the power electrode 1
The current I 1 flowing between c and 1d is 1f inside the measuring tube 1.
The current I 2 flowing only in the sample water inside the measuring tube 2 flows between the power supply electrodes 2c and 2d. The cross-sectional area S of the sample water through which the currents I 1 and I 2 flow is the cross-sectional area of the insides 1f and 2f of the measuring tubes 1 and 2, that is, the area of the circle having the diameter d. Therefore, the currents I 1 and I 2 flowing through the cross-sectional area S of this sample water are measured (by ammeters 11 and 11 g), and the voltage drops V 1 and V 2 in a part of the sample water, that is, the interval L (voltmeter) are measured. 12
And 12 g), the resistance value R of the sample water in the interval L can be obtained, and the conductivity χ of the sample water can be calculated from Equation 1 as in the conventional case.

【0032】また、試水流通路8を流れる試水の温度
は、試水流通路8の一部を形成している空間3aに設け
られている温度センサ7によって測定される。従って、
この温度センサ7は、試水そのものの温度を測定するこ
とができる。
The temperature of the sample water flowing through the sample water flow passage 8 is measured by a temperature sensor 7 provided in the space 3a forming a part of the sample water flow passage 8. Therefore,
The temperature sensor 7 can measure the temperature of the test water itself.

【0033】なお、図8に示す従来の4極方式の導電率
測定センサ21と同様に、測定用電極1d、1eの幅t
2 は、電極面の汚れによる影響を抑えるために、図2に
示すように、電源電極1b、1cの幅t1 よりも狭くし
てある。
Note that the width t of the measuring electrodes 1d and 1e is the same as that of the conventional four-pole type conductivity measuring sensor 21 shown in FIG.
In order to suppress the influence of the dirt on the electrode surface, 2 is made narrower than the width t 1 of the power supply electrodes 1b and 1c as shown in FIG.

【0034】上記のように、この導電率測定センサは、
図1に示す状態で測定管1の電源電極1b、1c間、及
び測定管2の電源電極2b、2c間に各々交流電源10
を供給すると、電源電極1bと2bとが同電位(同極)
になり、電源電極1cと2cとが同電位(同極)にな
る。従って、電源電極1c及び1d間に流れる電流I1
は、測定管1の内部1fにある試水のみを流れ、また電
源電極2c及び2d間に流れる電流I2 は、測定管2の
内部2fにある試水のみを流れ、電源電極1b及び2b
間、電源電極1c及び2c間で相互に電流が流れ込むこ
とはない。また、各電流I1 及びI2 が流れる試水の断
面積Sは、試水流通路8の方向に沿って一定である。従
って、導電率χを数1によって算出する際、電流I1
びI2 の電流経路の断面積、即ち試水の断面積Sが確定
されるため、数1に示す算出式を確実に成立させること
ができる。よって、図7に示す従来の4極方式の導電率
測定センサ21よりも、高い測定精度を実現することが
できる。
As mentioned above, this conductivity measuring sensor
In the state shown in FIG. 1, an AC power supply 10 is provided between the power supply electrodes 1b and 1c of the measuring tube 1 and between the power supply electrodes 2b and 2c of the measuring tube 2.
Is supplied, the power supply electrodes 1b and 2b have the same potential (same polarity).
Then, the power supply electrodes 1c and 2c have the same potential (same polarity). Therefore, the current I 1 flowing between the power supply electrodes 1c and 1d
Flows only the sample water in the inside 1f of the measuring tube 1, and the current I 2 flowing between the power supply electrodes 2c and 2d flows only the sample water in the inside 2f of the measuring tube 2 and the power supply electrodes 1b and 2b.
During this time, no current flows between the power supply electrodes 1c and 2c. The cross-sectional area S of the sample water through which the respective currents I 1 and I 2 flow is constant along the direction of the sample water flow passage 8. Therefore, when the conductivity χ is calculated by the mathematical formula 1, the cross-sectional area of the current paths of the currents I 1 and I 2 , that is, the cross-sectional area S of the sample water is determined, so that the calculation formula shown in the mathematical formula 1 is surely established. be able to. Therefore, it is possible to realize higher measurement accuracy than that of the conventional four-pole type conductivity measurement sensor 21 shown in FIG. 7.

【0035】更に、この導電率測定センサからは、測定
管1及び2から2つの測定結果を得ることができるの
で、これらの測定結果の平均を取るなどの処理を行うこ
とによって、従来の4極方式の導電率測定センサよりも
高い測定精度を得ることができる。
Furthermore, since two measurement results can be obtained from the measuring tubes 1 and 2 from this conductivity measuring sensor, by performing processing such as taking an average of these measurement results, the conventional four poles can be obtained. It is possible to obtain a higher measurement accuracy than the conductivity measurement sensor of the type.

【0036】そして、この導電率測定センサでは、温度
センサ7が試水の温度そのものを測定できるように構成
されているので、図7に示す従来の4極方式の導電率測
定センサよりも正確な温度補正を実現することができ、
これによって、高い精度で試水の導電率を求めることが
できる。
In this conductivity measuring sensor, since the temperature sensor 7 can measure the temperature of the sample water itself, it is more accurate than the conventional 4-pole conductivity measuring sensor shown in FIG. Temperature compensation can be realized,
Thereby, the conductivity of the sample water can be obtained with high accuracy.

