JPH07280378A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH07280378A
JPH07280378A JP9574694A JP9574694A JPH07280378A JP H07280378 A JPH07280378 A JP H07280378A JP 9574694 A JP9574694 A JP 9574694A JP 9574694 A JP9574694 A JP 9574694A JP H07280378 A JPH07280378 A JP H07280378A
Authority
JP
Japan
Prior art keywords
heat exchanger
check valve
pipe
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9574694A
Other languages
Japanese (ja)
Inventor
Shigeki Ozeki
茂樹 大関
Satoshi Miura
智 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9574694A priority Critical patent/JPH07280378A/en
Publication of JPH07280378A publication Critical patent/JPH07280378A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To suppress a temperature rise of a compressor at the time of heating, to prevent freezing of a drain pan and to reduce a quantity of liquid refrigerant retained in an outdoor heat exchanger at the time of cooling. CONSTITUTION:An auxiliary heat exchanger 18A is installed under an outdoor heat exchanger 18, and connected in series with the exchanger 18. A bypass circuit 29 is connected between either an outlet or an inlet of the exchanger 18A and a discharge tube 31 for connecting a compressor 1 to a four-way valve 2 via a flow regulating tube 19 and a switching valve 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ式空気調和
機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner.

【0002】[0002]

【従来の技術】従来のヒートポンプ式空気調和機の冷媒
回路図が図5に示されている。冷房運転時、圧縮機1か
ら吐出された高温・高圧の冷媒ガスは実線矢印で示すよ
うに、四方弁2を経て室外熱交換器18の複数のサーキッ
ト内に入り、ここで外気に放熱することによって凝縮液
化して高圧の液冷媒となる。
2. Description of the Related Art A refrigerant circuit diagram of a conventional heat pump type air conditioner is shown in FIG. During the cooling operation, the high temperature and high pressure refrigerant gas discharged from the compressor 1 enters the plural circuits of the outdoor heat exchanger 18 through the four-way valve 2 as shown by the solid arrow, and radiates the outside air here. Is condensed and liquefied into a high-pressure liquid refrigerant.

【0003】この液冷媒は分配管17a 、17b 、17c を通
り分配器16で合流した後、冷房用絞り15で断熱膨張する
ことによって低圧の液ガス二相冷媒になる。
This liquid refrigerant passes through distribution pipes 17a, 17b and 17c, merges in a distributor 16, and adiabatically expands in a cooling throttle 15 to become a low-pressure liquid gas two-phase refrigerant.

【0004】この二相冷媒は配管接合部13、接続配管1
2、配管接合部11、逆止弁10を経て分配器8で分配さ
れ、分配管7a、7bを通って室内熱交換器6の複数のサー
キット内に入り、ここで室内空気を冷却することによっ
て蒸発気化して低圧のガス冷媒となる。
This two-phase refrigerant is connected to the pipe joint 13 and the connecting pipe 1.
2, the pipe joint 11 and the check valve 10 to be distributed by the distributor 8, pass through the distribution pipes 7a and 7b, and enter the plural circuits of the indoor heat exchanger 6, where the indoor air is cooled. It vaporizes and becomes a low-pressure gas refrigerant.

【0005】このガス冷媒は配管接合部5、接続ガス管
4、配管接合部3、四方弁2を通ってアキュムレータ22
に入り、ここで未蒸発の液冷媒を分離したガス冷媒が吸
入配管23を通って圧縮機1に吸込まれて再び圧縮され
る。
This gas refrigerant passes through the pipe joint 5, the connecting gas pipe 4, the pipe joint 3, and the four-way valve 2 and then the accumulator 22.
The gas refrigerant, which has separated the non-evaporated liquid refrigerant, is sucked into the compressor 1 through the suction pipe 23 and compressed again.

【0006】一方、暖房運転時、圧縮機1から吐出され
た高温・高圧のガス冷媒は破線矢印で示すように、四方
弁2、配管接合部3、接続ガス管4、配管接合部5を通
って室内熱交換器6に入り、ここで、凝縮液化して高圧
の液冷媒となる。
On the other hand, during the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2, the pipe joint part 3, the connecting gas pipe 4, and the pipe joint part 5 as shown by the broken line arrow. And enters the indoor heat exchanger 6, where it is condensed and liquefied into high-pressure liquid refrigerant.

【0007】この液冷媒は分配管7a、7bを通って分配器
8で合流した後、暖房用絞り9で断熱膨張することによ
って低圧の液ガス二相冷媒となる。
The liquid refrigerant merges in the distributor 8 through the distribution pipes 7a and 7b and then adiabatically expands in the heating throttle 9 to become a low-pressure liquid gas two-phase refrigerant.

【0008】この二相冷媒は配管接合部11、接続配管1
2、配管接合部13、逆止弁14、分配器16、分配管17a 、1
7b 、17c を通って室外熱交換器18に入り、ここで蒸発
気化して低圧のガス冷媒となる。このガス冷媒はアキュ
ムレータ22、吸入配管23を通って圧縮機1に戻り再び圧
縮される。
This two-phase refrigerant consists of a pipe joint 11 and a connecting pipe 1.
2, pipe joint 13, check valve 14, distributor 16, distribution pipe 17a, 1
It enters the outdoor heat exchanger 18 through 7b and 17c, and is evaporated and vaporized there to become a low-pressure gas refrigerant. This gas refrigerant returns to the compressor 1 through the accumulator 22 and the suction pipe 23 and is compressed again.

【0009】運転条件の変化によって、圧縮機1の温度
が異常に上昇した場合は液冷媒噴射回路28に介装された
開閉弁20を開とする。すると、冷房運転時は室外熱交換
器18で凝縮した高圧の液冷媒が液冷媒噴射回路28及びこ
れに介装された開閉弁20、流量調整管21、吸入配管23を
通って圧縮機1に噴射されてこれを冷却する。
When the temperature of the compressor 1 rises abnormally due to changes in operating conditions, the on-off valve 20 provided in the liquid refrigerant injection circuit 28 is opened. Then, during the cooling operation, the high-pressure liquid refrigerant condensed in the outdoor heat exchanger 18 passes through the liquid refrigerant injection circuit 28 and the opening / closing valve 20, the flow rate adjusting pipe 21, and the suction pipe 23, which are passed to the compressor 1. It is injected to cool it.

