JPH0728045A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPH0728045A
JPH0728045A JP19268093A JP19268093A JPH0728045A JP H0728045 A JPH0728045 A JP H0728045A JP 19268093 A JP19268093 A JP 19268093A JP 19268093 A JP19268093 A JP 19268093A JP H0728045 A JPH0728045 A JP H0728045A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
resistivity
protective layer
denotes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19268093A
Other languages
Japanese (ja)
Inventor
Osamu Taniguchi
修 谷口
Yutaka Inaba
豊 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19268093A priority Critical patent/JPH0728045A/en
Publication of JPH0728045A publication Critical patent/JPH0728045A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the leak current between adjacent electrodes and the shorting between upper and lower electrodes and to obtain a good gradation display free from uneven images by providing the surfaces of electrode group with protective layer and specifying the resistivity of the protective layer to a specific value. CONSTITUTION:The electrode group consisting of plural band-shaped transparent electrodes 102, 102' in formed on a pair of substrates 101, 101'. The protective layers 105, 105' are respectively arranged on these transparent electrodes 102, 102'. The protective layers 105, 105' may have multilayered constitution consisting of upper and lower shorting preventive layers and orientation control layers. The resistivity rho of the protective layers satisfies rho>=(2N-3)r.t.L/m, where t(cm) denotes the film thickness of the protective layers, r(OMEGA) denotes the wiring resistance value between the adjacent electrodes, L(cm) denotes an electrode length, m(cm) denotes the distance between the adjacent electrodes, N denotes the number of display gradations, respectively. The resistivity rhoof the protective layers of the liquid crystal element to be used as an ordiary display is preferably in a 10<5>OMEGA.cm<=rho<=10<5>OMEGA.cm range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は階調表示に適した液晶素
子に関し、特に強誘電性液晶(以下「FLC」と記す)
を用いた液晶素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal element suitable for gradation display, and particularly, a ferroelectric liquid crystal (hereinafter referred to as "FLC").
The present invention relates to a liquid crystal element using.

【0002】[0002]

【従来の技術】近年、従来の液晶素子の改善型として、
双安定性を有する液晶素子の使用がクラーク(Clar
k)及びラガーウォール(Lagerwall)に両者
により特開昭56−107216号公報、米国特許第
4,367,924号明細書等で提案されている。双安
定性液晶としては、一般にカイラルスメクティックC相
(SmC* )又はH相(SmH* )を有するFLCが用
いられ、これらの状態に置いて、印加された電界に応答
して第1の光学的安定状態と第2の光学的安定状態との
いずれかを取り、且つ電界が印加されない時はその状態
を維持する性質、即ち双安定性を有し、また電界の変化
に対する応答が速やかで、高速且つ記憶型の表示装置等
の分野における幅広い利用が期待されている。
2. Description of the Related Art Recently, as an improved type of conventional liquid crystal elements,
The use of a liquid crystal device having bistability is clarified by Clar.
k) and Lagerwall, both of which are proposed in JP-A-56-107216, U.S. Pat. No. 4,367,924, and the like. As the bistable liquid crystal, FLC having a chiral smectic C phase (SmC * ) or H phase (SmH * ) is generally used, and in these states, the first optical response is made in response to an applied electric field. It has either the stable state or the second optical stable state, and has the property of maintaining that state when no electric field is applied, that is, bistability, and has a quick response to changes in the electric field and high speed. Moreover, it is expected to be widely used in the field of memory type display devices and the like.

【0003】[0003]

【発明が解決しようとする課題】双安定性を有するFL
C素子は、一般的に液晶層厚が2μm以下と極めて薄い
膜厚で形成され、素子内に混入した微細な粒体などを通
して上下電極間でショートを発生する問題点があった。
そのため、各電極上に絶縁膜が必要とされている。
FL having bistability
The C element is generally formed to have an extremely thin liquid crystal layer thickness of 2 μm or less, and there is a problem that a short circuit occurs between the upper and lower electrodes through fine particles or the like mixed in the element.
Therefore, an insulating film is required on each electrode.