【0037】なお、図1に示す導電率測定センサでは、
測定管1及び2をU字状に接続したが、U字状の接続に
限らず、例えば図3に示すような直線状態、即ちI字状
に接続してもよい。同図に示すように、これらの2つの
測定管1及び2の各内部1f及び2fを、絶縁カバー2
3によって形成された空間23aを介してI字状に直列
接続することによって、試水流通路8aは、試水吸入口
となる絶縁部材4の開口部4aから試水排出口となる絶
縁部材5の開口部5aまで真っ直ぐな直線の状態に形成
される。従って、ポンプ装置等の強制循環装置を使用す
ることなく、自然水流によって試水流通路8a内に試水
を供給することができる。もちろん、これらの測定管1
及び2の各内部1f及び2fが直列状態で接続されてい
れば、U字状やI字状に限らず、例えばL字状等の他の
形状状態で接続してもよいことは言うまでもない。
In the conductivity measuring sensor shown in FIG.
Although the measuring tubes 1 and 2 are connected in a U-shape, the connection is not limited to the U-shape, but may be connected in a linear state as shown in FIG. 3, that is, in an I-shape. As shown in the figure, the insides 1f and 2f of these two measuring tubes 1 and 2 are connected to the insulating cover 2
By connecting in series in an I-shape through the space 23a formed by 3, the sample water flow passage 8a is formed from the opening 4a of the insulating member 4 serving as the sample water intake port to the insulating member 5 serving as the sample water discharge port. The opening 5a is formed in a straight line. Therefore, the sample water can be supplied into the sample water passage 8a by the natural water flow without using a forced circulation device such as a pump device. Of course, these measuring tubes 1
It is needless to say that as long as the interiors 1f and 2f of 2 and 2 are connected in series, they may be connected not only in the U-shape or the I-shape but also in other shape such as L-shape.

【0038】また、本実施例では、絶縁管を1及び2の
2本の構成としたが、偶数であれば4本以上でもよい。
そして、絶縁管1a、1a、・・・をセラミックによっ
て形成したが、比較的に耐圧性が高く、また温度変化に
強い絶縁体であれば、例えば硬質ガラスや石英ガラス等
の材料によって形成してもよい。更に、電源電極1b、
1c、及び測定用電極1d、1eを各々カーボンで形成
したが、金や白金、白金黒等の材料によって形成しても
よい。また、測定管1の電源電極1cと測定管2の電源
電極2cとを、短絡線6によって導通させたが、例えば
絶縁カバー3の空間3a部分の内壁3bに導体を塗布
し、この導体を介して電源電極1c、2cの導通を取る
構成にしてもよい。そして、測定管1及び2は中空円柱
の形状としたが、円柱に限らず、三角、多角などの角柱
の形状にしてもよい。また、内部1f及び2fについて
も、その試水流通路8に対して直角な断面の形状を円形
としたが、円形に限らず角形等の形状にしてもよい。ま
た、各測定管1及び2の内部1f及び2fの試水流通路
8に対して直角な断面積は、少なくとも測定用電極1
d、1e間、及び2d、2e間において一定であればよ
い。そして、各電源電極1b、1c、2b、2cに供給
する電源を交流電源10としたが、直流電源を供給して
もよい。
Further, in this embodiment, the insulating tube has the two constitutions of 1 and 2, but if it is an even number, it may be four or more.
The insulating tubes 1a, 1a, ... Are made of ceramics, but if they are insulators having relatively high pressure resistance and resistance to temperature change, they are made of materials such as hard glass and quartz glass. Good. Furthermore, the power electrode 1b,
Although 1c and the measuring electrodes 1d and 1e are made of carbon, they may be made of a material such as gold, platinum, or platinum black. Further, the power supply electrode 1c of the measuring tube 1 and the power supply electrode 2c of the measuring tube 2 are electrically connected by the short-circuit wire 6. For example, a conductor is applied to the inner wall 3b of the space 3a of the insulating cover 3 and the conductor is interposed. Alternatively, the power electrodes 1c and 2c may be electrically connected. Although the measuring tubes 1 and 2 have the shape of a hollow cylinder, they are not limited to a cylinder and may have a shape of a prism such as a triangle or a polygon. Also, regarding the insides 1f and 2f, the shape of the cross section perpendicular to the sample water flow passage 8 is circular, but the shape is not limited to circular, and may be rectangular or the like. Further, the cross-sectional area of the insides 1f and 2f of the respective measuring tubes 1 and 2 perpendicular to the sample water flow passage 8 is at least the measurement electrode 1
It may be constant between d and 1e and between 2d and 2e. Although the AC power supply 10 is used as the power supply to each power supply electrode 1b, 1c, 2b, 2c, a DC power supply may be supplied.

【0039】図4は、本発明に係る導電率測定センサの
第2実施例を示す断面図で、図1に示す第1実施例の導
電率測定センサを少し変形させたものである。この図4
に示す第2実施例の導電率測定センサと図1に示す第1
実施例との異なるところは、図1の第1実施例では、電
源電極1b、1c、2b、2cの電極面を試水流通路8
を流れる試水の向きに平行になるように設けていたが、
図4の導電率測定センサでは、各電源電極11b、11
c、12b、12cの電極面を試水流通路18を流れる
試水の向きに直角になるように設けたところである。従
って、これに伴い、図4に示す導電率測定センサでは、
測定管11及び12の側面に内部11f及び12fの開
口部分が設けられており、絶縁カバー13の形状や、絶
縁部材14及び15の位置についてもこれに併せて図1
とは変えている。これ以外については、図1に示す第1
実施例の導電率測定センサと同等であり、同等部分には
同一符号を付して、その詳細を省略する。
FIG. 4 is a sectional view showing a second embodiment of the conductivity measuring sensor according to the present invention, which is a modification of the conductivity measuring sensor of the first embodiment shown in FIG. This Figure 4
The conductivity measuring sensor of the second embodiment shown in FIG.
The difference from the embodiment is that in the first embodiment of FIG. 1, the electrode surfaces of the power supply electrodes 1b, 1c, 2b and 2c are connected to the sample water flow passage 8.
It was installed so as to be parallel to the direction of the test water flowing through
In the conductivity measuring sensor of FIG. 4, the power supply electrodes 11b, 11
The electrode surfaces of c, 12b, and 12c are provided so as to be perpendicular to the direction of the sample water flowing in the sample water flow passage 18. Therefore, along with this, in the conductivity measuring sensor shown in FIG.
The opening portions of the inner portions 11f and 12f are provided on the side surfaces of the measuring tubes 11 and 12, and the shape of the insulating cover 13 and the positions of the insulating members 14 and 15 are also shown in FIG.
Is changing. Other than this, the first shown in FIG.
It is the same as the conductivity measuring sensor of the embodiment, and the same reference numerals are given to the same portions and the details thereof will be omitted.

