JPH07280030A - Vibratory energy consuming mechanism - Google Patents

Vibratory energy consuming mechanism

Info

Publication number
JPH07280030A
JPH07280030A JP9583894A JP9583894A JPH07280030A JP H07280030 A JPH07280030 A JP H07280030A JP 9583894 A JP9583894 A JP 9583894A JP 9583894 A JP9583894 A JP 9583894A JP H07280030 A JPH07280030 A JP H07280030A
Authority
JP
Japan
Prior art keywords
viscoelastic body
plate
plates
amplitude
consumption mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9583894A
Other languages
Japanese (ja)
Other versions
JP3032424B2 (en
Inventor
Isamu Tsukagoshi
勇 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN GIKEN KK
Original Assignee
SHIN GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN GIKEN KK filed Critical SHIN GIKEN KK
Priority to JP6095838A priority Critical patent/JP3032424B2/en
Publication of JPH07280030A publication Critical patent/JPH07280030A/en
Application granted granted Critical
Publication of JP3032424B2 publication Critical patent/JP3032424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

PURPOSE:To expand the amplitude range where the function of the visco-elastic body can be demonstrated, and further increase the resistant force. CONSTITUTION:A vibratory energy consuming mechanism holds the visco-elastic body M in the clearance between opposite plates 11, 12, and takes advantage of the resistant force of the visco-elastic body to be generated in association with the relative amplitude operation of the plates, and a rotary member 15 which is rotatable in association with the relative amplitude operation of the plates is interposed in the visco-elastic body M.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粘弾性体を用いる振動
エネルギ消費機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration energy consumption mechanism using a viscoelastic body.

【0002】[0002]

【従来の技術】従来の粘弾性体を用いる振動エネルギ消
費機構を図に示す。図13は骨組構造物に設置した振動
エネルギ消費機構で、(a)は正面図、(b)は(a)
のBーB線矢視断面図、図14は振動エネルギ消費機構
の作用を示す図である。振動エネルギ消費機構は、平板
状の第1板11と第2板12とを間隙を有するように対
向させ、この間隙に粘弾性体Mを挟着することで構成さ
れるものであって、柱1間に多段に横設された相対する
横部材2の間に設置される。即ち、第1板11は上部横
部材2aに固定され、第2板12はボルト13を介して
下部横部材2bに固定される。ここで、第1板11と第
2板12に挟着する粘弾性体Mは、一般に、同じ振幅値
に対する抵抗力においては粘度の低い軟らかい材料で小
さく、粘度の高い硬い材料で大きいが、一方、限界振幅
値(粘弾性体Mの機能を果たす振幅の限界値をいい、こ
の限界値を超えると粘弾性体Mが切断等してその機能を
喪失してしまう)においては軟らかい材料では大きく、
硬い材料では小さいという性質を有している。そして、
構造物に対して水平方向に振幅値V0の振動が加えられ
た場合には、図14に示すように、第1板11と第2板
12とが水平方向に沿って相対的に振幅値V0と一致す
る振幅作動をするため、このとき生ずる粘弾性体Mの剪
断変形に伴う抵抗力を通じて振動エネルギを消費し、振
動を低減せしめている。
2. Description of the Related Art A vibration energy consumption mechanism using a conventional viscoelastic body is shown in the figure. FIG. 13 shows a vibration energy consumption mechanism installed in a frame structure, (a) is a front view, and (b) is (a).
FIG. 14 is a cross-sectional view taken along the line BB of FIG. The vibration energy consuming mechanism is configured by causing a flat plate-shaped first plate 11 and a second plate 12 to face each other with a gap, and sandwiching a viscoelastic body M in the gap. It is installed between the opposing horizontal members 2 which are provided in a multi-tiered manner between the two. That is, the first plate 11 is fixed to the upper lateral member 2a, and the second plate 12 is fixed to the lower lateral member 2b via the bolt 13. Here, the viscoelastic body M sandwiched between the first plate 11 and the second plate 12 is generally small in a soft material having low viscosity and large in a hard material having high viscosity in the resistance force to the same amplitude value. In the limit amplitude value (which is the limit value of the amplitude that fulfills the function of the viscoelastic body M, and the viscoelastic body M loses its function due to cutting or the like if it exceeds this limit value), it is large in a soft material,
Hard materials have the property of being small. And
When vibration having an amplitude value V 0 is applied to the structure in the horizontal direction, as shown in FIG. 14, the first plate 11 and the second plate 12 have a relative amplitude value along the horizontal direction. Since the amplitude operation matches V 0 , the vibration energy is consumed through the resistance force caused by the shear deformation of the viscoelastic body M generated at this time, and the vibration is reduced.

【0003】[0003]

【発明が解決しようとする課題】前記従来の振動エネル
ギ消費機構においては、振動の振幅が大きくなると前記
したように粘弾性体Mが切断してその機能を喪失してし
まうため、大きな抵抗力を有する硬い粘弾性体Mを用い
ることができないという不具合があった。そこで、本発
明は、粘弾性体の機能を発揮する振幅範囲を拡大可能な
らしめ、さらには、抵抗力の増大を図った振動エネルギ
消費機構を提供することを目的とするものである。
In the conventional vibration energy consumption mechanism, when the vibration amplitude increases, the viscoelastic body M is cut and loses its function as described above, so that a large resistance force is exerted. There is a problem that the hard viscoelastic body M that it has cannot be used. Therefore, it is an object of the present invention to provide a vibration energy consuming mechanism capable of expanding the amplitude range in which the function of the viscoelastic body is exhibited and further increasing the resistance force.