【0004】しかしながら、特開昭63−121020
号公報において詳述されているように、絶縁体層を有す
るFLC素子は自発分極による電荷の偏りのために、液
晶分子のスイッチング過程で双安定性が乱されることが
指摘されており、この問題を解消するために前記絶縁体
層の抵抗率ρを1×108 Ω・cm以下としたことを開
示している。
However, JP-A-63-121020
As described in detail in the publication, it has been pointed out that a FLC element having an insulator layer is disturbed in bistability in the switching process of liquid crystal molecules due to the bias of charges due to spontaneous polarization. It is disclosed that the resistivity ρ of the insulator layer is set to 1 × 10 8 Ω · cm or less in order to solve the problem.

【0005】一方、容易に類推されるように、前記絶縁
体層の抵抗が低くなると隣接する電極間で電流のリーク
が発生し、その結果、電極の長手方向に電圧の分布が生
じる。即ち、1本の電極上において電圧を印加した入口
付近と終端付近では電位に分布が生じ、対応する各画素
に印加される電圧に分布を生じさせることになる。
On the other hand, as can be easily inferred, when the resistance of the insulating layer becomes low, current leakage occurs between adjacent electrodes, and as a result, a voltage distribution occurs in the longitudinal direction of the electrodes. That is, the potential is distributed near the entrance and the end where a voltage is applied on one electrode, and the voltage applied to each corresponding pixel is distributed.

【0006】このような電圧の分布は階調表示、特に電
圧を精密に制御することにより階調表示を行なう場合に
問題となり、画像のむらを招く結果となる。
Such voltage distribution becomes a problem in gradation display, particularly in gradation display by precisely controlling the voltage, and results in image unevenness.

【0007】[0007]

【課題を解決するための手段及び作用】本発明は上記課
題を解決した液晶素子であり、対向配置した一対の電極
基板間に液晶を挟持し、それぞれの電極基板に設けた走
査電極群と情報電極群との交差部を画素とする液晶素子
であって、少なくとも一方の基板の電極群上に抵抗率ρ
(Ω・cm)、膜厚t(cm)の保護層を設け、該保護
層が配置された電極群の配線抵抗値をr(Ω)、電極長
をL(cm)、隣接する電極間の距離をm(cm)と
し、表示階調数をNとした時、前記保護層の抵抗率ρが
以下の関係 ρ≧(2N−3)r・t・L/m を満足することを特徴とする。
SUMMARY OF THE INVENTION The present invention is a liquid crystal device which solves the above-mentioned problems, in which a liquid crystal is sandwiched between a pair of electrode substrates arranged facing each other, and a scanning electrode group and information provided on each electrode substrate. A liquid crystal element having a pixel at the intersection with the electrode group, and having a resistivity ρ on at least one of the electrode groups on the substrate.
(Ω · cm) and a film thickness t (cm) are provided, the wiring resistance of the electrode group in which the protective layer is arranged is r (Ω), the electrode length is L (cm), and the distance between adjacent electrodes is When the distance is m (cm) and the number of display gradations is N, the resistivity ρ of the protective layer satisfies the following relationship ρ ≧ (2N−3) r · t · L / m. To do.

【0008】以下本発明を詳細に説明する。The present invention will be described in detail below.

【0009】図1は本発明の液晶素子の一実施態様であ
る。図2は図1の液晶素子の断面図で、(a)、(b)
はそれぞれ異なる態様を示している。
FIG. 1 shows one embodiment of the liquid crystal element of the present invention. FIG. 2 is a cross-sectional view of the liquid crystal element of FIG. 1, (a), (b)
Indicate different aspects.