【0040】この導電率測定センサでは、上記のよう
に、各電源電極11b、11c、12b、12cの電極
面を、試水流通路18を流れる試水の向きに直角になる
ように設けているので、試水流通路18を流れる試水の
断面上における電流強度の分布を一様にすることができ
る。また、測定管11及び12の側面に内部11f及び
12fの開口部分を設けているので、測定管11及び1
2の長さに対して、導電率測定センサ全体の長さを、図
1に示す第1実施例の導電率測定センサよりも短くする
ことができる。
In this conductivity measuring sensor, as described above, the electrode surfaces of the power supply electrodes 11b, 11c, 12b, 12c are provided so as to be perpendicular to the direction of the sample water flowing through the sample water flow passage 18. Therefore, the distribution of the current intensity on the cross section of the sample water flowing through the sample water flow passage 18 can be made uniform. Further, since the inner pipes 11f and 12f are provided with openings on the side surfaces of the measuring pipes 11 and 12, the measuring pipes 11 and 1 are
For the length of 2, the entire length of the conductivity measuring sensor can be made shorter than that of the conductivity measuring sensor of the first embodiment shown in FIG.

【0041】図5は、本発明に係る導電率測定センサの
第3実施例を示す断面図である。同図に示すように、こ
の導電率測定センサは、図1に示す第1実施例の導電率
測定センサにおいて、測定管1及び2に各々2つずつ設
けられていた測定用電極1d、1e、及び2d、2e
を、各々1つずつ(図5では測定用電極1e及び2e
を)省いた構成のものである。そして、測定管1及び2
の各2つの電源電極のうち一方の電源電極(図5では電
源電極11c及び12c)を、測定用電極として兼用す
るものである。従って、図1に示す第1実施例では、測
定管1及び2が、各々4極方式の導電率測定センサを形
成していたが、この図5に示す導電率測定センサでは、
各測定管11及び12が、各々3極方式の導電率測定セ
ンサを形成している。なお、これ以外の構造について
は、図1に示す第1実施例の導電率測定センサと同等で
あり、同等部分には同一符号を付して、その詳細を省略
する。
FIG. 5 is a sectional view showing a third embodiment of the conductivity measuring sensor according to the present invention. As shown in the figure, this conductivity measuring sensor is the same as the conductivity measuring sensor of the first embodiment shown in FIG. 1, but two measuring electrodes 1d and 1e are provided in each of the measuring tubes 1 and 2. And 2d, 2e
, One each (in FIG. 5, measurement electrodes 1e and 2e)
() Is omitted. And measuring tubes 1 and 2
One of the two power supply electrodes (power supply electrodes 11c and 12c in FIG. 5) is also used as the measurement electrode. Therefore, in the first embodiment shown in FIG. 1, the measuring tubes 1 and 2 each form a four-pole type conductivity measuring sensor, but in the conductivity measuring sensor shown in FIG.
Each measuring tube 11 and 12 forms a three-pole conductivity measuring sensor. The other structures are the same as those of the conductivity measuring sensor of the first embodiment shown in FIG. 1, and the same parts are designated by the same reference numerals and the detailed description thereof will be omitted.

【0042】この第3実施例の導電率測定センサは、上
記のように構成されているので、第1実施例と同様に、
導電率χを算出する数1の式における電流I1 及びI2
の電流経路の断面積、即ち試水の断面積Sを確定するこ
とができるため、数1に示す算出式を確実に成立させる
ことができる。よって、図9に示す従来の3極方式の導
電率測定センサ121よりも、高い測定精度を実現する
ことができる。また、試水の温度測定についても、温度
センサ7が試水の温度そのものを測定できるように構成
されているので、図9に示す従来の3極方式の導電率測
定センサよりも正確な温度補正を実現することができ、
これによって、高い精度で試水の導電率を求めることが
できる。
Since the conductivity measuring sensor of the third embodiment is constructed as described above, like the first embodiment,
The electric currents I 1 and I 2 in the formula 1 for calculating the conductivity χ
Since the cross-sectional area of the current path, that is, the cross-sectional area S of the sample water can be determined, the calculation formula shown in Formula 1 can be reliably established. Therefore, it is possible to realize higher measurement accuracy than that of the conventional three-pole type conductivity measurement sensor 121 shown in FIG. Also, regarding the temperature measurement of the sample water, since the temperature sensor 7 is configured to measure the temperature of the sample water itself, the temperature correction is more accurate than that of the conventional three-pole type conductivity measurement sensor shown in FIG. Can be realized,
Thereby, the conductivity of the sample water can be obtained with high accuracy.

【0043】なお、図5では、電圧計12及び12a
を、測定用電極11dと電源電極11cとの間、及び測
定用電極12dと電源電極12cとの間に、各々設けて
いるが、測定用電極11dと電源電極11bとの間、及
び測定用電極12dと電源電極12bとの間に設けても
よい。
In FIG. 5, the voltmeters 12 and 12a are used.
Are provided between the measurement electrode 11d and the power supply electrode 11c and between the measurement electrode 12d and the power supply electrode 12c, respectively, but between the measurement electrode 11d and the power supply electrode 11b, and between the measurement electrode. It may be provided between 12d and the power supply electrode 12b.