【0004】[0004]

【課題を解決するための手段】請求項1の振動エネルギ
消費機構は、対向する板と板との間隙に粘弾性体を挟着
し、板の相対振幅作動に伴って生ずる粘弾性体の抵抗力
を利用してなる振動エネルギ消費機構において、前記粘
弾性体内に前記板の相対振幅作動に伴い回転可能な回転
部材を介在させたものである。請求項2の振動エネルギ
消費機構は、請求項1の回転部材として、丸棒、球体、
又はコイルの少なくとも1種を用いるものである。請求
項3の振動エネルギ消費機構は、請求項1又は請求項2
の振動エネルギ消費機構において、対向する板と板との
間隙に磁石を挿入したものである。
According to another aspect of the present invention, there is provided a vibration energy consuming mechanism, wherein a viscoelastic body is sandwiched between opposing plates and the resistance of the viscoelastic body is generated by relative amplitude operation of the plates. In a vibration energy consuming mechanism that utilizes force, a rotating member that is rotatable in accordance with relative amplitude operation of the plate is interposed in the viscoelastic body. A vibration energy consuming mechanism according to a second aspect is the rotating member according to the first aspect, which includes a round bar, a sphere,
Alternatively, at least one kind of coil is used. The vibration energy consumption mechanism of claim 3 is the vibration energy consumption mechanism of claim 1 or claim 2.
In the vibration energy consumption mechanism, the magnet is inserted in the gap between the plates facing each other.

【0005】[0005]

【作用】請求項1又は請求項2の振動エネルギ消費機構
は、粘弾性体内に介在した丸棒、球体、又はコイル等の
回転部材が板の相対振幅作動に伴って回転することで、
この回転部材に付着する粘弾性体が攪乱されて変形を生
ずるため、抵抗力を増加することができる他、回転部材
の間隔を適宜に設定することで粘弾性体の切断を抑制で
きる。請求項3の振動エネルギ消費機構は、板が相対振
幅作動したとき磁石が滑って摩擦抵抗力を生ずる他、板
相互が離反する方向に負荷が作用した場合にも磁石の吸
引力によって板相互の間隙を保持するので、粘弾性体が
板から剥離するのを防止する。
In the vibration energy consumption mechanism according to claim 1 or 2, the rotating member such as a round bar, a sphere, or a coil interposed in the viscoelastic body is rotated by the relative amplitude operation of the plate,
Since the viscoelastic body attached to the rotating member is disturbed and deformed, the resistance force can be increased, and cutting of the viscoelastic body can be suppressed by appropriately setting the interval between the rotating members. According to another aspect of the vibration energy consumption mechanism of the present invention, when the plates are operated with relative amplitude, the magnets slide to generate a frictional resistance force, and also when a load acts in a direction in which the plates are separated from each other, the attraction force of the magnets causes the plates to interact with each other. Since the gap is maintained, the viscoelastic body is prevented from peeling from the plate.

【0006】[0006]