【0010】暖房運転時には逆止弁14を流過した低圧の
液ガス二相冷媒が液冷媒噴射回路28、開閉弁20、流量調
整管21、吸入配管23を通って圧縮機1に噴射される。
During heating operation, the low-pressure liquid-gas two-phase refrigerant flowing through the check valve 14 is injected into the compressor 1 through the liquid-refrigerant injection circuit 28, the on-off valve 20, the flow rate adjusting pipe 21, and the suction pipe 23. .

【0011】なお、暖房運転時、室外熱交換器18に着霜
すると、その吸熱効率が着霜により低下するため、四方
弁2を冷房運転時の状態に切換えることによりデフロス
ト運転が行なわれる。
When the outdoor heat exchanger 18 is frosted during the heating operation, the heat absorption efficiency thereof is reduced by the frosting. Therefore, the defrost operation is performed by switching the four-way valve 2 to the cooling operation state.

【0012】[0012]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(1) 上記従来のヒートポンプ式空気調和機において
は、その暖房運転時、圧縮機1の温度上昇を防止するた
め逆止弁14を流過した低圧の液ガス二相冷媒が冷媒噴射
回路28を通って圧縮機1に噴射される。従って、逆止弁
14を流過した後の冷媒圧力と吸入配管23内の冷媒圧力と
の間の圧力差が少ないので、圧縮機1にその冷却に必要
な量の液冷媒を供給することができず、この結果、暖房
運転時は圧縮機1の温度が高くなり易いため、その運転
範囲が狭くなるという問題があった。
(1) In the above conventional heat pump type air conditioner, the low-pressure liquid gas two-phase refrigerant that has passed through the check valve 14 in order to prevent the temperature of the compressor 1 from rising during the heating operation of the refrigerant injection circuit 28. It is then injected into the compressor 1. Therefore, the check valve
Since the pressure difference between the refrigerant pressure after passing through 14 and the refrigerant pressure in the suction pipe 23 is small, it is not possible to supply the compressor 1 with the liquid refrigerant in an amount necessary for cooling the compressor 1. However, during the heating operation, the temperature of the compressor 1 is likely to be high, which causes a problem that the operating range is narrowed.

【0013】(2) 室外熱交換器18は図6に示すよう
に、ドレンパン35の上に取り付けられているため、暖房
運転時は室外熱交換器18によりドレンパン35も低温に冷
やされる。従って、デフロスト運転時に室外熱交換器18
の表面から滴下したドレン水が暖房運転時にドレンパン
35上に凍り付き、この氷36がデフロスト運転毎に成長し
て室外熱交換器18内のパイプ18B を圧迫して変形させる
という不具合があった。
(2) Since the outdoor heat exchanger 18 is mounted on the drain pan 35 as shown in FIG. 6, the outdoor heat exchanger 18 also cools the drain pan 35 to a low temperature during the heating operation. Therefore, during the defrost operation, the outdoor heat exchanger 18
Drain water dripping from the surface of the
There was a problem that the ice 36 was frozen on the ice 35, and this ice 36 grew every defrosting operation to press and deform the pipe 18B in the outdoor heat exchanger 18.

【0014】(3) 暖房運転時、室外熱交換器18の各サ
ーキット間の放熱量の差によって冷媒の凝縮量にむらが
生じ、この結果、室外熱交換器18のパイプ18B 内に滞留
する冷媒量が増加するという不具合があった。
(3) During the heating operation, the difference in the amount of heat radiated between the circuits of the outdoor heat exchanger 18 causes unevenness in the amount of condensation of the refrigerant, and as a result, the refrigerant staying in the pipe 18B of the outdoor heat exchanger 18 There was a problem that the amount increased.

【0015】[0015]

【課題を解決するための手段】本発明は上記課題を解決
するために発明されたものであって、その特徴とすると
ころは、室外熱交換器の下部に補助熱交換器を設置して
室外熱交換器と直列に接続するとともにこの補助熱交換
器の出・入口のいずれかと、圧縮機と四方弁とを繋ぐ吐
出配管との間に流量調整管及び開閉弁が介装されたバイ
パス回路を接続したことにある。
The present invention has been invented to solve the above-mentioned problems, and is characterized in that an auxiliary heat exchanger is installed in the lower portion of the outdoor heat exchanger and the outdoor heat exchanger is installed outdoors. In addition to connecting in series with the heat exchanger, a bypass circuit in which a flow rate adjusting pipe and an on-off valve are installed between either the outlet or inlet of this auxiliary heat exchanger and the discharge pipe connecting the compressor and the four-way valve I have connected.

【0016】他の特徴とするところは、上記補助熱交換
器の出・入口のいずれかと、四方弁と室内熱交換器とを
繋ぐ冷媒配管との間に流量調整管及び開閉弁が介装され
たバイパス回路を接続したことにある。
Another feature is that a flow rate adjusting pipe and an on-off valve are provided between one of the outlet and inlet of the auxiliary heat exchanger and the refrigerant pipe connecting the four-way valve and the indoor heat exchanger. The bypass circuit was connected.

【0017】上記補助熱交換器の出・入口のいずれか
と、圧縮機の吸入管との間に流量調整管及び開閉弁が介
装された冷媒バイパス回路を接続することができる。
A refrigerant bypass circuit in which a flow rate adjusting pipe and an on-off valve are interposed can be connected between any one of the outlet and inlet of the auxiliary heat exchanger and the suction pipe of the compressor.