【0044】図6は、本発明に係る導電率測定センサの
第4実施例を示す断面図である。同図に示すように、こ
の導電率測定センサは、図1に示す第1実施例の導電率
測定センサにおいて、測定管1及び2に設けられていた
測定用電極1d、1e、及び2d、2eを省いた構成の
ものである。そして、測定管1及び2の各2つの電源電
極を、第1実施例における各測定用電極として兼用する
ものである。従って、図1に示す第1実施例では、測定
管1及び2が、各々4極方式の導電率測定センサを形成
していたが、この図6に示す導電率測定センサでは、各
測定管11及び12が、各々2極方式の導電率測定セン
サを形成する。なお、これ以外の構造については、図1
に示す第1実施例の導電率測定センサと同等であり、同
等部分には同一符号を付して、その詳細を省略する。
FIG. 6 is a sectional view showing a fourth embodiment of the conductivity measuring sensor according to the present invention. As shown in the figure, this conductivity measuring sensor is the same as the conductivity measuring sensor of the first embodiment shown in FIG. 1 except that the measuring electrodes 1d, 1e and 2d, 2e provided on the measuring tubes 1 and 2 are used. It has a configuration without. The two power supply electrodes of the measuring tubes 1 and 2 are also used as the measuring electrodes in the first embodiment. Therefore, in the first embodiment shown in FIG. 1, the measuring tubes 1 and 2 each form a four-pole type conductivity measuring sensor, but in the conductivity measuring sensor shown in FIG. And 12 each form a two-pole conductivity measuring sensor. For other structures, see FIG.
The conductivity measuring sensor is equivalent to the conductivity measuring sensor of the first embodiment shown in FIG.

【0045】この第4実施例の導電率測定センサは、上
記のように構成されているので、第1実施例と同様に、
導電率χを算出する数1の式における電流I1 及びI2
の電流経路の断面積、即ち試水の断面積Sを確定するこ
とができるため、数1に示す算出式を確実に成立させる
ことができる。よって、図10に示す従来の2極方式の
導電率測定センサ221よりも、高い測定精度を実現す
ることができる。また、試水の温度測定についても、温
度センサ7が試水の温度そのものを測定できるように構
成されているので、図10に示す従来の2極方式の導電
率測定センサよりも正確な温度補正を実現することがで
き、これによって、高い精度で試水の導電率を求めるこ
とができる。
Since the conductivity measuring sensor of the fourth embodiment is constructed as described above, like the first embodiment,
The electric currents I 1 and I 2 in the formula 1 for calculating the conductivity χ
Since the cross-sectional area of the current path, that is, the cross-sectional area S of the sample water can be determined, the calculation formula shown in Formula 1 can be reliably established. Therefore, it is possible to realize higher measurement accuracy than the conventional two-pole conductivity measurement sensor 221 shown in FIG. Also, regarding the temperature measurement of the sample water, since the temperature sensor 7 is configured to measure the temperature of the sample water itself, it is possible to correct the temperature more accurately than the conventional two-pole type conductivity measurement sensor shown in FIG. And the conductivity of the sample water can be obtained with high accuracy.

【0046】[0046]

【発明の効果】第1の発明の導電率測定センサは、4極
方式の導電率測定センサを構成するセルを偶数個備えた
構造になっており、また各セルの試水流通路を直列の状
態で1本に接続することによって、全てのセルが同じ試
水を測定するように構成されている。従って、各セルの
測定値の平均を取るなどの処理を行うことによって、従
来の4極方式の導電率測定センサよりも高い測定精度を
得ることができるという効果がある。なお、この効果
は、セルの数が多いほど顕著に現れる。
The conductivity measuring sensor of the first invention has a structure having an even number of cells constituting the conductivity measuring sensor of the four-pole type, and the test water flow passage of each cell is connected in series. All cells are configured to measure the same sample water by connecting to one in the state. Therefore, by performing processing such as averaging the measured values of each cell, it is possible to obtain higher measurement accuracy than that of the conventional quadrupole conductivity measurement sensor. Note that this effect becomes more prominent as the number of cells increases.

【0047】また、各セルの各電源電極に電源を供給し
たとき、各セル毎の対をなす電源電極は各々逆の極性に
なり、また隣接するセル間の隣り合う電源電極は各々同
じ極性になるように構成されている。このように構成さ
れているので、電源を供給することによって流れる電流
は、各セル毎の電源電極間にのみ流れ、また1本に接続
された試水流通路全体の入口側及び出口側に位置する電
源電極は必然的に同じ極性になるので、この試水流通路
全体の入口側及び出口側に位置する電源電極間における
電流の流れ込みを防ぐことができる。更に、導電率χの
測定部分となる1つの測定用電極間における試水流通路
の断面積は一定である。従って、各セル毎における電流
経路の断面積、即ち試水そのものの断面積が確定される
ため、上記数1に示す式を確実に成立させることがで
き、これによって、従来の4極方式の導電率測定センサ
よりも高い測定精度を得ることができるという効果があ
る。
When power is supplied to each power electrode of each cell, the pair of power electrodes of each cell have opposite polarities, and adjacent power electrodes of adjacent cells have the same polarity. Is configured to be. With this configuration, the current that flows when power is supplied flows only between the power electrodes of each cell, and is located on the inlet and outlet sides of the entire sample water flow passage connected to one cell. Since the power electrodes to be inevitably have the same polarity, it is possible to prevent the inflow of current between the power electrodes located on the inlet side and the outlet side of the entire test water flow passage. Furthermore, the cross-sectional area of the sample water flow passage between one measurement electrode, which is the portion for measuring the conductivity χ, is constant. Therefore, since the cross-sectional area of the current path in each cell, that is, the cross-sectional area of the sample water itself is determined, the formula shown in the above mathematical formula 1 can be surely established, and thus, the conductivity of the conventional four-pole system can be established. There is an effect that it is possible to obtain higher measurement accuracy than the rate measurement sensor.