【実施例】【Example】

(第1実施例)本発明の第1実施例について図面を参照
して説明する。図1は粘弾性体の抵抗力を利用する形式
の振動エネルギ消費機構(以下、消費機構という)を示
し、(a)は正面図、(b)は(a)のBーB線矢視断
面図、(c)は(a)のCーC線矢視断面図であり、粘
弾性体M内に回転部材15を介在している他は、図13
に示す従来の消費機構と同様である。即ち、第1板11
と第2板12との間隙dには粘弾性体Mが挟着され、ま
た、該粘弾性体M内には板11、12の相対的振幅作動
に伴って回転できる回転部材として、間隙dと同じ外径
を有する丸棒15(15a)が適宜な間隔pで多数介在
されている。そして、該消費機構は、第1板11を上部
横部材2aに固定し、一方、第2板12をボルト13を
介して下部横部材2bに固定することによって設置され
る。尚、第1板11の内面下端側には停止片16が取付
けてあり、丸棒15aと粘弾性体Mとの比重の相違を原
因として、例えば、丸棒15aが粘弾性体Mよりも比重
が大きい場合にこれが沈降して板11、12から離脱す
るのを防止している。従って、この停止片16は、主に
消費機構を図1の横部材2、2間のように上下方向に設
置する場合に取付けられるが、丸棒15aに粘弾性体M
と同じ比重の素材を用いたり、消費機構を、例えば、図
2の平面図に示すように、支点3上に平行に並設された
梁部材4間のような水平方向に設置するような場合には
必ずしも必要ではない。粘弾性体Mには、例えば、有機
ポリマーを含有するアスファルト等が用いられる。図3
は粘弾性体Mの力学的特性を示したものであり、横軸は
粘弾性体Mに作用する振幅V(又は速度Sであって、粘
弾性体の剪断変形量でもある)を表している。尚、同一
の構造物においては振幅Vと速度Sとは比例関係にある
ので、両者は同じことを意味する。縦軸は単位面積あた
りの抵抗力fを表している。図3からも明らかなよう
に、粘弾性体Mの力学的特性はその種類により異なって
おり、一般に粘度の高い硬い材料M1では、抵抗勾配が
大きくて小さな振幅Vに対しても高い抵抗力fを得るこ
とができるが、大きな振幅Vでは粘弾性体が切断等して
抵抗力fが急激に低下し、その機能を喪失する限界振幅
値VC1は小さい。一方、粘度の低い軟らかい材料M2
は、抵抗勾配が小さくて同じ振幅値に対しては硬い材料
1に比較すると低い抵抗力fしか得られないが、大き
な振幅Vにも耐えることができてその限界振幅値VC2
大きいという性質を有している。
(First Embodiment) A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a vibration energy consumption mechanism (hereinafter, referred to as a consumption mechanism) of a type that utilizes the resistance force of a viscoelastic body, (a) is a front view, and (b) is a sectional view taken along the line BB of (a). 13C is a cross-sectional view taken along the line CC of FIG. 13A, except that the rotating member 15 is interposed in the viscoelastic body M, and FIG.
It is similar to the conventional consumption mechanism shown in. That is, the first plate 11
A viscoelastic body M is sandwiched in a gap d between the second plate 12 and the second plate 12, and a gap d is formed in the viscoelastic body M as a rotating member that can rotate in accordance with relative amplitude operation of the plates 11 and 12. A large number of round bars 15 (15a) having the same outer diameter are interposed at an appropriate interval p. Then, the consumption mechanism is installed by fixing the first plate 11 to the upper lateral member 2a, while fixing the second plate 12 to the lower lateral member 2b via bolts 13. A stop piece 16 is attached to the lower end side of the inner surface of the first plate 11, and due to the difference in specific gravity between the round bar 15a and the viscoelastic body M, for example, the round bar 15a has a higher specific gravity than the viscoelastic body M. When it is large, it prevents it from settling out and separating from the plates 11 and 12. Therefore, the stop piece 16 is attached mainly when the consumption mechanism is installed in the vertical direction such as between the lateral members 2 and 2 in FIG.
In the case where a material having the same specific gravity as that described above is used or the consumption mechanism is installed horizontally, for example, between the beam members 4 arranged in parallel on the fulcrum 3 as shown in the plan view of FIG. Is not always necessary. As the viscoelastic body M, for example, asphalt containing an organic polymer or the like is used. Figure 3
Represents the mechanical characteristics of the viscoelastic body M, and the horizontal axis represents the amplitude V (or velocity S, which is also the amount of shear deformation of the viscoelastic body) acting on the viscoelastic body M. . In the same structure, the amplitude V and the velocity S are in a proportional relationship, so that they mean the same. The vertical axis represents the resistance force f per unit area. As is clear from FIG. 3, the mechanical characteristics of the viscoelastic body M differ depending on the type, and in general, a hard material M 1 having a high viscosity has a large resistance gradient and a high resistance force even with a small amplitude V. Although f can be obtained, the limit amplitude value V C1 at which the viscoelastic body is cut at a large amplitude V and the resistance force abruptly decreases and the function is lost is small. On the other hand, the soft material M 2 having a low viscosity has a small resistance gradient and a lower resistance force f is obtained as compared with the hard material M 1 for the same amplitude value, but it can withstand a large amplitude V. The limit amplitude value V C2 has a property of being large.