【0018】更に他の特徴とするところは、冷房用絞り
と逆止弁との並列回路と暖房用絞りと逆止弁との並列回
路とを繋ぐ液ガス二相冷媒用配管と、圧縮機の吸入管と
の間に流量調整管及び開閉弁が介装された液冷媒噴射回
路を接続するとともに冷房用絞りと逆止弁との並列回路
中の逆止弁の出口側にこの逆止弁と直列に流量調整管を
設置したことにある。
Still another feature is that a pipe for liquid gas two-phase refrigerant connecting a parallel circuit of a cooling throttle and a check valve and a parallel circuit of a heating throttle and a check valve, and a compressor A liquid refrigerant injection circuit in which a flow rate adjusting pipe and an on-off valve are installed is connected between the suction pipe and the check valve at the outlet side of the check valve in the parallel circuit of the cooling throttle and the check valve. It is because the flow rate adjustment pipe was installed in series.

【0019】暖房用絞りと逆止弁との並列回路中の逆止
弁の出口側にこの逆止弁と直列に流量調整管を設置する
ことができる。
A flow rate adjusting pipe can be installed in series with the check valve on the outlet side of the check valve in the parallel circuit of the heating throttle and the check valve.

【0020】[0020]

【作用】暖房運転時、バイパス回路に介装された開閉弁
を開とすると、圧縮機から吐出された高温・高圧のガス
冷媒の一部がバイパス回路及びこれに介装された開閉
弁、流量調整管を通って補助熱交換器又は室外熱交換器
に入り、ここで外気に放熱することによって凝縮する。
[Function] When the opening / closing valve installed in the bypass circuit is opened during the heating operation, a part of the high-temperature / high-pressure gas refrigerant discharged from the compressor is opened in the bypass circuit and the opening / closing valve installed in the bypass circuit and the flow rate. It enters the auxiliary heat exchanger or the outdoor heat exchanger through the adjusting pipe, and radiates heat to the outside air to be condensed.

【0021】液冷媒噴射回路に介装された開閉弁を開と
すると、高圧又は中圧の液冷媒が液冷媒噴射回路及びこ
れに介装された開閉弁、流量調整管を通って圧縮機に噴
射されこれを冷却する。
When the on-off valve installed in the liquid refrigerant injection circuit is opened, the high-pressure or medium-pressure liquid refrigerant passes through the liquid refrigerant injection circuit, the on-off valve installed in the liquid refrigerant injection circuit, and the flow rate adjusting pipe to the compressor. It is injected and cools it.

【0022】暖房運転時、暖房用絞りで絞られた低圧の
二相冷媒が補助熱交換器を通って室外熱交換器に入る
と、補助熱交換器には流路抵抗があるため、補助熱交換
器内の冷媒圧力は室外熱交換器内の冷媒圧力より高くな
り、補助熱交換器の温度は吸熱源である外気温度より高
くなので、補助熱交換器の表面には着霜せずドレンが凍
結することもない。
During the heating operation, when the low-pressure two-phase refrigerant throttled by the heating throttle passes through the auxiliary heat exchanger and enters the outdoor heat exchanger, the auxiliary heat exchanger has a flow path resistance, so that the auxiliary heat The refrigerant pressure in the exchanger is higher than the refrigerant pressure in the outdoor heat exchanger, and the temperature of the auxiliary heat exchanger is higher than the outside air temperature, which is the heat absorption source, so the surface of the auxiliary heat exchanger does not frost and drains. It does not freeze.

【0023】冷房運転時、補助熱交換器には室外熱交換
器の各サーキットで凝縮した液冷媒が流入するので、各
サーキット内に液冷媒が不均一に溜まり込むことは殆ど
なくなる。
During the cooling operation, the liquid refrigerant condensed in each circuit of the outdoor heat exchanger flows into the auxiliary heat exchanger, so that the liquid refrigerant hardly accumulates nonuniformly in each circuit.

【0024】[0024]

【実施例】本発明の第1の実施例が図1に示されてい
る。図1に示すように、室外熱交換器18の下部にはこれ
を分割することによって構成された補助熱交換器18A が
設置され、この補助熱交換器18A は室外熱交換器18と直
列の接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A first embodiment of the invention is shown in FIG. As shown in FIG. 1, an auxiliary heat exchanger 18A configured by dividing the outdoor heat exchanger 18 is installed in the lower part of the outdoor heat exchanger 18, and the auxiliary heat exchanger 18A is connected in series with the outdoor heat exchanger 18. Has been done.

【0025】液冷媒噴射回路28の一端は分配器16と補助
熱交換器18A とを繋ぐ冷媒配管30に接続され、他端は従
来のものと同様圧縮機1の吸入配管23に接続されてい
る。
One end of the liquid refrigerant injection circuit 28 is connected to the refrigerant pipe 30 connecting the distributor 16 and the auxiliary heat exchanger 18A, and the other end is connected to the suction pipe 23 of the compressor 1 as in the conventional one. .

【0026】また、圧縮機1と四方弁2とを繋ぐ圧縮機
1の吐出配管31にバイパス回路29の一端が接続され、こ
の他端は冷房用絞り15と逆止弁14との並列回路40と補助
熱交換器18A とを繋ぐ冷媒配管32に接続されている。こ
のバイパス回路29には開閉弁24と流量調整管19が介装さ
れている。他の構成は図5に示す従来のものと同様であ
り、対応する部材には同じ符号が付されている。
Further, one end of a bypass circuit 29 is connected to a discharge pipe 31 of the compressor 1 connecting the compressor 1 and the four-way valve 2, and the other end is a parallel circuit 40 of a cooling throttle 15 and a check valve 14. Is connected to a refrigerant pipe 32 that connects the auxiliary heat exchanger 18A and the auxiliary heat exchanger 18A. An opening / closing valve 24 and a flow rate adjusting pipe 19 are interposed in the bypass circuit 29. Other configurations are similar to those of the conventional one shown in FIG. 5, and corresponding members are designated by the same reference numerals.