【0048】第2の発明の導電率測定センサは、試水の
温度を測定するための温度センサを、各セル毎の対をな
す測定用電極間以外の試水流通路内、又は接続部内に温
度センサを設けている。従って、試水流通路内を通る試
水そのものの温度を測定することができるので、従来の
4極方式の導電率測定センサよりも正確な温度補正を実
現することができ、これによって、従来よりも高い精度
で試水の導電率を求めることができるという効果があ
る。
In the conductivity measuring sensor of the second invention, a temperature sensor for measuring the temperature of the sample water is provided in the sample water flow passage other than between the pair of measurement electrodes for each cell, or in the connection portion. A temperature sensor is provided. Therefore, the temperature of the sample water itself passing through the sample water flow passage can be measured, so that more accurate temperature correction can be realized than that of the conventional four-pole type conductivity measurement sensor. There is an effect that the conductivity of the sample water can be obtained with high accuracy.

【0049】第3の発明の導電率測定センサは、3極方
式の導電率測定センサを構成するセルを偶数個備えた構
造になっており、また各セルの試水流通路を直列の状態
で1本に接続することによって、全てのセルが同じ試水
を測定するように構成されている。従って、各セルの測
定値の平均を取るなどの処理を行うことによって、従来
の3極方式の導電率測定センサよりも高い測定精度を得
ることができるという効果がある。なお、この効果は、
セルの数が多いほど顕著に現れる。
The conductivity measuring sensor of the third invention has a structure having an even number of cells constituting the conductivity measuring sensor of the three-pole type, and the test water flow passage of each cell is connected in series. By connecting to one, all cells are configured to measure the same test water. Therefore, by performing processing such as averaging the measured values of each cell, it is possible to obtain higher measurement accuracy than the conventional three-pole type conductivity measurement sensor. This effect is
The more cells there are, the more prominent it appears.

【0050】また、各セルの電源電極及び電源兼測定用
電極間に電源を供給したとき、各セル毎の電源電極及び
電源兼測定用電極は各々逆の極性になり、また隣接する
セル間の隣り合う電源電極又は電源兼測定用電極は各々
同じ極性になるように構成されている。このように構成
されているので、電源を供給することによって流れる電
流は、各セル毎の電源電極及び電源兼測定用電極間にの
み流れ、また1本に接続された試水流通路全体の入口側
及び出口側に位置する電源電極又は電源兼測定用電極は
必然的に同じ極性になるので、この試水流通路全体の入
口側及び出口側に位置するこれらの電極間における電流
の流れ込みを防ぐことができる。更に、導電率χの測定
部分となる電源兼測定用電極及び測定用電極間における
試水流通路の断面積は一定である。従って、各セル毎に
おける電流経路の断面積、即ち試水そのものの断面積が
確定されるため、上記数1に示す式を確実に成立させる
ことができ、これによって、従来の3極方式の導電率測
定センサよりも高い測定精度を得ることができるという
効果がある。
When power is supplied between the power supply electrode and the power supply / measurement electrode of each cell, the power supply electrode and the power supply / measurement electrode of each cell have opposite polarities, and between adjacent cells. Adjacent power supply electrodes or power supply / measurement electrodes are configured to have the same polarity. With this configuration, the current that flows when power is supplied flows only between the power supply electrode and the power supply / measurement electrode of each cell, and the inlet of the entire sample water flow passage connected to one Since the power supply electrodes or the power supply / measurement electrodes located on the side of the outlet and the side of the outlet inevitably have the same polarity, the flow of current between these electrodes located on the inlet side and the outlet side of the entire test water flow passage is prevented. be able to. Further, the cross-sectional area of the sample water flow passage between the measuring electrode and the power source / measuring electrode, which is the portion for measuring the conductivity χ, is constant. Therefore, the cross-sectional area of the current path in each cell, that is, the cross-sectional area of the sample water itself is determined, so that the formula shown in the above mathematical expression 1 can be surely established, and thus the conductivity of the conventional three-pole system can be achieved. There is an effect that it is possible to obtain higher measurement accuracy than the rate measurement sensor.

【0051】第4の発明の導電率測定センサは、試水の
温度を測定するための温度センサを、各セル毎の電源電
極及び電源兼測定用電極間以外の試水流通路内、又は接
続部内に温度センサを設けている。従って、試水流通路
内を通る試水そのものの温度を測定することができるの
で、従来の3極方式の導電率測定センサよりも正確な温
度補正を実現することができ、これによって、従来より
も高い精度で試水の導電率を求めることができるという
効果がある。
In the conductivity measuring sensor of the fourth invention, a temperature sensor for measuring the temperature of the sample water is provided in the sample water flow passage other than between the power supply electrode and the power supply / measurement electrode for each cell, or connected. A temperature sensor is provided inside the unit. Therefore, the temperature of the sample water itself passing through the sample water flow passage can be measured, so that more accurate temperature correction can be realized than that of the conventional three-pole type conductivity measurement sensor. There is an effect that the conductivity of the sample water can be obtained with high accuracy.

【0052】第5の発明の導電率測定センサは、2極方
式の導電率測定センサを構成するセルを偶数個備えた構
造になっており、また各セルの試水流通路を直列の状態
で1本に接続することによって、全てのセルが同じ試水
を測定するように構成されている。従って、各セルの測
定値の平均を取るなどの処理を行うことによって、従来
の2極方式の導電率測定センサよりも高い測定精度を得
ることができるという効果がある。なお、この効果は、
セルの数が多いほど顕著に現れる。
The conductivity measuring sensor of the fifth invention has a structure having an even number of cells constituting the conductivity measuring sensor of the two-pole type, and the test water flow passage of each cell is connected in series. By connecting to one, all cells are configured to measure the same test water. Therefore, by performing processing such as taking an average of the measured values of each cell, there is an effect that it is possible to obtain higher measurement accuracy than that of the conventional two-pole type conductivity measurement sensor. This effect is
The more cells there are, the more prominent it appears.

【0053】また、各セルの各電源兼測定用電極に電源
を供給したとき、各セル毎の対をなす電源兼測定用電極
は各々逆の極性になり、また隣接するセル間の隣り合う
電源兼測定用電極は各々同じ極性になるように構成され
ている。このように構成されているので、電源を供給す
ることによって流れる電流は、各セル毎の電源兼測定用
電極間にのみ流れ、また1本に接続された試水流通路全
体の入口側及び出口側に位置する電源兼測定用電極は必
然的に同じ極性になるので、この試水流通路全体の入口
側及び出口側に位置する電源兼測定用電極間における電
流の流れ込みを防ぐことができる。更に、導電率χの測
定部分となる対をなす電源兼測定用電極間における試水
流通路の断面積は一定である。従って、各セル毎におけ
る電流経路の断面積、即ち試水そのものの断面積が確定
されるため、上記数1に示す式を確実に成立させること
ができ、これによって、従来の2極方式の導電率測定セ
ンサよりも高い測定精度を得ることができるという効果
がある。
When power is supplied to each power supply / measurement electrode of each cell, the pair of power supply / measurement electrodes of each cell have opposite polarities, and adjacent power supplies between adjacent cells. The dual measurement electrodes are configured to have the same polarity. With this configuration, the current that flows when power is supplied flows only between the power and measurement electrodes of each cell, and the inlet and outlet of the entire test water flow passage connected to one cell Since the power supply / measurement electrodes located on the side inevitably have the same polarity, it is possible to prevent current from flowing between the power supply / measurement electrodes located on the inlet side and the outlet side of the entire test water flow passage. Further, the cross-sectional area of the sample water flow passage between the pair of power supply / measuring electrodes, which is a portion for measuring the conductivity χ, is constant. Therefore, since the cross-sectional area of the current path in each cell, that is, the cross-sectional area of the sample water itself is determined, the equation shown in the above mathematical expression 1 can be surely established, whereby the conductivity of the conventional two-pole method can be established. There is an effect that it is possible to obtain higher measurement accuracy than the rate measurement sensor.

【0054】第6の発明の導電率測定センサは、試水の
温度を測定するための温度センサを、各セル毎の対をな
す電源兼測定用電極間以外の試水流通路内、又は接続部
内に温度センサを設けている。従って、試水流通路内を
通る試水そのものの温度を測定することができるので、
従来の2極方式の導電率測定センサよりも正確な温度補
正を実現することができ、これによって、従来よりも高
い精度で試水の導電率を求めることができるという効果
がある。
In the conductivity measuring sensor of the sixth aspect of the invention, a temperature sensor for measuring the temperature of the sample water is provided in the sample water flow passage other than between the pair of power supply and measurement electrodes for each cell, or is connected. A temperature sensor is provided inside the unit. Therefore, it is possible to measure the temperature of the sample water itself that passes through the sample water flow passage,
It is possible to realize more accurate temperature correction than that of the conventional two-pole type conductivity measuring sensor, which has an effect that the conductivity of the sample water can be obtained with higher accuracy than the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る導電率測定センサの
使用状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a usage state of a conductivity measuring sensor according to a first embodiment of the present invention.

【図2】同実施例に係る導電率測定センサの要部の断面
斜視図である。
FIG. 2 is a sectional perspective view of a main part of the conductivity measuring sensor according to the embodiment.

【図3】図1に示す導電率測定センサを変形させた導電
率測定センサの使用状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a usage state of a conductivity measuring sensor obtained by modifying the conductivity measuring sensor shown in FIG.

【図4】本発明の第2実施例に係る導電率測定センサの
使用状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a usage state of the conductivity measuring sensor according to the second embodiment of the present invention.

【図5】本発明の第3実施例に係る導電率測定センサの
使用状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a usage state of the conductivity measuring sensor according to the third embodiment of the present invention.

【図6】本発明の第4実施例に係る導電率測定センサの
使用状態を示す断面図である。
FIG. 6 is a cross-sectional view showing a usage state of the conductivity measuring sensor according to the fourth embodiment of the present invention.

【図7】従来の導電率測定センサの使用状態を示す側面
図である。
FIG. 7 is a side view showing a usage state of a conventional conductivity measuring sensor.

【図8】従来の導電率測定センサの断面斜視図である。FIG. 8 is a sectional perspective view of a conventional conductivity measuring sensor.

【図9】従来の導電率測定センサの使用状態を示す側面
図である。
FIG. 9 is a side view showing a usage state of a conventional conductivity measuring sensor.

【図10】従来の導電率測定センサの使用状態を示す側
面図である。
FIG. 10 is a side view showing a usage state of a conventional conductivity measuring sensor.

【符号の説明】[Explanation of symbols]

1、2 測定管 1a、2a 絶縁管 1b、1c、2b、2c 電源電極 1d、1e、2d、2e 測定用電極 3 絶縁カバー 3a 接続部 4a 試水吸入口 5a 試水排出口 6 短絡線 7 温度センサ 8 試水流通路 10 交流電源 11、11a 電流計 12、12a 電圧計 1, 2 Measuring tube 1a, 2a Insulating tube 1b, 1c, 2b, 2c Power supply electrode 1d, 1e, 2d, 2e Measuring electrode 3 Insulation cover 3a Connection part 4a Sample water inlet 5a Sample water outlet 6 Short circuit wire 7 Temperature Sensor 8 Test water flow passage 10 AC power supply 11, 11a Ammeter 12, 12a Voltmeter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体から成り内部に試水流通路を形成
すると共に上記試水流通路の入口及び出口として上記内
部に通ずる2つの開口部を有する中空体と、電極面が上
記試水流通路内にのみ露出する状態に上記試水流通路に
沿って各々所定の間隔を隔てて設けた対をなす測定用電
極と、上記測定用電極の対を挟んで各々予め定めた間隔
を隔てると共に電極面が上記試水流通路にのみ露出する
状態に設けた対をなす電源電極とを具備し、上記試水流
通路の方向に対して直角な上記試水流通路の断面積が少
なくとも上記対をなす測定用電極間において一定に構成
されたセルを偶数個有し、 上記偶数個のセルの各上記試水流通路を各々直列に接続
する接続部を備え、上記電源電極に電源を供給したと
き、上記各セル内の上記対をなす電源電極が各々逆の極
性になる状態に、かつ隣接する上記セル間においては各
々隣り合う上記電源電極の極性が同じ極性になる状態に
構成したことを特徴とする導電率測定センサ。
1. A hollow body made of an insulating material, having a sample water flow passage formed therein, and having two openings communicating with the inside as an inlet and an outlet of the sample water flow passage, and an electrode surface for flowing the sample water. A pair of measurement electrodes provided at predetermined intervals along the sample water flow passage so as to be exposed only in the channel, and a predetermined interval between the pair of measurement electrodes. A pair of power supply electrodes provided such that the electrode surfaces are exposed only to the sample water flow passage, and a cross-sectional area of the sample water flow passage perpendicular to the direction of the sample water flow passage is at least the pair. Has an even number of cells that are uniformly configured between the measurement electrodes that form, and includes a connecting portion that connects each of the sample water flow passages of the even number of cells in series, and supplies power to the power supply electrodes. When the pair of power electrodes in each cell are Conductivity measuring sensor, characterized in that the state becomes the polarity, and the polarity of the adjacent said supply electrodes adjacent each between the cell is constructed in a state where the same polarity.
【請求項2】 上記試水流通路内において上記対をなす
測定用電極間の外側に位置する上記試水流通路内、又は
上記接続部内に温度センサを設けたことを特徴とする請
求項1に記載の導電率測定センサ。
2. A temperature sensor is provided in the test water flow passage, which is located outside the pair of measurement electrodes in the test water flow passage, or in the connection portion. The conductivity measuring sensor according to.
【請求項3】 絶縁体から成り内部に試水流通路を形成
すると共に上記試水流通路の入口及び出口として上記内
部に通ずる2つの開口部を有する中空体と、電極面が上
記試水流通路内にのみ露出する状態に設けた測定用電極
と、電極面が上記試水流通路内にのみ露出する状態に上
記試水流通路に沿って上記測定用電極から所定の間隔を
隔てて設けた電源兼測定用電極と、上記測定用電極の上
記電源兼測定用電極が位置する側とは反対側に上記電源
兼測定用電極から予め定めた間隔を隔てると共に電極面
が上記試水流通路にのみ露出する状態に設けた電源電極
とを具備し、上記試水流通路の方向に対して直角な上記
試水流通路の断面積が少なくとも上記測定用電極と電源
兼測定用電極との間において一定に構成されたセルを偶
数個有し、 上記偶数個のセルの各上記試水流通路を各々直列に接続
する接続部を備え、上記電源兼測定用電極及び上記電源
電極に電源を供給したとき、上記各セル内の上記電源兼
測定用電極及び上記電源電極の極性が各々逆の極性にな
る状態に、かつ隣接する上記セル間においては各々隣り
合う上記電源兼測定用電極又は上記電源電極が同じ極性
になる状態に構成したことを特徴とする導電率測定セン
サ。
3. A hollow body which is made of an insulating material and which has a sample water flow passage therein and has two openings communicating with the inside as an inlet and an outlet of the sample water flow passage, and an electrode surface for flowing the sample water flow. The measurement electrode provided only in the passage and the electrode surface provided at a predetermined distance from the measurement electrode along the test water passage so that the electrode surface is exposed only in the test water passage. The power source / measurement electrode is separated from the power source / measurement electrode on the side opposite to the side where the power source / measurement electrode is located, and the electrode surface has the sample water flow passage. And a power electrode provided in a state of being exposed only to the measurement electrode, and a cross-sectional area of the sample water flow passage perpendicular to the direction of the sample water flow passage is at least between the measurement electrode and the power supply / measurement electrode. Has an even number of cells configured uniformly in Each cell is provided with a connecting portion for connecting each of the sample water flow passages in series, and when power is supplied to the power source / measurement electrode and the power source electrode, the power source / measurement electrode in each cell and It is characterized in that the polarities of the power supply electrodes are opposite to each other, and that between the adjacent cells, the adjacent power supply / measurement electrodes or the power supply electrodes have the same polarity. Conductivity measurement sensor.
【請求項4】 上記試水流通路内において上記セル毎の
上記測定用電極と電源兼測定用電極間の外側に位置する
上記試水流通路内、又は上記接続部内に温度センサを設
けたことを特徴とする請求項3に記載の導電率測定セン
サ。
4. A temperature sensor is provided in the sample water flow passage located outside the measurement electrode and the power source / measurement electrode for each cell in the sample water flow passage, or in the connection portion. The conductivity measuring sensor according to claim 3.
【請求項5】 絶縁体から成り内部に試水流通路を形成
すると共に上記試水流通路の入口及び出口として上記内
部に通ずる2つの開口部を有する中空体と、電極面が上
記試水流通路内にのみ露出する状態に上記試水流通路に
沿って各々所定の間隔を隔てて設けた対をなす電源兼測
定用電極とを具備し、上記試水流通路の方向に対して直
角な上記試水流通路の断面積が上記対をなす電源兼測定
用電極間において一定に構成されたセルを偶数個有し、 上記偶数個のセルの各上記試水流通路を各々直列に接続
する接続部を備え、上記電源兼測定用電極に電源を供給
したとき、上記各セル内の上記対をなす電源兼測定用電
極が各々逆の極性になる状態に、かつ隣接する上記セル
間においては各々隣り合う上記電源兼測定用電極の極性
が同じ極性になる状態に構成したことを特徴とする導電
率測定センサ。
5. A hollow body which is made of an insulator and has a sample water flow passage formed therein, and which has two openings communicating with the inside as an inlet and an outlet of the sample water flow passage, and an electrode surface for flowing the sample water. A pair of power supply and measurement electrodes provided at predetermined intervals along the test water flow passage so as to be exposed only in the flow passage, and being perpendicular to the direction of the test water flow passage. The sample water flow passage has an even number of cells configured to have a constant cross-sectional area between the pair of power supply / measuring electrodes, and the sample water flow passages of the even number of cells are connected in series. When a power supply is provided to the power supply / measurement electrode having a connecting portion, the pair of power supply / measurement electrodes in each cell have opposite polarities, and between adjacent cells. The polarities of the adjacent power source / measurement electrodes are the same. Conductivity measuring sensor, characterized by being configured to condition.
【請求項6】 上記試水流通路内において上記セル毎の
上記対をなす電源兼測定用電極間の外側に位置する上記
試水流通路内、又は上記接続部内に温度センサを設けた
ことを特徴とする請求項5に記載の導電率測定センサ。
6. A temperature sensor is provided in the sample water flow passage located outside the pair of power source / measurement electrodes for each cell in the sample water flow passage, or in the connection portion. The conductivity measuring sensor according to claim 5.
JP6100559A 1994-04-13 1994-04-13 Conductivity measurement sensor Expired - Lifetime JP2579281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6100559A JP2579281B2 (en) 1994-04-13 1994-04-13 Conductivity measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6100559A JP2579281B2 (en) 1994-04-13 1994-04-13 Conductivity measurement sensor

Publications (2)

Publication Number Publication Date
JPH07280765A true JPH07280765A (en) 1995-10-27
JP2579281B2 JP2579281B2 (en) 1997-02-05

Family

ID=14277292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6100559A Expired - Lifetime JP2579281B2 (en) 1994-04-13 1994-04-13 Conductivity measurement sensor

Country Status (1)

Country Link
JP (1) JP2579281B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372508A (en) * 2001-06-15 2002-12-26 Saginomiya Seisakusho Inc Electric conductivity sensor manufacturing method, and electric conductivity sensor
CN105606901A (en) * 2015-12-24 2016-05-25 河海大学 MEMS seawater conductivity sensor with filtering device
WO2021193274A1 (en) * 2020-03-25 2021-09-30 国立研究開発法人海洋研究開発機構 Measurement cell for electric conductivity meter, and electric conductivity meter comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234795A (en) * 1975-06-19 1977-03-16 Nippon Miniature Bearing Co Detecting apparatus for fluid concentration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234795A (en) * 1975-06-19 1977-03-16 Nippon Miniature Bearing Co Detecting apparatus for fluid concentration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372508A (en) * 2001-06-15 2002-12-26 Saginomiya Seisakusho Inc Electric conductivity sensor manufacturing method, and electric conductivity sensor
JP4689085B2 (en) * 2001-06-15 2011-05-25 株式会社鷺宮製作所 Manufacturing method of electrical conductivity sensor and electrical conductivity sensor
CN105606901A (en) * 2015-12-24 2016-05-25 河海大学 MEMS seawater conductivity sensor with filtering device
CN105606901B (en) * 2015-12-24 2018-02-23 河海大学 A kind of MEMS sea water conductivity sensors with filter
WO2021193274A1 (en) * 2020-03-25 2021-09-30 国立研究開発法人海洋研究開発機構 Measurement cell for electric conductivity meter, and electric conductivity meter comprising same

Also Published As

Publication number Publication date
JP2579281B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
EP2516998B1 (en) Conductivity sensor assembly
EP0858603A1 (en) Planar hematocrit sensor incorporating a seven-electrode conductivity measurement cell
GB2200459A (en) Corrosion detecting probe for steel buried in concrete
US10107845B2 (en) Device for measuring an electric field in a conducting medium and method of calibrating such a device
US3601693A (en) Measuring cell for measuring electrical conductivity of a fluid medium
JP2579281B2 (en) Conductivity measurement sensor
JP4188447B2 (en) Inspection method of leakage current in oxygen sensor
JP2000162168A (en) Conductivity meter
JPH01254853A (en) Electrode for measuring conductivity
JPS61250548A (en) Comparing electrode
SU1055242A1 (en) Conductometric converter
KR200268652Y1 (en) Lead wire for circuit tester
JP3067921B2 (en) Soil detection sensor
CA1106446A (en) Probe for an electrochemical oxygen measurement pickup
SU1642411A1 (en) Method of determination of dielectric material parameters
JPS6255622B2 (en)
JPH02102445A (en) Cell for measuring liquid conductivity
SU899178A1 (en) Hydroelectric sensor
SU1205067A1 (en) Method of determining plate dielectric constant
SU1215032A1 (en) Apparatus for measuring liquid electrical conductance
KR101537473B1 (en) Generator winding
JP3646219B2 (en) Method for measuring ground resistance of ground electrode
JP4413373B2 (en) Probe unit for four-terminal measurement
JPH11304759A (en) Method for titrating quantity of electricity
SU1657144A1 (en) Intracavitary impedance plethysmography sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141107

Year of fee payment: 18

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141107

Year of fee payment: 18

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term