【0007】前記構成の消費機構は、図4の作用図に示
すように、水平方向に振動が加えられて第1板11と第
2板12とが相対的に振幅作動をすると、これに追随し
て粘弾性体Mが剪断変形するとともに、丸棒15aが往
復回転を行う。図5は消費機構の抵抗力fを測定した結
果を表わすグラフであり、板11、12の間隙dを6m
mとし、この間隙dに、Aは外径6mmの丸棒15aを
12mm毎の間隔pで7本介在し、Bは24mm毎の間
隔pで4本介在し、また、Dは比較例として丸棒15a
を介在しない場合についての結果をそれぞれ示してい
る。横軸は剪断速度比(板の速度Sと隙間dとの比、S
/dをいう)、縦軸は単位面積当たりの抵抗力fをそれ
ぞれ両対数目盛で示す。尚、板の速度Sは、板11、1
2の振幅周期を一定(例えば、1Hz)の条件下で、そ
の振幅Vを変えることによって種々設定している。従っ
て、横軸の剪断速度比S/dは振幅Vと比例関係を有し
ているので、当該振幅Vを示すものでもある。前記測定
結果は、D、B、Aの順に従って抵抗力fが大きくな
り、即ち、丸棒15aを介在させることによって抵抗力
fが増加し、また、丸棒15aの数を多くする程抵抗力
fが増加することを示している。この理由は明らかでは
ないが、板11、12が振幅作動をしたとき、粘弾性体
Mが剪断変形する他、丸棒15aが回転してこの丸棒1
5aの外面に付着する粘弾性体Mが攪乱されて変形する
ため、全体としての抵抗力fが増加したものと推定され
る。従って、粘弾性体M内に丸棒15aを介在すること
により抵抗力fが増加する結果、振動低減性能が向上す
る。また、B及びDの場合は剪断速度比が大きくなると
粘弾性体Mの切断を生じて抵抗力fが急激に低下した
が、Aの場合には測定した剪断速度比範囲内においては
切断せず、抵抗力fは殆ど低下しないという結果を得
た。この粘弾性体Mの切断有無の理由については、Dの
場合は、粘弾性体Mがその限界振幅値を超えたため切断
したものである。一方、Aの場合に切断を生じなかった
理由については明らかではないが、Bの場合における粘
弾性体Mの切断状態を観察すると、切断が相隣り合う丸
棒15aの中間位置付近で生じており、丸棒15aの近
傍では生じていないことから、丸棒15aの存在及びそ
の間隔pが粘弾性体Mの切断抑制に対して何らかの寄与
しているものと思われる。かくして、粘弾性体Mの種類
に応じて前記測定試験等を実施して丸棒15aの適正な
間隔pを決定することにより、粘弾性体Mが切断せずに
その機能を発揮する剪断速度比(又は振幅)の範囲を拡
大できることとなり、このため、従来の場合に較べて、
粘弾性体Mとして粘度の高い硬い材料を使用でき、振動
低減性能が向上する。
As shown in the operation diagram of FIG. 4, the consumption mechanism having the above-described structure follows the horizontal vibration when the first plate 11 and the second plate 12 perform relative amplitude operation. Then, the viscoelastic body M is sheared and deformed, and the round bar 15a is reciprocally rotated. FIG. 5 is a graph showing the result of measuring the resistance force f of the consumption mechanism. The gap d between the plates 11 and 12 is 6 m.
In the gap d, A includes seven round bars 15a having an outer diameter of 6 mm at intervals p of 12 mm, B includes four bars at intervals of 24 mm, and D represents a circle as a comparative example. Stick 15a
The results are shown for the case without intervening. The horizontal axis is the shear rate ratio (the ratio of the plate speed S to the gap d, S
/ D), and the vertical axis represents the resistance force f per unit area on a logarithmic scale. The speed S of the plates is
The amplitude cycle of 2 is set variously by changing its amplitude V under the condition of constant (for example, 1 Hz). Therefore, since the shear rate ratio S / d on the horizontal axis has a proportional relationship with the amplitude V, it also indicates the amplitude V. The measurement result shows that the resistance force f increases in the order of D, B, A, that is, the resistance force f increases by interposing the round bar 15a, and the resistance force increases as the number of round bars 15a increases. It shows that f increases. Although the reason for this is not clear, when the plates 11 and 12 perform an amplitude operation, the viscoelastic body M undergoes shear deformation, and the round bar 15a rotates to cause the round bar 1 to rotate.
Since the viscoelastic body M attached to the outer surface of 5a is disturbed and deformed, it is estimated that the resistance force f as a whole is increased. Therefore, the resistance f is increased by interposing the round bar 15a in the viscoelastic body M, and as a result, the vibration reducing performance is improved. In addition, in the cases of B and D, when the shear rate ratio became large, the viscoelastic body M was cut and the resistance force f was drastically reduced, but in the case of A, it was not cut within the measured shear rate ratio range. , And the resistance force f hardly decreased. Regarding the reason for the presence or absence of cutting of the viscoelastic body M, in the case of D, the viscoelastic body M was cut because it exceeded the limit amplitude value. On the other hand, although the reason why the cutting did not occur in the case of A is not clear, when observing the cutting state of the viscoelastic body M in the case of B, the cutting occurs near the intermediate position between the adjacent round bars 15a. Since it does not occur in the vicinity of the round bar 15a, it is considered that the existence of the round bar 15a and its interval p contribute to some extent to the cutting suppression of the viscoelastic body M. Thus, by performing the measurement test or the like according to the type of the viscoelastic body M and determining the appropriate interval p between the round bars 15a, the shear rate ratio at which the viscoelastic body M exerts its function without being cut. The range of (or amplitude) can be expanded. Therefore, compared to the conventional case,
A hard material having high viscosity can be used as the viscoelastic body M, and the vibration reducing performance is improved.