【0010】図1、図2で示す液晶素子100は、ガラ
ス板又はプラスチック板などからなる一対の基板101
と101’をスペーサ104で所定の間隔に保持し、こ
の一対の基板をシーリングするために接着剤106で接
着したセル構造を有しており、更に基板101上には複
数の透明電極102からなる電極群(例えばマトリクス
電極構造のうちの走査電圧印加用電極群)が例えば帯状
パターンなどの所定パターンで形成されている。基板1
01’の上には前述の透明電極102と交差させた複数
の透明電極102’からなる電極群(例えば、マトリク
ス電極構造のうちの信号電圧印加用電極群)が形成され
ている。
A liquid crystal element 100 shown in FIGS. 1 and 2 is a pair of substrates 101 made of a glass plate or a plastic plate.
And 101 'are held at a predetermined interval by a spacer 104, and have a cell structure in which a pair of substrates are adhered with an adhesive agent 106 for sealing, and a plurality of transparent electrodes 102 are formed on the substrate 101. An electrode group (for example, a scanning voltage applying electrode group in the matrix electrode structure) is formed in a predetermined pattern such as a strip pattern. Board 1
On 01 ′, an electrode group (for example, a signal voltage applying electrode group in the matrix electrode structure) including a plurality of transparent electrodes 102 ′ intersecting with the transparent electrode 102 is formed.

【0011】本発明では、上述の透明電極102と10
2’の少なくとも一方の透明電極上に保護層として後述
する配向制御膜やショート防止用保護膜を設けることが
できる。
In the present invention, the transparent electrodes 102 and 10 described above are used.
An alignment control film and a short-circuit preventing protective film, which will be described later, can be provided as a protective layer on at least one transparent electrode 2 '.

【0012】図2(a)の液晶素子は、片側基板10
1’に保護層105’が配置され、図2(b)の液晶素
子には、両側の基板101と101’に保護層105と
105’がそれぞれ配置されている。
The liquid crystal element shown in FIG. 2A has a single-sided substrate 10.
The protective layer 105 'is arranged on the substrate 1', and the liquid crystal element of FIG. 2B has the protective layers 105 and 105 'on the substrates 101 and 101' on both sides.

【0013】本発明において、保護層は上下ショート防
止層と配向制御層とからなる多層構成であっても良い。
その場合、配向制御層は、ショート防止層よりも低抵抗
であることが望ましく、例えばポリピロール、ポリパラ
フェニレン、ポリアニリン等の有機系高分子膜、又はポ
リイミド等を含めた有機系高分子膜の超薄膜を用いる。
In the present invention, the protective layer may have a multi-layered structure including an upper and lower short-circuit preventing layer and an orientation control layer.
In that case, the orientation control layer preferably has a lower resistance than the short-circuit prevention layer, for example, an organic polymer film such as polypyrrole, polyparaphenylene, or polyaniline, or an organic polymer film including polyimide or the like. Use a thin film.

【0014】更に、電極配線抵抗による信号の遅延、駆
動波形のなまりを改善するために、図3(a)、(b)
に示したように、ストライプ状透明電極の長手方向に沿
って金属電極配線を設けることができる。その際の細線
金属電極303としては、アルミニウム、モリブデン、
クロム、チタン、タングステン又はその合金(例えばN
iCr)で成膜したものを用いることができる。
Further, in order to improve the signal delay due to the electrode wiring resistance and the rounding of the driving waveform, FIGS. 3A and 3B are used.
As shown in, the metal electrode wiring can be provided along the longitudinal direction of the stripe-shaped transparent electrode. At that time, as the thin wire metal electrode 303, aluminum, molybdenum,
Chromium, titanium, tungsten or their alloys (eg N
A film formed of iCr) can be used.