【0027】暖房運転時、冷媒は破線で示すように、圧
縮機1、吐出配管31、四方弁2、配管接合部3、接続ガ
ス管4、配管接合部5、室内熱交換器6、分配管7a、7
b、分配器8、暖房用絞り9、配管接合部11、接続配管1
2、配管接合部13、逆止弁14、配管32、補助熱交換器18A
、配管30、分配器16、分配管17a 、17b 、17c 、室外
熱交換器18、四方弁2、アキュムレータ22、吸入配管23
をこの順に経て圧縮機1に戻る。
During heating operation, the refrigerant, as indicated by the broken line, is a compressor 1, a discharge pipe 31, a four-way valve 2, a pipe joint 3, a connecting gas pipe 4, a pipe joint 5, an indoor heat exchanger 6, and a distribution pipe. 7a, 7
b, distributor 8, heating throttle 9, pipe joint 11, connecting pipe 1
2, pipe joint 13, check valve 14, pipe 32, auxiliary heat exchanger 18A
, Pipe 30, distributor 16, distribution pipes 17a, 17b, 17c, outdoor heat exchanger 18, four-way valve 2, accumulator 22, suction pipe 23
And then returns to the compressor 1.

【0028】補助熱交換器18A 、配管30、分配器16、分
配管17a 、17b 、17c の流路抵抗のため補助熱交換器18
A 内の冷媒蒸発圧力は室外熱交換器18内の冷媒蒸発圧力
より高くなり、従って、補助熱交換器18A 内の冷媒蒸発
温度は室外熱交換器18内のそれより高く、かつ、吸熱源
である外気の温度より高くしうる。
Auxiliary heat exchanger 18A, pipe 30, distributor 16, distribution pipes 17a, 17b, 17c due to flow resistance of the auxiliary heat exchanger 18
The refrigerant vaporization pressure in A is higher than the refrigerant vaporization pressure in the outdoor heat exchanger 18, so the refrigerant vaporization temperature in the auxiliary heat exchanger 18A is higher than that in the outdoor heat exchanger 18 and at the heat absorption source. It can be higher than the temperature of some outside air.

【0029】従って、低外気温度時の暖房運転におい
て、室外熱交換器18に着霜する場合であっても補助熱交
換器18A に着霜することはなく、また、ドレンパン35内
のドレンが凍結するのを防止できる。
Therefore, in the heating operation at low outside air temperature, even when the outdoor heat exchanger 18 is frosted, the auxiliary heat exchanger 18A is not frosted, and the drain in the drain pan 35 is frozen. Can be prevented.

【0030】一方、吐出配管31からガス冷媒の一部がバ
イパス回路29に分流されるので、室内熱交換器6に流入
するガス冷媒の量が減少し、従って、室内熱交換器6内
における凝縮圧力が低下する。また、補助熱交換器18A
で部分的に蒸発した中圧の液冷媒が室外熱交換器18に流
入するので、室外熱交換器18内の冷媒蒸発圧力が上昇す
る。これらによって圧縮機1の運転圧力、即ち、負荷が
低減するので圧縮機1の温度も低下する。
On the other hand, since a part of the gas refrigerant is diverted from the discharge pipe 31 to the bypass circuit 29, the amount of the gas refrigerant flowing into the indoor heat exchanger 6 is reduced, so that the condensation in the indoor heat exchanger 6 is reduced. The pressure drops. Also, the auxiliary heat exchanger 18A
Since the medium-pressure liquid refrigerant partially evaporated in (1) flows into the outdoor heat exchanger 18, the refrigerant evaporation pressure in the outdoor heat exchanger 18 rises. By these, the operating pressure of the compressor 1, that is, the load is reduced, so that the temperature of the compressor 1 is also reduced.

【0031】暖房運転中に圧縮機1の温度が異常上昇し
た場合には、開閉弁20及び24が開とされる。すると、圧
縮機1から吐出された高温・高圧のガス冷媒の一部は吐
出配管31からバイパス回路29に入り、開閉弁24及び流量
調整管19、配管32を通って補助熱交換器18A 内に入り、
ここで外気と熱交換して凝縮することにより中圧の液冷
媒となる。この中圧の液冷媒が配管30から液冷媒噴射回
路28に入り、開閉弁20、流量調整管21、吸入配管23を経
て圧縮機1に噴射されて圧縮機1を冷却する。
When the temperature of the compressor 1 rises abnormally during the heating operation, the open / close valves 20 and 24 are opened. Then, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the bypass circuit 29 from the discharge pipe 31, passes through the on-off valve 24, the flow rate adjusting pipe 19, and the pipe 32 and enters the auxiliary heat exchanger 18A. enter,
Here, by exchanging heat with the outside air and condensing, it becomes a medium-pressure liquid refrigerant. This medium-pressure liquid refrigerant enters the liquid refrigerant injection circuit 28 from the pipe 30, is injected into the compressor 1 through the on-off valve 20, the flow rate adjusting pipe 21, and the suction pipe 23 to cool the compressor 1.

【0032】しかして、補助熱交換器18A で部分的に蒸
発した中圧の液冷媒の圧力と圧縮機1の吸入配管23内の
冷媒圧力との間の圧力差が大きくなるので、十分な量の
液冷媒を圧縮機1に供給できるので、圧縮機1を効果的
に冷却できる。
However, since the pressure difference between the pressure of the medium-pressure liquid refrigerant partially evaporated in the auxiliary heat exchanger 18A and the refrigerant pressure in the suction pipe 23 of the compressor 1 becomes large, a sufficient amount is obtained. Since this liquid refrigerant can be supplied to the compressor 1, the compressor 1 can be effectively cooled.

【0033】冷房運転時には、冷媒は実線矢印で示すよ
うに、圧縮機1、吐出配管31、四方弁2、室外熱交換器
18、分配管17a 、17b 、17c 、分配器16、配管30、補助
熱交換器18A 、配管32、冷房用絞り15、配管接合部13、
接続配管12、配管接合部11、逆止弁10、分配器8、分配
管7a、7b、室内熱交換器6、配管接合部5、接続ガス管
4、配管接合部3、四方弁2、アキュムレータ22、吸入
配管23をこの順に経て圧縮機1に戻る。
During the cooling operation, the refrigerant is the compressor 1, the discharge pipe 31, the four-way valve 2, the outdoor heat exchanger as shown by the solid arrow.
18, distribution pipes 17a, 17b, 17c, distributor 16, pipe 30, auxiliary heat exchanger 18A, pipe 32, cooling throttle 15, pipe joint 13,
Connection pipe 12, pipe joint 11, check valve 10, distributor 8, distribution pipes 7a, 7b, indoor heat exchanger 6, pipe joint 5, connection gas pipe 4, pipe joint 3, four-way valve 2, accumulator 22 and the suction pipe 23 in this order, and then returns to the compressor 1.

【0034】しかして、室外熱交換器18で凝縮した液冷
媒はガス冷媒に比し流路抵抗が少ないので、分配管17a
、17b 、17c 、分配器16、配管30を通って補助熱交換
器18A内に集まるので、従来のように室外熱交換器18の
パイプ18B 内に液冷媒が溜まるのを防止できる。
Since the liquid refrigerant condensed in the outdoor heat exchanger 18 has a smaller flow resistance than the gas refrigerant, the distribution pipe 17a
, 17b and 17c, the distributor 16, and the pipe 30 to collect in the auxiliary heat exchanger 18A, it is possible to prevent the liquid refrigerant from accumulating in the pipe 18B of the outdoor heat exchanger 18 as in the conventional case.

【0035】なお、図示しないがバイパス回路29の一端
を冷媒配管30に接続することができ、このようにしても
上記と同様の効果を奏することができる。
Although not shown, one end of the bypass circuit 29 can be connected to the refrigerant pipe 30. Even in this case, the same effect as described above can be obtained.

【0036】図2には第2の実施例が示されている。こ
の実施例においては、バイパス回路29の他端が四方弁2
と室内熱交換器6を繋ぐ冷媒配管33に接続されている。
そして、液冷媒噴射回路28が省略されている。他の構成
は図1に示す第1の実施例と同じであり、対応する部材
には同じ符号が付されている。
A second embodiment is shown in FIG. In this embodiment, the other end of the bypass circuit 29 has the four-way valve 2
Is connected to a refrigerant pipe 33 that connects the indoor heat exchanger 6 and the indoor heat exchanger 6.
The liquid refrigerant injection circuit 28 is omitted. The other structure is the same as that of the first embodiment shown in FIG. 1, and the corresponding members are designated by the same reference numerals.

【0037】暖房運転時、圧縮機1の温度が異常上昇し
た場合には開閉弁24を開く。すると、圧縮機1から吐出
された高温・高圧のガス冷媒が四方弁2、配管33を経て
その一部がバイパス回路29に入り、開閉弁24、流量調整
管19、配管32を経て補助熱交換器18A に入りここで凝縮
する。
When the temperature of the compressor 1 rises abnormally during the heating operation, the open / close valve 24 is opened. Then, a part of the high temperature / high pressure gas refrigerant discharged from the compressor 1 enters the bypass circuit 29 through the four-way valve 2 and the pipe 33, and passes through the on-off valve 24, the flow rate adjusting pipe 19, and the pipe 32 for auxiliary heat exchange. Enters vessel 18A and condenses here.

【0038】しかして、ガス冷媒の一部が配管33からバ
イパス回路29に流入するので、室内熱交換器6に流入す
る冷媒量が減り、これによって室内熱交換器6における
冷媒凝縮圧力が低下する。一方、室外熱交換器18に補助
熱交換器18A で部分的に蒸発した中圧の液冷媒が流入
し、室外熱交換器18内の冷媒蒸発圧力が上昇する。これ
らによって圧縮機1の負荷が低下し、圧縮機1の温度も
低下する。
Since a part of the gas refrigerant flows into the bypass circuit 29 from the pipe 33, the amount of refrigerant flowing into the indoor heat exchanger 6 is reduced, and the refrigerant condensing pressure in the indoor heat exchanger 6 is reduced accordingly. . On the other hand, the medium-pressure liquid refrigerant partially evaporated in the auxiliary heat exchanger 18A flows into the outdoor heat exchanger 18, and the refrigerant evaporation pressure in the outdoor heat exchanger 18 rises. As a result, the load on the compressor 1 decreases, and the temperature of the compressor 1 also decreases.

【0039】冷房運転時、補助熱交換器18A で凝縮した
液冷媒の一部がバイパス回路29に入り、流量調整管19、
開閉弁24を経て配管33に戻り、この液冷媒が四方弁2、
アキュムレータ22で分離されてその底部に溜まる。そし
て、アキュムレータ22のU字管22A の下部に設けられた
油戻し穴22B から冷凍機油とともに圧縮機1に吸込まれ
て圧縮機1を冷却する。
During the cooling operation, a part of the liquid refrigerant condensed in the auxiliary heat exchanger 18A enters the bypass circuit 29, and the flow rate adjusting pipe 19,
The liquid refrigerant returns to the pipe 33 through the on-off valve 24, and the liquid refrigerant is transferred to the four-way valve 2,
It is separated by the accumulator 22 and accumulates at the bottom. Then, the compressor 1 is cooled by being sucked into the compressor 1 together with the refrigerating machine oil from the oil return hole 22B provided in the lower portion of the U-shaped pipe 22A of the accumulator 22.

【0040】図3には第3の実施例が示されている。こ
の第3の実施例においては、バイパス回路29の一端が配
管30に接続され、また、液冷媒噴射回路28の一端が配管
32に接続されている。このようにしても図2に示す第2
の実施例と同様の効果を奏することができる。
FIG. 3 shows a third embodiment. In this third embodiment, one end of the bypass circuit 29 is connected to the pipe 30, and one end of the liquid refrigerant injection circuit 28 is connected to the pipe 30.
Connected to 32. Even in this case, the second shown in FIG.
The same effect as that of the embodiment can be obtained.

【0041】図4には第4の実施例が示されている。こ
の第4の実施例においては、逆止弁14の後流側に流量調
整管25が接続され、これら逆止弁14及び流量調整管25に
対して並列に冷房用絞り15が接続されている。そして、
逆止弁10の後流側に流量調整管26が接続され、これら逆
止弁10及び流量調整管26に対して並列に暖房用絞り9が
接続されている。
FIG. 4 shows a fourth embodiment. In the fourth embodiment, a flow rate adjusting pipe 25 is connected to the downstream side of the check valve 14, and a cooling throttle 15 is connected in parallel to the check valve 14 and the flow rate adjusting pipe 25. . And
A flow rate adjusting pipe 26 is connected to the downstream side of the check valve 10, and a heating throttle 9 is connected in parallel to the check valve 10 and the flow rate adjusting pipe 26.

【0042】また、液冷媒噴射回路28の一端が並列回路
43と44とを繋ぐ液ガス二相冷媒用配管34に接続されてい
る。
Further, one end of the liquid refrigerant injection circuit 28 is a parallel circuit.
It is connected to a liquid gas two-phase refrigerant pipe 34 connecting 43 and 44.

【0043】暖房運転時、逆止弁14から流出した液ガス
二相冷媒は流量調整管25で絞られるため、逆止弁14入口
の圧力が上昇する。従って、開閉弁20を閉とすれば、圧
力の上昇した気液二相冷媒が液冷媒噴射回路28を通って
圧縮機1に供給されるので、圧縮機1を冷却するのに充
分な量の冷媒を圧縮機1に供給しうる。
During the heating operation, the liquid gas two-phase refrigerant flowing out from the check valve 14 is throttled by the flow rate adjusting pipe 25, so that the pressure at the inlet of the check valve 14 rises. Therefore, when the on-off valve 20 is closed, the gas-liquid two-phase refrigerant whose pressure has risen is supplied to the compressor 1 through the liquid refrigerant injection circuit 28, so that a sufficient amount for cooling the compressor 1 is obtained. Refrigerant may be supplied to the compressor 1.

【0044】また、冷房運転時、冷房用絞り15で断熱膨
張した液ガス二相冷媒が逆止弁10を通り流量調整管26で
絞られた後、分配器8に流れる。この結果、二相冷媒が
流量調整管26で絞られるため、逆止弁10の上流側の圧力
は上昇し、これに伴って冷房用絞り15出口の冷媒圧力も
上昇する。従って、圧力の高い二相冷媒が液冷媒噴射回
路29を通って圧縮機1に供給されるので、圧縮機1の冷
却するのに十分な量の冷媒を圧縮機1に供給しうる。
Further, during the cooling operation, the liquid gas two-phase refrigerant adiabatically expanded by the cooling throttle 15 passes through the check valve 10 and is throttled by the flow rate adjusting pipe 26, and then flows into the distributor 8. As a result, since the two-phase refrigerant is throttled by the flow rate adjusting pipe 26, the pressure on the upstream side of the check valve 10 rises, and the refrigerant pressure at the outlet of the cooling throttle 15 also rises accordingly. Therefore, since the high-pressure two-phase refrigerant is supplied to the compressor 1 through the liquid refrigerant injection circuit 29, a sufficient amount of refrigerant for cooling the compressor 1 can be supplied to the compressor 1.

【0045】[0045]

【発明の効果】本発明においては、 (1) 暖房運転時、高圧ガス冷媒の一部をバイパス回路
にバイパスさせることができるので、圧縮機1の温度上
昇を抑制できる。 (2) 暖房運転時においても液冷媒噴射回路に従来より
も高圧の液冷媒を流入させることができるので、圧縮機
にこれを冷却するのに充分な量の液冷媒を供給しうる。 (3) 暖房運転時、補助熱交換器の温度を外気温より高
くしうるので、これに着霜するのを防止できるとともに
ドレン水の凍結を防止しうるので、凍結による室外熱交
換器の変形を防止できる。 (4) 冷房運転時、室外熱交換器の各サーキットで凝縮
した液冷媒は補助熱交換器に集められるので、各サーキ
ットに滞留する液冷媒を殆どなくすることができる。
According to the present invention, (1) during heating operation, a part of the high-pressure gas refrigerant can be bypassed to the bypass circuit, so that the temperature rise of the compressor 1 can be suppressed. (2) Since the liquid refrigerant having a higher pressure than before can be flown into the liquid refrigerant injection circuit even during the heating operation, the liquid refrigerant can be supplied to the compressor in an amount sufficient to cool it. (3) During heating operation, the temperature of the auxiliary heat exchanger can be higher than the outside air temperature, which can prevent frost formation on the auxiliary heat exchanger and prevent freezing of drain water. Can be prevented. (4) During the cooling operation, the liquid refrigerant condensed in each circuit of the outdoor heat exchanger is collected in the auxiliary heat exchanger, so that the liquid refrigerant accumulated in each circuit can be almost eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係わる空気調和機の冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係わる空気調和機の部分
的冷媒回路図である。
FIG. 2 is a partial refrigerant circuit diagram of an air conditioner according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係わる空気調和機の部分
的冷媒回路図である。
FIG. 3 is a partial refrigerant circuit diagram of an air conditioner according to a third embodiment of the present invention.

【図4】本発明の第4実施例に係わる空気調和機の冷媒
回路図である。
FIG. 4 is a refrigerant circuit diagram of an air conditioner according to a fourth embodiment of the present invention.

【図5】従来の空気調和機の冷媒回路図である。FIG. 5 is a refrigerant circuit diagram of a conventional air conditioner.

【図6】従来の空気調和機の室外熱交換器の取付状態を
示す部分的斜視図である。
FIG. 6 is a partial perspective view showing a mounted state of an outdoor heat exchanger of a conventional air conditioner.

【符号の説明】 18 室外熱交換器 18A 補助熱交換器 40 並列回路 15 冷房用絞り 14 逆止弁 41 並列回路 9 暖房用絞り 10 逆止弁 24、20 開閉弁 19、21 流量調整管 1 圧縮機 6 室内熱交換器 2 四方弁 28 液冷媒噴射回路 29 バイパス回路[Description of symbols] 18 Outdoor heat exchanger 18A Auxiliary heat exchanger 40 Parallel circuit 15 Cooling throttle 14 Check valve 41 Parallel circuit 9 Heating throttle 10 Check valve 24, 20 Open / close valve 19, 21 Flow rate control pipe 1 Compressed Machine 6 Indoor heat exchanger 2 Four-way valve 28 Liquid refrigerant injection circuit 29 Bypass circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、冷房用
絞りと逆止弁との並列回路、暖房用絞りと逆止弁との並
列回路及び室内熱交換器をこの順に接続してなるヒート
ポンプ式空気調和機において、上記室外熱交換器の下部
に補助熱交換器を設置して上記室外熱交換器と直列に接
続するとともにこの補助熱交換器の出・入口のいずれか
と、上記圧縮機と上記四方弁とを繋ぐ吐出配管との間に
流量調整管及び開閉弁が介装されたバイパス回路を接続
したことを特徴とするヒートポンプ式空気調和機。
1. A compressor, a four-way valve, an outdoor heat exchanger, a parallel circuit of a cooling throttle and a check valve, a parallel circuit of a heating throttle and a check valve, and an indoor heat exchanger are connected in this order. In this heat pump type air conditioner, an auxiliary heat exchanger is installed in the lower part of the outdoor heat exchanger and is connected in series with the outdoor heat exchanger, and either the outlet or inlet of the auxiliary heat exchanger and the compression A heat pump type air conditioner characterized in that a bypass circuit in which a flow rate adjusting pipe and an opening / closing valve are interposed is connected between a machine and a discharge pipe connecting the four-way valve.
【請求項2】 圧縮機、四方弁、室外熱交換器、冷房用
絞りと逆止弁との並列回路、暖房用絞りと逆止弁との並
列回路及び室内熱交換器をこの順に接続してなるヒート
ポンプ式空気調和機において、上記室外熱交換器の下部
に補助熱交換器を設置して室外熱交換器と直列に接続す
るとともにこの補助熱交換器の出・入口のいずれかと、
上記四方弁と上記室内熱交換器とを繋ぐ冷媒配管との間
に流量調整管及び開閉弁が介装されたバイパス回路を接
続したことを特徴とするヒートポンプ式空気調和機。
2. A compressor, a four-way valve, an outdoor heat exchanger, a parallel circuit of a cooling throttle and a check valve, a parallel circuit of a heating throttle and a check valve, and an indoor heat exchanger are connected in this order. In the heat pump type air conditioner consisting of, an auxiliary heat exchanger is installed in the lower part of the outdoor heat exchanger and is connected in series with the outdoor heat exchanger, and with either the outlet or inlet of this auxiliary heat exchanger,
A heat pump type air conditioner characterized in that a bypass circuit in which a flow rate adjusting pipe and an on-off valve are interposed is connected between a refrigerant pipe connecting the four-way valve and the indoor heat exchanger.
【請求項3】 上記補助熱交換器の出・入口のいずれか
と上記圧縮機の吸入管との間に流量調整管及び開閉弁が
介装されたバイパス回路を接続したことを特徴とするヒ
ートポンプ式空気調和機。
3. A heat pump type characterized in that a bypass circuit having a flow rate adjusting pipe and an opening / closing valve is connected between one of the outlet and inlet of the auxiliary heat exchanger and the suction pipe of the compressor. Air conditioner.
【請求項4】 圧縮機、四方弁、室外熱交換器、冷房用
絞りと逆止弁との並列回路、暖房用絞りと逆止弁との並
列回路及び室内熱交換器をこの順に接続してなるヒート
ポンプ式空気調和機において、上記冷房用絞りと逆止弁
との並列回路と上記暖房用絞りと逆止弁との並列回路と
を繋ぐ液ガス二相冷媒用配管と、上記圧縮機の吸入管と
の間に流量調整管及び開閉弁が介装された液冷媒噴射回
路を接続するとともに上記冷房用絞りと逆止弁との並列
回路中の逆止弁の出口側にこの逆止弁と直列に流量調整
管を設置したことを特徴とするヒートポンプ式空気調和
機。
4. A compressor, a four-way valve, an outdoor heat exchanger, a parallel circuit of a cooling throttle and a check valve, a parallel circuit of a heating throttle and a check valve, and an indoor heat exchanger are connected in this order. In the heat pump type air conditioner, the liquid gas two-phase refrigerant pipe connecting the parallel circuit of the cooling throttle and the check valve and the parallel circuit of the heating throttle and the check valve, and the suction of the compressor A liquid refrigerant injection circuit in which a flow rate adjusting pipe and an on-off valve are interposed is connected between the pipe and the check valve at the outlet side of the check valve in the parallel circuit of the cooling throttle and the check valve. A heat pump type air conditioner characterized by installing flow rate adjustment pipes in series.
【請求項5】 上記暖房用絞りと逆止弁との並列回路中
の逆止弁の出口側にこの逆止弁と直列に流量調整管を設
置したことを特徴とする請求項4記載のヒートポンプ式
空気調和機。
5. The heat pump according to claim 4, wherein a flow rate adjusting pipe is installed in series with the check valve on the outlet side of the check valve in the parallel circuit of the heating throttle and the check valve. Type air conditioner.
JP9574694A 1994-04-08 1994-04-08 Heat pump type air conditioner Withdrawn JPH07280378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9574694A JPH07280378A (en) 1994-04-08 1994-04-08 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9574694A JPH07280378A (en) 1994-04-08 1994-04-08 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH07280378A true JPH07280378A (en) 1995-10-27

Family

ID=14146065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9574694A Withdrawn JPH07280378A (en) 1994-04-08 1994-04-08 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH07280378A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138921A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
JP2008249236A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner
WO2009066581A1 (en) * 2007-11-22 2009-05-28 Mitsubishi Heavy Industries, Ltd. Heat pump type air conditioner
JP2010276239A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
WO2013160965A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Air conditioning device
WO2013160967A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Air conditioning device
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
JP2014181866A (en) * 2013-03-21 2014-09-29 Hitachi Appliances Inc Air conditioner
CN104089427A (en) * 2014-06-24 2014-10-08 珠海格力电器股份有限公司 Air conditioner system and control method thereof
WO2015151289A1 (en) * 2014-04-04 2015-10-08 三菱電機株式会社 Air-conditioning device
WO2016088268A1 (en) * 2014-12-05 2016-06-09 三菱電機株式会社 Air-conditioning device
US10208987B2 (en) 2014-02-18 2019-02-19 Mitsubishi Electric Corporation Heat pump with an auxiliary heat exchanger for compressor discharge temperature control

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138921A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
JP2008249236A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner
WO2009066581A1 (en) * 2007-11-22 2009-05-28 Mitsubishi Heavy Industries, Ltd. Heat pump type air conditioner
JP2009127939A (en) * 2007-11-22 2009-06-11 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner
EP2211127A4 (en) * 2007-11-22 2017-11-01 Mitsubishi Heavy Industries, Ltd. Heat pump type air conditioner
EP3388758A1 (en) 2007-11-22 2018-10-17 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat-pump air conditioner
JP2010276239A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
CN104254743A (en) * 2012-04-27 2014-12-31 三菱电机株式会社 Air conditioning device
EP2863148A4 (en) * 2012-04-27 2016-03-30 Mitsubishi Electric Corp Air conditioning device
WO2013160967A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Air conditioning device
WO2013160965A1 (en) * 2012-04-27 2013-10-31 三菱電機株式会社 Air conditioning device
CN104272037A (en) * 2012-04-27 2015-01-07 三菱电机株式会社 Air conditioning device
US9810464B2 (en) 2012-04-27 2017-11-07 Mitsubishi Electric Corporation Air-conditioning apparatus with low outside air temperature mode
JPWO2013160965A1 (en) * 2012-04-27 2015-12-21 三菱電機株式会社 Air conditioner
US9863679B2 (en) 2012-04-27 2018-01-09 Mitsubishi Electric Corporation Air-conditioning apparatus with low outside air temperature mode
CN104254743B (en) * 2012-04-27 2016-04-27 三菱电机株式会社 Conditioner
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
EP2927623A4 (en) * 2012-11-29 2016-07-27 Mitsubishi Electric Corp Air-conditioning device
JP6021940B2 (en) * 2012-11-29 2016-11-09 三菱電機株式会社 Air conditioner
JPWO2014083867A1 (en) * 2012-11-29 2017-01-05 三菱電機株式会社 Air conditioner
US10001317B2 (en) 2012-11-29 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus providing defrosting without suspending a heating operation
JP2014181866A (en) * 2013-03-21 2014-09-29 Hitachi Appliances Inc Air conditioner
US10208987B2 (en) 2014-02-18 2019-02-19 Mitsubishi Electric Corporation Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
WO2015151289A1 (en) * 2014-04-04 2015-10-08 三菱電機株式会社 Air-conditioning device
US10161652B2 (en) 2014-04-04 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104089427B (en) * 2014-06-24 2017-01-18 珠海格力电器股份有限公司 Air conditioner system and control method thereof
CN104089427A (en) * 2014-06-24 2014-10-08 珠海格力电器股份有限公司 Air conditioner system and control method thereof
GB2547144A (en) * 2014-12-05 2017-08-09 Mitsubishi Electric Corp Air-conditioning device
US20170234582A1 (en) * 2014-12-05 2017-08-17 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2016088268A1 (en) * 2014-12-05 2017-04-27 三菱電機株式会社 Air conditioner
WO2016088268A1 (en) * 2014-12-05 2016-06-09 三菱電機株式会社 Air-conditioning device
US10473354B2 (en) 2014-12-05 2019-11-12 Mitsubishi Electric Corporation Air-conditioning apparatus
GB2547144B (en) * 2014-12-05 2020-07-08 Mitsubishi Electric Corp Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
KR100833441B1 (en) Freezing apparatus
JP5357418B2 (en) Heat pump air conditioner
KR890000347B1 (en) Refrigeration system
KR100483301B1 (en) Multiform gas heat pump type air conditioning system
AU2005268121B2 (en) Refrigerating apparatus
KR890000348B1 (en) Refrigeration apparatus
US4483156A (en) Bi-directional variable subcooler for heat pumps
KR100186526B1 (en) Defrosting apparatus of heat pump
AU2007223486A1 (en) Refrigeration system
JPH07280378A (en) Heat pump type air conditioner
EP2729742B1 (en) Refrigeration circuit and heating and cooling system
US6018958A (en) Dry suction industrial ammonia refrigeration system
US11519645B2 (en) Air conditioning apparatus
JP2016205729A (en) Refrigeration cycle device
JP5430598B2 (en) Refrigeration cycle equipment
JP3418891B2 (en) Refrigeration equipment
KR200274119Y1 (en) Heat pump system
CN112460823B (en) Frequency converter thermal management system of air conditioner and air conditioner
JP3237867B2 (en) Ammonia refrigeration equipment
JPH1163709A (en) Air conditioner
JPH0611204A (en) Heat pump type air conditioner
CN112460774A (en) Frequency converter thermal management system of air conditioner and air conditioner
CN218955219U (en) Condensing unit and air conditioner
JP4664530B2 (en) Ice thermal storage air conditioner
JPH11304265A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703