【0008】尚、前記回転部材15は板の相対的振幅作
動に伴って回転可能なものであればよく、丸棒の他、球
体、コイル等を用いることができ、また、これら回転部
材15を各種組み合せて用いることもできる。図6の部
分的に切欠いた斜視図に示す消費機構は、第1板11と
第2板12との間隙dに挟着された粘弾性体M内に、間
隙dと同じ外径を有するコイル15(15b)を直線状
に多数介在したものである。ここに、コイル15bは単
独で介在させてもよいが、本例ではコイル15bの回転
時におけるその変形を防止するため、コイル15bの内
部に剛性の大きな直棒状の芯材17を嵌挿している。前
記消費機構は、図7の作用図に示すように、第1板11
と第2板12とが相対的に振幅作動をすると、これに追
随して粘弾性体Mが変形する他、コイル15bが往復回
転を行う。そして、当該コイル15bによる抵抗力の増
加効果については前記図5のCに示されている。即ち、
図5のCは板11、12の間隙dを6mmとし、この間
隙dに、外径6mmのコイル15bを12mm毎の間隔
pで7本介在した場合の結果であり(尚、芯材17の外
径は2mmとする)、前記したA及びDの場合と比較し
てみると、D、A、Cの順に従って抵抗力fが大きくな
り、即ち、コイル15bを介在することによって抵抗力
fが増加し、しかも丸棒15aの場合(図5のA)より
も抵抗力fが高いことを示している。この理由は明らか
ではないが、板11、12が振幅作動をしたとき、粘弾
性体Mが剪断変形する他、コイル15bが回転してこの
コイル15bの外面のみならず内面に付着する粘弾性体
Mが攪乱されて変形するため、全体としての抵抗力fが
丸棒15aの場合よりもさらに増加するものと推定され
る。従って、粘弾性体M内にコイル15bを介在するこ
とにより抵抗力fが増加する結果、振動低減性能が向上
する。又、Cの場合には、Aの場合と同様に、測定した
剪断速度比範囲内においては粘弾性体Mは切断せず、抵
抗力fは殆ど低下しないという結果を得た。従って、A
の丸棒15aの場合と同様に、コイル15bの存在及び
その間隔pが粘弾性体Mの切断抑制に対して何らかの寄
与しているものと思われ、このため、粘弾性体Mの種類
に応じてコイル15bの間隔pを適正に設定することに
より、粘弾性体Mが切断せずにその機能を発揮する剪断
速度比(又は振幅)の範囲を拡大できることとなり、ひ
いては、粘弾性体Mとして粘度の高い硬い材料を使用で
きる。
The rotating member 15 may be any member that can rotate in accordance with the relative amplitude operation of the plate, and a round bar, a sphere, a coil or the like can be used, and these rotating members 15 can be used. It is also possible to use various combinations. The consumption mechanism shown in the partially cutaway perspective view of FIG. 6 is a coil having the same outer diameter as the gap d in the viscoelastic body M sandwiched in the gap d between the first plate 11 and the second plate 12. A large number of 15 (15b) are linearly interposed. Here, the coil 15b may be interposed independently, but in the present example, in order to prevent the coil 15b from being deformed during rotation, a straight rod-shaped core material 17 having high rigidity is fitted inside the coil 15b. . As shown in the operation diagram of FIG. 7, the consumption mechanism includes a first plate 11
When the second plate 12 and the second plate 12 perform relative amplitude operation, the viscoelastic body M is deformed following this and the coil 15b reciprocally rotates. The effect of increasing the resistance by the coil 15b is shown in FIG. 5C. That is,
C in FIG. 5 is the result when the gap d between the plates 11 and 12 is set to 6 mm, and seven coils 15 b having an outer diameter of 6 mm are interposed in this gap d at intervals p of 12 mm (note that the core material 17 is The outer diameter is 2 mm), and comparing with the case of A and D described above, the resistance force f increases in the order of D, A, and C, that is, the resistance force f is increased by interposing the coil 15b. It shows that the resistance force f is increased and the resistance force f is higher than that in the case of the round bar 15a (A in FIG. 5). Although the reason for this is not clear, when the plates 11 and 12 perform an amplitude operation, the viscoelastic body M undergoes shear deformation, and the coil 15b rotates to adhere to the inner surface as well as the outer surface of the coil 15b. Since M is disturbed and deformed, it is estimated that the resistance force f as a whole is further increased as compared with the case of the round bar 15a. Therefore, the resistance f is increased by interposing the coil 15b in the viscoelastic body M, and as a result, the vibration reducing performance is improved. Further, in the case of C, as in the case of A, the viscoelastic body M was not cut and the resistance force f was hardly reduced within the measured shear rate ratio range. Therefore, A
As in the case of the round bar 15a, it is considered that the presence of the coil 15b and the interval p between them contribute to the cutting suppression of the viscoelastic body M. Therefore, depending on the type of the viscoelastic body M, By appropriately setting the spacing p between the coils 15b, the range of the shear rate ratio (or amplitude) at which the viscoelastic body M exerts its function can be expanded without cutting, and the viscosity of the viscoelastic body M can be expanded. High hardness material can be used.

【0009】尚、コイル15bは任意の配置、例えば、
環状、渦巻状等にして介在することもできる。図8の模
式図に示す消費機構は、粘弾性体M内に板11、12相
互の間隙dと同じ外径のコイル15bを渦巻状にして介
在したものであり、また、他の種類の回転部材として、
間隙dと同じ外径の球体15(15c)が多数、適宜な
位置に散在されている。このため、第1板11と第2板
12とが相対的に振幅作動をすると、球体15cの回転
による抵抗力fの増加に加えて、コイル15bが若干捻
れ回転してここに付着する粘弾性体Mが攪乱されて変形
するので、全体としての抵抗力fを増加することができ
る。特に、コイル15bを渦巻状や環状に配置した場合
や、或は球体15cの場合は、丸棒等の場合とは異なり
その回転に方向性がないため、板11、12の振動方向
が多方向に亘るような場合にも十分対応することができ
る。また、球体15cを介在しているので、当該球体1
5cによりコイル15bの回転時におけるその変形を抑
制できる。尚、丸棒等の場合と同様に、コイル15bの
渦巻の間隔や球体15cの間隔を適宜に設定することに
より、粘弾性体Mの切断は生じなかった。
The coil 15b may be arranged at any position, for example,
It is also possible to interpose it in a ring shape, a spiral shape or the like. The consumption mechanism shown in the schematic view of FIG. 8 is a viscoelastic body M in which a coil 15b having the same outer diameter as the gap d between the plates 11 and 12 is spirally interposed, and another type of rotation is used. As a member
A large number of spheres 15 (15c) having the same outer diameter as the gap d are scattered at appropriate positions. For this reason, when the first plate 11 and the second plate 12 perform relative amplitude operation, in addition to the increase in the resistance force f due to the rotation of the spherical body 15c, the coil 15b is slightly twisted and rotated, and the viscoelasticity attached thereto is added. Since the body M is disturbed and deformed, the resistance force f as a whole can be increased. Particularly, when the coil 15b is arranged in a spiral shape or an annular shape, or in the case of a spherical body 15c, unlike the case of a round bar or the like, there is no direction of rotation, so the vibration directions of the plates 11 and 12 are multidirectional. It is possible to sufficiently deal with cases such as when Since the sphere 15c is interposed, the sphere 1
5c can suppress the deformation of the coil 15b during rotation. As in the case of the round bar or the like, cutting of the viscoelastic body M did not occur by appropriately setting the spiral interval of the coil 15b and the interval of the spherical body 15c.