【0015】図1に示した液晶素子100の任意の1本
の走査電極或いは情報電極に電圧V0 を印加し、他の全
ての電極は接地された状態を考える。例えば、図1にお
いて、走査電極aに電圧V0 を印加し、他の全ての電極
を接地したとすると、走査電極上に形成された保護層を
通して少なくとも走査電極b、cにも電流が流れ、その
結果、走査電極a上に電位分布が生じる。この電位分布
により電圧の入口にある画素Aに印加される電圧V0
終端にある画素Bに印加される電圧Vは一般的に異な
る。
It is assumed that the voltage V 0 is applied to any one scanning electrode or information electrode of the liquid crystal element 100 shown in FIG. 1 and all the other electrodes are grounded. For example, in FIG. 1, if the voltage V 0 is applied to the scan electrode a and all the other electrodes are grounded, a current flows through at least the scan electrodes b and c through the protective layer formed on the scan electrode, As a result, a potential distribution is generated on the scan electrode a. Due to this potential distribution, the voltage V 0 applied to the pixel A at the entrance of the voltage and the voltage V applied to the pixel B at the end are generally different.

【0016】この時画素Bに印加される電圧Vは例えば
図4に示した等価回路により概略を見積もることができ
る。図4において、I1 、I2 、I3 は電流、rは電極
の配線抵抗、Rは保護層の抵抗を表している。この等価
回路においては以下の4式が成り立つ。
At this time, the voltage V applied to the pixel B can be roughly estimated by the equivalent circuit shown in FIG. 4, for example. In FIG. 4, I 1 , I 2 , and I 3 are currents, r is the wiring resistance of the electrodes, and R is the resistance of the protective layer. In this equivalent circuit, the following four expressions hold.

【0017】 I1 −I2 −2I3 =0 (1) V0 −I1 r−I2 r−V=0 (2) V0 −I1 r−I3 R−I3 r=0 (3) I3 r+I3 R−I2 r−V=0 (4) 上記(1)〜(4)よりI1 、I2 、I3 を消去すると
次の関係式が得られる。
I 1 -I 2 -2I 3 = 0 (1) V 0 -I 1 r -I 2 r -V = 0 (2) V 0 -I 1 r -I 3 R -I 3 r = 0 3) I 3 r + I 3 R-I 2 r-V = 0 (4) above (1) to (4) than I 1, when erasing the I 2, I 3 the following equation is obtained.

【0018】 V=(R+r)V0 /(R+3r) (5) 画素Aと画素Bに印加される電圧の差(V0 −V)は、
例えば印加電圧の制御により階調を制御し、むらのない
画像を表示するためには、極力小さくすることが望まし
い。即ち階調数をNとすると少なくとも以下の条件を満
足する必要がある。
V = (R + r) V 0 / (R + 3r) (5) The difference (V 0 −V) between the voltages applied to the pixel A and the pixel B is
For example, in order to control the gradation by controlling the applied voltage and display an image without unevenness, it is desirable to make it as small as possible. That is, if the number of gradations is N, it is necessary to satisfy at least the following conditions.

【0019】 V0 −V≦V0 /N (6) (6)式に(5)式を代入すると R≧(2N−3)r (7) となる。V 0 −V ≦ V 0 / N (6) Substituting the expression (5) into the expression (6) gives R ≧ (2N−3) r (7).

【0020】更に隣接するストライプ状電極間の距離を
m、長さ(画素Aから画素Bまでの長さ)をL、保護層
の膜厚をtとすると、 R=ρ・m/t・L (8) が成り立つから、(8)式を(7)式に代入すると、
(9)式が得られる。
If the distance between adjacent striped electrodes is m, the length (length from pixel A to pixel B) is L, and the film thickness of the protective layer is t, R = ρ · m / t · L Since equation (8) holds, substituting equation (8) into equation (7) gives
Expression (9) is obtained.

【0021】 ρ≧(2N−3)r・t・L/m (9) 即ち、画像むらのない良好な階調表示を可能ならしめる
ためには、前記保護層の抵抗率ρと電極の配線抵抗rの
関係が(9)式を満足する必要がある。
Ρ ≧ (2N−3) r · t · L / m (9) That is, in order to enable good gradation display without image unevenness, the resistivity ρ of the protective layer and the wiring of the electrode The relationship of the resistance r needs to satisfy the expression (9).

【0022】一方ワープロやパソコン等いわゆるVDT
として使用するディスプレイとしての画面サイズ及び画
素密度を考慮すると、前記した電極長Lとしては30c
m程度、電極間距離mは数十μmであり、配線抵抗rは
図3に示した金属電極を形成することにより10kΩ程
度とすることができる。
On the other hand, so-called VDT such as word processor and personal computer
Considering the screen size and the pixel density of the display used as the above, the electrode length L is 30c.
m, the inter-electrode distance m is several tens of μm, and the wiring resistance r can be set to about 10 kΩ by forming the metal electrode shown in FIG.

【0023】また、導電性異物が保護層を突き破って透
明電極に達するのを阻止するためには、その硬度にも依
存するが、1000Å程度の膜厚があれば達成可能であ
る。
Further, in order to prevent the conductive foreign matter from breaking through the protective layer and reaching the transparent electrode, it can be achieved with a film thickness of about 1000Å, although it depends on the hardness thereof.

【0024】更に、階調数Nとしては通常256階調が
標準的である。
Further, as the gradation number N, 256 gradations are usually standard.

【0025】以上の条件下において保護膜の抵抗率ρを
(9)式より見積もると良好な画像を得るためには、ρ
≧105 Ω・cmとなる(但し、L=30cm、t=1
000Å、m=20μm、2r=10kΩ、N=25
6)。
Under the above conditions, if the resistivity ρ of the protective film is estimated from the equation (9), in order to obtain a good image, ρ
≧ 10 5 Ω · cm (however, L = 30 cm, t = 1
000Å, m = 20 μm, 2r = 10 kΩ, N = 25
6).

【0026】従って通常のディスプレイとして使用され
るFLC素子においては、前述した電荷の偏りによる双
安定性の乱れを解消し、且つ電極間のリークによる階調
性の不均一性を解消するためには保護層の抵抗率ρは以
下の範囲にあることが望ましい。
Therefore, in the FLC element used as a normal display, in order to eliminate the above-mentioned disorder of the bistability due to the bias of the charge and the unevenness of the gradation due to the leakage between the electrodes, The resistivity ρ of the protective layer is preferably in the range below.

【0027】 105 Ω・cm≦ρ≦108 Ω・cm (10)10 5 Ω · cm ≦ ρ ≦ 10 8 Ω · cm (10)

【0028】[0028]

【実施例】【Example】

(実施例1)以下、図面を参照しながら本発明の実施例
を説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0029】320×300mmのガラス基板上にスパ
ッタリング法で厚さ1000ÅのITO膜を成膜し、ホ
トリソグラフィー技術を用いて全面にピッチ305μ
m、ライン幅285μmのストライプパターンを形成し
た後、厚さ2000ÅのAl膜を成膜し、次にピッチ3
05μmライン幅12μm、ITO電極との重なり幅6
μmで図3(a)に示す構成のパターンを形成して電極
基板を得た。
An ITO film having a thickness of 1000 Å is formed on a 320 × 300 mm glass substrate by a sputtering method, and a photolithography technique is used to form a pitch of 305 μ on the entire surface.
m, a line width of 285 μm is formed, and then an Al film having a thickness of 2000 Å is formed.
05μm line width 12μm, overlapping width with ITO electrode 6
An electrode substrate was obtained by forming a pattern having a configuration shown in FIG.

【0030】この時1本の電極パターンの両端における
配線抵抗rは約10kΩであった。この電極基板上に1
000ÅのSnO2 膜をスパッタ法により形成し、更に
10Å程度の厚さのポリイミド膜をスピンナーによる塗
布或いはLB法により成膜した後、200℃以上の温度
で焼成することによって形成した。
At this time, the wiring resistance r at both ends of one electrode pattern was about 10 kΩ. 1 on this electrode substrate
A 000 Å SnO 2 film was formed by a sputtering method, and a polyimide film having a thickness of about 10 Å was applied by a spinner or formed by an LB method, and then baked at a temperature of 200 ° C. or higher.

【0031】この塗膜にアルミニウムを電極として蒸着
し、100℃で減圧乾燥後、アルミニウム電極(1cm
2 )と透明電極(1cm2 )の間の抵抗をY.H.P
(横河ヒューレットパッカード)社製4192A LF
IMPEDANCE ANALYZERにより抵抗が
20kHzの交流で測定したところ10Ωであり、従っ
て抵抗率ρはρ=1×106 Ω・cmであった。
Aluminum was vapor-deposited on this coating film as an electrode and dried under reduced pressure at 100 ° C. to obtain an aluminum electrode (1 cm).
2 ) and the transparent electrode (1 cm 2 ) between Y. H. P
(Yokogawa Hewlett Packard) 4192A LF
The resistance was 10 Ω when measured by an IMPEDANCE ANALYZER in an alternating current having a resistance of 20 kHz, and the resistivity ρ was ρ = 1 × 10 6 Ω · cm.

【0032】この電極基板を2枚用意し、各々ラビング
処理を施した後、2枚の電極基板のストライプ状透明電
極の長手エッジ方向が互いに90°の角度で交差するよ
うに重ね合わせ(2枚の電極基板間の間隔を1.5μm
に保持するための平均粒径1.5μmのSiO2 ビーズ
を配置)て、セルを作製した。
Two electrode substrates were prepared and subjected to rubbing treatment, respectively, and then the two electrode substrates were laminated so that the longitudinal edge directions of the striped transparent electrodes intersect each other at 90 °. The distance between the electrode substrates is 1.5 μm
A SiO 2 bead having an average particle size of 1.5 μm was placed to hold the cell) to prepare a cell.

【0033】このセルに下記の相転移を示すフェニルベ
ンゾエート系液晶を主成分とする多成分液晶を注入し、
更に周波数約10Hz、電圧値約±20Vの交流電界に
よる電界処理を施すことにより比較的ドメインを制御し
易い配向を得た。
A multi-component liquid crystal containing a phenylbenzoate type liquid crystal exhibiting the following phase transition as a main component was injected into this cell,
Further, an electric field treatment with an AC electric field having a frequency of about 10 Hz and a voltage value of about ± 20 V was performed to obtain an orientation in which the domain was relatively easy to control.

【0034】[0034]

【化1】 [Chemical 1]

【0035】この液晶セルに駆動回路よりパルス電界を
印加し、パルス電圧を変化させて階調数N=256の階
調表示をドメイン制御により試みたところ、ほぼ均一に
表示することが可能であった。
When a pulse electric field is applied to this liquid crystal cell from a drive circuit and the pulse voltage is changed to attempt gradation display with gradation number N = 256 by domain control, almost uniform display is possible. It was

【0036】このセル構成における前記(9)式の右辺
ρmin を求めると、 ρmin ≡(2N−3)r・t・L/m≒4×105 Ω・
cm となり、(9)式及び(10)式を満足していることが
確認された。
When the right-hand side ρ min of the equation (9) in this cell structure is obtained, ρ min ≡ (2N-3) r · t · L / m≈4 × 10 5 Ω ·
It was confirmed that the value was cm 2 and the expressions (9) and (10) were satisfied.

【0037】(実施例2)実施例1のSnO2 膜とポリ
イミド超薄膜に変えて、インドープしたポリアニリン膜
を約1000Å形成した他は実施例1と同様の方法で液
晶素子を作製した。
Example 2 A liquid crystal device was manufactured in the same manner as in Example 1 except that the SnO 2 film and the polyimide ultrathin film of Example 1 were replaced by an indoped polyaniline film of about 1000 Å.

【0038】ポリアニリン膜の抵抗率を実施例1と同様
の手法で測定したところ1×107Ω・cmであり、実
施例1同様ρmin =4×105 Ω・cmであるから
(9)式及び(10)式を満足していた。
When the resistivity of the polyaniline film was measured by the same method as in Example 1, it was 1 × 10 7 Ω · cm, and as in Example 1, ρ min = 4 × 10 5 Ω · cm (9). The expressions (10) and (10) were satisfied.

【0039】この液晶セルを実施例1と同様に階調表示
を行なったところほぼ均一に表示することができた。
When gradation display was performed on this liquid crystal cell in the same manner as in Example 1, almost uniform display was possible.

【0040】(比較例1)ITO電極上にAl膜のパタ
ーンを形成しなかった他は実施例1と同様の方法で液晶
素子を作製した。この時の配線抵抗rは約100kΩで
あった。実施例1と同様に階調数N=256階調で階調
表示を試みたところ、ライン上の画素に輝度のむらが発
生し、均一な階調表示を行なうことができなかった。
(Comparative Example 1) A liquid crystal element was produced in the same manner as in Example 1 except that the Al film pattern was not formed on the ITO electrode. The wiring resistance r at this time was about 100 kΩ. When gradation display was attempted with the number of gradations N = 256 as in Example 1, uneven brightness was generated in the pixels on the line, and uniform gradation display could not be performed.

【0041】この時の(9)式の右辺はρmin =3×1
6 Ω・cmとなり、実施例1と同様ρ=1×106 Ω
・cmであるから(9)式を満足しない。
The right side of the equation (9) at this time is ρ min = 3 × 1
Becomes 0 6 Ω · cm, and ρ = 1 × 10 6 Ω as in Example 1.
・ Since it is cm, the formula (9) is not satisfied.

【0042】(比較例2)SnO2 のスパッタ膜を塗布
膜に変えた他は実施例1と同様の方法で液晶素子を作製
した。前述した方法でこの塗膜の抵抗率を測定したとこ
ろρ=1.0×104 Ω・cmであった。
(Comparative Example 2) A liquid crystal element was manufactured in the same manner as in Example 1 except that the SnO 2 sputtered film was changed to a coating film. When the resistivity of this coating film was measured by the method described above, it was ρ = 1.0 × 10 4 Ω · cm.

【0043】実施例1と同様に階調数N=256で階調
表示を試みたところ、走査ライン上の画素に輝度むらが
発生し、均一な階調表示を行なうことができなかった。
When gradation display was attempted with the number of gradations N = 256 in the same manner as in Example 1, uneven brightness occurred in the pixels on the scanning line, and uniform gradation display could not be performed.

【0044】この時実施例1同様ρmin =4×105 Ω
・cmであるから、(9)式を満足しない。
At this time, similar to the first embodiment, ρ min = 4 × 10 5 Ω
・ Since it is cm, the formula (9) is not satisfied.

【0045】[0045]

【発明の効果】以上説明したように、本発明の液晶素子
においては、隣接電極間のリーク電流及び上下電極間の
ショートが防止されていることにより、画像むらのない
良好な階調表示が実現する。
As described above, in the liquid crystal device of the present invention, since the leak current between the adjacent electrodes and the short circuit between the upper and lower electrodes are prevented, good gradation display without image unevenness is realized. To do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】本発明の一実施態様の断面図である。FIG. 2 is a cross-sectional view of one embodiment of the present invention.

【図3】本発明の液晶素子に用いた電極の断面図であ
る。
FIG. 3 is a cross-sectional view of electrodes used in the liquid crystal element of the present invention.

【図4】従来の液晶素子におけるリーク電流の説明図で
ある。
FIG. 4 is an explanatory diagram of a leak current in a conventional liquid crystal element.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対向配置した一対の電極基板間に液晶を
挟持し、それぞれの電極基板に設けた走査電極群と情報
電極群との交差部を画素とする液晶素子であって、少な
くとも一方の基板の電極群上に抵抗率ρ(Ω・cm)、
膜厚t(cm)の保護層を設け、該保護層が配置された
電極群の配線抵抗値をr(Ω)、電極長をL(cm)、
隣接する電極間の距離をm(cm)とし、表示階調数を
Nとした時、前記保護層の抵抗率ρが以下の関係 ρ≧(2N−3)r・t・L/m を満足することを特徴とする液晶素子。
1. A liquid crystal element in which a liquid crystal is sandwiched between a pair of electrode substrates arranged to face each other, and a pixel is formed at an intersection of a scanning electrode group and an information electrode group provided on each electrode substrate. Resistivity ρ (Ω · cm) on the substrate electrode group,
A protective layer having a film thickness t (cm) is provided, the wiring resistance value of the electrode group in which the protective layer is arranged is r (Ω), the electrode length is L (cm),
When the distance between adjacent electrodes is m (cm) and the number of display gradations is N, the resistivity ρ of the protective layer satisfies the following relation ρ ≧ (2N−3) r · t · L / m. A liquid crystal element characterized by:
【請求項2】 保護層の抵抗率が、 105 Ω・cm≦ρ≦108 Ω・cm であることを特徴とする請求項1記載の液晶素子。2. The liquid crystal element according to claim 1, wherein the resistivity of the protective layer is 10 5 Ω · cm ≦ ρ ≦ 10 8 Ω · cm. 【請求項3】 液晶が強誘電性液晶であることを特徴と
する請求項1記載の液晶素子。
3. The liquid crystal device according to claim 1, wherein the liquid crystal is a ferroelectric liquid crystal.
【請求項4】 保護層が下地層と一軸性配向処理を施し
た配向層とからなる多層構成であることを特徴とする請
求項1記載の液晶素子。
4. The liquid crystal device according to claim 1, wherein the protective layer has a multi-layer structure including an underlayer and an alignment layer subjected to a uniaxial alignment treatment.
JP19268093A 1993-07-08 1993-07-08 Liquid crystal element Withdrawn JPH0728045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19268093A JPH0728045A (en) 1993-07-08 1993-07-08 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19268093A JPH0728045A (en) 1993-07-08 1993-07-08 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPH0728045A true JPH0728045A (en) 1995-01-31

Family

ID=16295263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19268093A Withdrawn JPH0728045A (en) 1993-07-08 1993-07-08 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPH0728045A (en)

Similar Documents

Publication Publication Date Title
US5000545A (en) Liquid crystal device with metal electrode partially overlying transparent electrode
KR100313726B1 (en) Active matrix type liquid crystal display device
KR0125785B1 (en) Liquid crystal device
EP0614168B1 (en) Electro-optical addressing structure having reduced sensitivity to cross talk
US5446570A (en) Liquid crystal display with projecting portions on the electrodes
US5999242A (en) Addressable matrix array containing electrodes with a variety of resistances for ferroelectric liquid crystal device
EP0462619B1 (en) Optical modulation element and its manufacturing method
US8179509B2 (en) Liquid crystal display device and its manufacture method
JPS61166590A (en) Liquid crystal display element and driving thereof
JPH0728045A (en) Liquid crystal element
US6392624B1 (en) Method of driving liquid crystal device
JPH0682839A (en) Liquid crystal element
US6573879B2 (en) Plasma-addressed liquid crystal display device
JPH02221929A (en) Ferrodielectric liquid crystal-changeover- and-display element having lowered optical hysteresis
JP2905030B2 (en) Ferroelectric liquid crystal display
JPS62229233A (en) Liquid crystal display device
EP0549337A1 (en) Liquid crystal display device
JP2566149B2 (en) Optical modulator
JPH09311315A (en) Ferroelectric liquid crystal element and ferroelectric liquid crystal material
RU2017183C1 (en) Multielement electrooptic transducer and method for controlling the same
JPH04362923A (en) Liquid crystal display element
JPS62100739A (en) Liquid crystal display device
RU2017184C1 (en) Multielement electrooptic transducer and method for controlling the same
JP3029179B2 (en) Liquid crystal element
JP3182405B2 (en) Ferroelectric liquid crystal display

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003