【0010】(第2実施例)図9は第2実施例に係る消
費機構の断面図を示し、第1板11と第2板12の間に
永久磁石18を挿入した他は図1(b)に示す消費機構
と同じであり、対応する部材には同じ符号を付す。即
ち、永久磁石18は希土類等を主原料とした強力な磁石
であって、板11、12相互の間隙dと同じ厚さを有
し、第1板11の内面に接着等して固定しており、第2
板12に対してはその吸引力によって吸着状態で挿入設
置している。ここに、永久磁石18は板11、12の一
方に直接固定せずに、その吸引力によって双方の板1
1、12に対して吸着状態に挿入設置してもよい。前記
構成の消費機構は、図10の作用図に示すように、板1
1、12の振幅作動時に丸棒15aの回転による抵抗力
の増加効果等を果たす他、永久磁石18が滑って摩擦抵
抗力を生ずるので、振動エネルギ消費量が増大し、振動
低減性能が向上する。また、板11、12相互を離反す
る方向に負荷Pが作用した場合にも、永久磁石18の吸
引力により板11、12相互の間隙dを保持できて、粘
弾性体Mが板11、12から剥離するのを防ぐことがで
きる。
(Second Embodiment) FIG. 9 shows a sectional view of a consumption mechanism according to a second embodiment, and FIG. 1 (b) except that a permanent magnet 18 is inserted between the first plate 11 and the second plate 12. ) Is the same as the consumption mechanism shown in FIG. That is, the permanent magnet 18 is a strong magnet whose main raw material is rare earth or the like, has the same thickness as the gap d between the plates 11 and 12, and is fixed to the inner surface of the first plate 11 by adhesion or the like. Cage, second
The plate 12 is inserted and installed in a suction state by its suction force. Here, the permanent magnet 18 is not directly fixed to one of the plates 11 and 12, but is attracted by both of the plates 1 and 12.
It may be inserted and installed in a suction state with respect to 1 and 12. As shown in the operation diagram of FIG.
In addition to the effect of increasing the resistance force due to the rotation of the round bar 15a during the amplitude operation of Nos. 1 and 12, the permanent magnet 18 slides to generate a frictional resistance force, so that the amount of vibration energy consumption is increased and the vibration reduction performance is improved. . In addition, even when the load P acts in a direction in which the plates 11 and 12 are separated from each other, the attraction force of the permanent magnet 18 can maintain the gap d between the plates 11 and 12, and the viscoelastic body M can move the plates 11 and 12. Can be prevented from peeling off.

【0011】(第3実施例)図11は第3実施例に係る
消費機構を示し、(a)は正面図、(b)は(a)のB
ーB線矢視図、(c)は(a)のCーC線矢視断面図で
ある。この消費機構は粘弾性体Mの抵抗力を利用する形
式で、前記図1で示したものとほぼ同様の構成である
が、構造物に対する設置方法が異なる。即ち、柱1に横
設された上部横部材2a及びこの下方の下部横部材2b
には一対の第1軸11a及び第2軸12aが適宜な間隔
で取付けてあり、第1板11が、その上端及び下端の各
角に穿設された図示しない穴を一方の第1軸11aに対
して遊びをもって嵌合することにより回転可能に取着さ
れ、また、第2板12が、その上端及び下端の各角に穿
設された図示しない穴を他方の第2軸12aに対して遊
びをもって嵌合することにより回転可能に取着される。
このため、前記消費機構は、図12の作用図に示すよう
に、構造物に対して水平方向に振幅V0の振動が加えら
れた場合、第1板11と第2板12はそれぞれ各1対の
第1支軸11a及び第2支軸12aを中心として角度θ
で往復回転変位して相対的に振動方向と直交する方向
(柱1と平行方向)に沿って振幅作動をすることにな
る。そして、この振幅作動量をbとしたとき、角度θ、
第1支軸11aと第2支軸12aとの間の距離L、各一
対の支軸11a、12a間の鉛直方向距離h、との間に
は、近似的に、tanθ=b/L なる関係があるの
で、振幅作動量bは、b=L/h・V0 又は、b=β
・V0 として表される(ここにβは振幅の変換係数
で、Lとhとの比、β=L/h として定義される)。
従って、この消費機構における振幅作動量bは加えられ
る振幅値V0 の値に拘らず、変換係数βを適宜選定する
ことにより任意に設定できるものであり、この点におい
て第1実施例で説明した消費機構とは異なっている。
尚、その他の構成においては第1実施例の場合と同様
に、粘弾性体Mが第1板11と第2板12との間隙dに
挟着され、該粘弾性体M内には板11、12の相対的振
幅作動に伴って回転できる回転部材としての丸棒15a
が適宜な間隔pで振幅方向と直交する方向に多数介在さ
れている。但し、本例においては、丸棒15aに粘弾性
体Mの比重よりも小さい素材を用いているため、第1板
11の内面には、丸棒15a毎にその上昇を防止するた
めの停止片16が取付けてある。従って、上記丸棒15
aの介在による作用、効果は第1実施例で説明した場合
と同じであるため、その詳細な説明は省略するが、抵抗
力の増加及び粘弾性体Mの切断抑制機能を果たすもので
ある。
(Third Embodiment) FIG. 11 shows a consumption mechanism according to a third embodiment, (a) is a front view, (b) is a B of (a).
-B line arrow view, (c) is CC sectional view taken on the line of (a). This consumption mechanism uses the resistance force of the viscoelastic body M and has a configuration similar to that shown in FIG. 1, but the installation method for the structure is different. That is, the upper lateral member 2a provided laterally on the pillar 1 and the lower lateral member 2b below the upper lateral member 2a.
A pair of a first shaft 11a and a second shaft 12a are attached to the first plate 11 at appropriate intervals, and the first plate 11 has holes (not shown) formed at respective corners of the upper end and the lower end of the first plate 11a. The second plate 12 is rotatably attached by being fitted with play to the second plate 12 and has holes (not shown) formed at the upper and lower ends of the second plate 12 with respect to the other second shaft 12a. It is rotatably attached by fitting with play.
For this reason, in the consumption mechanism, as shown in the operation diagram of FIG. 12, when the vibration of the amplitude V 0 is applied to the structure in the horizontal direction, the first plate 11 and the second plate 12 are respectively 1 An angle θ about the pair of the first support shaft 11a and the second support shaft 12a
Thus, it is reciprocally rotationally displaced, and an amplitude operation is performed along a direction (direction parallel to the column 1) relatively orthogonal to the vibration direction. When the amplitude operation amount is b, the angle θ,
The distance L between the first support shaft 11a and the second support shaft 12a and the vertical distance h between each pair of support shafts 11a and 12a are approximately tan θ = b / L. Therefore, the amplitude operation amount b is b = L / h · V 0 or b = β
Represented as V 0 (where β is the amplitude conversion factor, defined as the ratio of L to h, β = L / h).
Therefore, the amplitude actuation amount b in this consumption mechanism can be arbitrarily set by appropriately selecting the conversion coefficient β regardless of the value of the amplitude value V 0 to be added. In this respect, the first embodiment has been described. It is different from the consumption mechanism.
In other configurations, as in the case of the first embodiment, the viscoelastic body M is sandwiched in the gap d between the first plate 11 and the second plate 12, and the plate 11 is placed in the viscoelastic body M. 15a as a rotating member that can rotate with the relative amplitude operation of
Are intervened at an appropriate interval p in the direction orthogonal to the amplitude direction. However, in this example, since the round bar 15a is made of a material smaller than the specific gravity of the viscoelastic body M, a stop piece for preventing the round bar 15a from rising is provided on the inner surface of the first plate 11. 16 is attached. Therefore, the round bar 15
Since the action and effect by the intervention of a are the same as those described in the first embodiment, detailed description thereof will be omitted, but the function of increasing the resistance and suppressing the cutting of the viscoelastic body M is fulfilled.

【0012】[0012]

【発明の効果】本発明の振動エネルギ消費機構によれ
ば、回転部材を粘弾性体内に介在させたり、磁石を板と
板との間隙に挿入することで抵抗力を増加できるし、回
転部材間の間隔を適宜に設定することによって粘弾性体
が切断せずにその機能を発揮できる振幅範囲を拡大でき
るので、振動低減性能が向上する。
According to the vibration energy consuming mechanism of the present invention, the resistance can be increased by interposing the rotating member in the viscoelastic body or by inserting the magnet into the gap between the plates, and the rotating member can be increased. By appropriately setting the interval, the amplitude range in which the viscoelastic body can exert its function can be expanded without being cut, so that the vibration reduction performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る消費機構を示し、(a)は正
面図、(b)は(a)のBーB線矢視断面図、(c)は
(a)のCーC線矢視断面図である。
FIG. 1 shows a consumption mechanism according to a first embodiment, (a) is a front view, (b) is a sectional view taken along the line BB of (a), and (c) is CC of (a). FIG.

【図2】他の消費機構を示す平面図である。FIG. 2 is a plan view showing another consumption mechanism.

【図3】粘弾性体の特性図である。FIG. 3 is a characteristic diagram of a viscoelastic body.

【図4】消費機構の作用を示す断面図である。FIG. 4 is a cross-sectional view showing the operation of the consumption mechanism.

【図5】消費機構の抵抗力を測定したグラフである。FIG. 5 is a graph in which the resistance force of the consumption mechanism is measured.

【図6】他の消費機構を示す、部分的に切欠いた斜視図
である。
FIG. 6 is a partially cutaway perspective view showing another consumption mechanism.

【図7】消費機構の作用を示す断面図である。FIG. 7 is a cross-sectional view showing the operation of the consumption mechanism.

【図8】他の消費機構の模式図である。FIG. 8 is a schematic diagram of another consumption mechanism.

【図9】第2実施例に係る消費機構を示す断面図であ
る。
FIG. 9 is a sectional view showing a consumption mechanism according to a second embodiment.

【図10】消費機構の作用を示す断面図である。FIG. 10 is a cross-sectional view showing the operation of the consumption mechanism.

【図11】第3実施例に係る消費機構を示し、(a)は
正面図、(b)は(a)のBーB線矢視図、(c)は
(a)のCーC線矢視断面図である。
FIG. 11 shows a consumption mechanism according to a third embodiment, (a) is a front view, (b) is a view taken along the line BB of (a), and (c) is a line taken along line CC of (a). FIG.

【図12】消費機構の作用を示す正面図である。FIG. 12 is a front view showing the operation of the consumption mechanism.

【図13】従来の消費機構を示し、(a)は正面図、
(b)は(a)のBーB線矢視図である。
FIG. 13 shows a conventional consumption mechanism, (a) is a front view,
(B) is a BB line arrow view of (a).

【図14】消費機構の作用を示す図である。FIG. 14 is a diagram showing an operation of a consumption mechanism.

【符号の説明】[Explanation of symbols]

11 第1板 11a 第1支軸 12 第2板 12a 第2支軸 15 回転部材 15a 丸棒 15b コイル 15c 球体 18 永久磁石 M 粘弾性体 11 1st plate 11a 1st support shaft 12 2nd plate 12a 2nd support shaft 15 Rotating member 15a Round bar 15b Coil 15c Sphere 18 Permanent magnet M Viscoelastic body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対向する板と板との間隙に粘弾性体を挟
着し、板の相対振幅作動に伴って生ずる粘弾性体の抵抗
力を利用してなる振動エネルギ消費機構において、前記
粘弾性体内に前記板の相対振幅作動に伴い回転可能な回
転部材を介在させたことを特徴とする振動エネルギ消費
機構。
1. A vibration energy consumption mechanism comprising a viscoelastic body sandwiched between opposing plates and utilizing a resistance force of the viscoelastic body generated by relative amplitude operation of the plates. A vibration energy consuming mechanism, characterized in that a rotating member which is rotatable in accordance with relative amplitude operation of the plate is interposed in an elastic body.
【請求項2】 回転部材として、丸棒、球体、又はコイ
ルの少なくとも1種を用いることを特徴とする請求項1
の振動エネルギ消費機構。
2. The rotating member is at least one of a round bar, a sphere, and a coil, and is used.
Vibration energy consumption mechanism.
【請求項3】 対向する板と板との間隙に磁石を挿入し
たことを特徴とする請求項1又は請求項2の振動エネル
ギ消費機構。
3. The vibration energy consuming mechanism according to claim 1, wherein a magnet is inserted in a gap between the plates facing each other.
JP6095838A 1994-04-07 1994-04-07 Vibration energy consumption mechanism Expired - Fee Related JP3032424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6095838A JP3032424B2 (en) 1994-04-07 1994-04-07 Vibration energy consumption mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6095838A JP3032424B2 (en) 1994-04-07 1994-04-07 Vibration energy consumption mechanism

Publications (2)

Publication Number Publication Date
JPH07280030A true JPH07280030A (en) 1995-10-27
JP3032424B2 JP3032424B2 (en) 2000-04-17

Family

ID=14148528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6095838A Expired - Fee Related JP3032424B2 (en) 1994-04-07 1994-04-07 Vibration energy consumption mechanism

Country Status (1)

Country Link
JP (1) JP3032424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077458A (en) * 2012-10-09 2014-05-01 Unirock:Kk Vibration isolator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069848U (en) * 1983-10-21 1985-05-17 石黒 安之助 Anti-vibration mat device
JPH01135943A (en) * 1987-11-19 1989-05-29 Hitachi Plant Eng & Constr Co Ltd Vibration absorbing unit
JP3052446U (en) * 1998-03-19 1998-09-25 ヒロセ株式会社 Beam connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069848U (en) * 1983-10-21 1985-05-17 石黒 安之助 Anti-vibration mat device
JPH01135943A (en) * 1987-11-19 1989-05-29 Hitachi Plant Eng & Constr Co Ltd Vibration absorbing unit
JP3052446U (en) * 1998-03-19 1998-09-25 ヒロセ株式会社 Beam connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077458A (en) * 2012-10-09 2014-05-01 Unirock:Kk Vibration isolator

Also Published As

Publication number Publication date
JP3032424B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
Ariga et al. Resonant behaviour of base‐isolated high‐rise buildings under long‐period ground motions
DE102011078475B4 (en) Dynamic compensating device of a rotating body
EP2922778B1 (en) Magnetic screw propulsion system for elevators
JP2005516167A5 (en)
DE1538801B2 (en) Electric motor with a nutation movement between the rotor and the stator. Eliminated in: 1788145
JPH07280030A (en) Vibratory energy consuming mechanism
JPH10213177A (en) Base isolation unit and three-dimensional base isolating device using it
JP6745095B2 (en) Damper mounting structure
JPH10184094A (en) Damping mechanism, vibration isolation structure using the damping mechanism, and damping device
EP3258127A1 (en) Bearing mount and preload assembly
CN104594738B (en) The brake assembly and automobile of a kind of arrangements for automotive doors
JPS62220734A (en) Vibrational energy absorbing device
JP2005265174A (en) Magnetic type rotary damper
JPH0363361A (en) Response control device
JPH06351139A (en) Damper
JP3477684B2 (en) Bearing structure
JPS5836166A (en) Linear pulse motor
CN114559481A (en) Device is tailor to special-shaped flexible material that shocks resistance
DE2558738C2 (en) OE rotor spinning unit
JP2730475B2 (en) High bending rigid laminated rubber bearing
JP2006183681A (en) Vertical base-isolating unit and base-isolating device using the same
Tanaka et al. A Cyclogyro-based Flying Robot with Variable Attack Angle Mechanism
Cross Newton’s cradle with an end stop
DE2219029A1 (en) Electromagnetic device for suspended suspension of a load rotating around a vertical axis
JPH06146654A (en) Variable damping mass damper

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees