JPH07279897A - Variable rotor blade diagonal flow pump and discharge pump and circulating pump - Google Patents

Variable rotor blade diagonal flow pump and discharge pump and circulating pump

Info

Publication number
JPH07279897A
JPH07279897A JP6868094A JP6868094A JPH07279897A JP H07279897 A JPH07279897 A JP H07279897A JP 6868094 A JP6868094 A JP 6868094A JP 6868094 A JP6868094 A JP 6868094A JP H07279897 A JPH07279897 A JP H07279897A
Authority
JP
Japan
Prior art keywords
blade
hub
impeller
movable
mixed flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6868094A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Okamura
共由 岡村
Jinji Kimura
仁治 木村
Makoto Terajima
信 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6868094A priority Critical patent/JPH07279897A/en
Publication of JPH07279897A publication Critical patent/JPH07279897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To facilitate the machining of a conical hub surface by specifying the angle between the generatrix of a conical hub surface of a diagonal flow impeller and the center line of the stem shaft of a rotor blade so as to obtain a rightward downward G-H characteristic curve with no flection point over the entire blade angle of the rotor blade. CONSTITUTION:The hub surface 1a of a rotor blade diagonal flow impeller 1 and the hub side end face 2b of a rotor blade 2 of the impeller 1 are conical, the angle 6 between the generatrices of the hub surface 1a and the hub side end face 2b and the center line of the stem 21 of the rotor blade 2 is set to an angle of 90 deg. so that they are orthogonal to each other. Accordingly, a discharge volume (Q)-total head (Q) characteristic curve having no flection at a design total blade angle of the rotor blade 2 of the rotor blade diagonal flow impeller 1 and rightward downward inclined, can be obtained, and the impeller hub surface 1a and a casing liner inner surface 4a can be easily machined, thereby it is possible to lower the manufacturing cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大形の排水ポンプや火
力発電所の循環水ポンプなどに適用される可動翼斜流ポ
ンプ及び排水ポンプ並びに循環水ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a movable vane mixed flow pump, a drainage pump, and a circulating water pump applied to a large-sized drainage pump, a circulating water pump in a thermal power plant, and the like.

【0002】[0002]

【従来の技術】従来の可動翼斜流ポンプの構造を例示す
る縦断面図として、ターボ機械協会編:ターボポンプ、
平成3年1月、日本工業出版株式会社発行、第121頁
に記載のものを図10に示す。この可動翼斜流ポンプは
可動翼斜流羽根車1、ディフューザ3、吸い込みベルマ
ウス4、ケーシングライナ5などから構成され、その可
動翼斜流羽根車1のハブ面1a、羽根車1の翼2のケー
シングライナ側先端面2a及びハブ側(根元)端面2
b、ケーシングライナ5の内面5aは球面の一部で形成
される。
2. Description of the Related Art As a vertical cross-sectional view illustrating the structure of a conventional movable blade mixed flow pump, as shown in FIG.
FIG. 10 shows the one described on page 121, issued by Nippon Kogyo Publishing Co., Ltd., January 1991. This movable vane mixed flow pump is composed of a movable vane mixed flow impeller 1, a diffuser 3, a suction bell mouth 4, a casing liner 5, etc., and a hub surface 1a of the movable vane mixed flow impeller 1 and a blade 2 of the impeller 1. Casing liner side end face 2a and hub side (root) end face 2 of
b, the inner surface 5a of the casing liner 5 is formed by a part of a spherical surface.

【0003】更に、他の従来例には、特開昭60−17
299号、特開昭60−73094号、特開平5−20
2899号がある。なお特開昭60−17299号公報
に記載の可動羽根斜流ポンプは、羽根外周及びハブの表
面を何れも球面状に形成した可動羽根斜流ポンプにおい
て、羽根外周の球面中心に対し、ハブ球面中心を流れ方
向に見て羽根車回転軸線上後方にずらせている。さらに
特開昭60−73094号公報に記載の可動羽根斜流ポ
ンプにおいて、羽根車回転軸線を含む面内で羽根旋回軸
より下流側の羽根車回転軸線上を除いた区域に中心を持
つ円弧または類似の曲線を母線とする回転面(円錐面を
含む)として、ハブ面を形成している。
Furthermore, in another conventional example, there is JP-A-60-17.
299, JP-A-60-73094, JP-A-5-20.
There is No. 2899. The movable vane mixed flow pump described in JP-A-60-17299 is a movable vane mixed flow pump in which both the outer circumference of the blade and the surface of the hub are formed into a spherical shape. When viewed from the center in the flow direction, they are displaced rearward on the impeller rotation axis. Further, in the movable vane mixed flow pump described in JP-A-60-73094, an arc having a center in a region excluding the impeller rotation axis on the downstream side of the impeller rotation axis within a plane including the impeller rotation axis. The hub surface is formed as a rotation surface (including a conical surface) having a similar curve as a generatrix.

【0004】また特開平5−202899号公報に記載
の非妨害ポンプは、ハブとこのハブに取り付けられ、流
れ方向に後退した前縁を有する多数の回転可能羽根とを
含むプロペラポンプインペラにおいて、このハブの断面
がこの流れ方向に円錐状に増加すること、及びこれらの
羽根はそれらの断面形状、つまり翼弦が一定であるかま
たは外周方向に長さが増加するように設計され、これら
の羽根の回転軸が各断面の中心近くに配置されていて、
それがこの羽根をその軸の周りに回転するときこれらの
部品の並進運動が最小になるように、この回転軸と前縁
及び後縁との間のそれぞれの距離が最小になるインペラ
としている。
The non-interfering pump described in Japanese Patent Laid-Open No. 5-202899 is a propeller pump impeller including a hub and a plurality of rotatable vanes attached to the hub and having a leading edge set back in the flow direction. The cross-section of the hub increases conically in this flow direction, and these vanes are designed so that their cross-sectional shape, that is, their chord is constant or increases in the circumferential direction, The rotation axis of is located near the center of each cross section,
The impeller minimizes the respective distances between the axis of rotation and the leading and trailing edges so that translation of these components is minimized as it rotates the vane about its axis.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、可動
翼斜流ポンプの可動翼羽根車のハブ面、羽根車の翼のケ
ーシングライナ側先端面及びハブ側端面、及びケーシン
グライナの内面は球面の一部で形成されているが、これ
らの部品の球面の加工は容易でなく製作費が高くなると
いう問題があった。また図6の実線で示すように従来の
可動翼斜流ポンプの性能曲線流量(吐出量)Q−全揚程
H特性においては、可動翼の翼角(翼取付角、翼開度)
ψを基準翼角ψ0から小さくして翼をねかせてゆくと、
ある小さな翼角ψ-2において、ポンプQ−H特性に右上
がり部分の変曲点が発生する場合があり、このような変
曲点が生じると安定なポンプの運転が困難となる場合が
あるという問題があった。
In the above-mentioned prior art, the hub surface of the movable vane impeller of the movable vane mixed flow pump, the casing liner side tip surface and the hub side end surface of the impeller blade, and the inner surface of the casing liner are spherical. However, there is a problem that the spherical surface of these parts is not easy to process and the manufacturing cost is high. Further, as shown by the solid line in FIG. 6, in the performance curve flow rate (discharge amount) Q-total head H characteristic of the conventional movable blade mixed flow pump, the blade angle of the movable blade (blade attachment angle, blade opening)
When ψ is made smaller than the reference wing angle ψ 0 and the wings are entrained,
At a certain small blade angle ψ -2 , there may be an inflection point in the pump Q-H characteristic that rises to the right, and if such an inflection point occurs, stable pump operation may become difficult. There was a problem.

【0006】本発明の目的は、上記従来技術の問題点を
解決し、可動翼斜流羽根車の可動翼の設計全翼角で変曲
点のない右下がりのQ−H特性が得られるとともに、羽
根車ハブ面あるいはケーシングライナ内面などの加工を
容易にして製作費を低減できる可動翼斜流ポンプ及び排
水ポンプ並びに循環水ポンプを提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to obtain a downward-sloping Q-H characteristic without an inflection point at all blade angles of the movable blade of a movable blade mixed flow impeller. It is an object of the present invention to provide a movable vane mixed flow pump, a drainage pump, and a circulating water pump that can easily process an impeller hub surface or a casing liner inner surface to reduce manufacturing costs.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の可動翼斜流ポンプ及び排水ポンプ並びに
循環水ポンプは、ケーシングライナ内の可動翼斜流羽根
車のハブ面形状は円錐面とし、同羽根車の可動翼のケー
シングライナ側先端面形状は球面とする可動翼斜流ポン
プにおいてそのハブ面形状の円錐面の母線と可動翼ステ
ム軸中心線となす角度でハブ内側の上流側の角度が90
度または90度以上としている。
In order to achieve the above object, the movable vane mixed flow pump, drainage pump and circulating water pump of the present invention have a hub surface shape of the movable vane mixed flow impeller in a casing liner. In the case of a movable blade mixed-flow pump in which the conical surface and the casing liner end surface shape of the movable blade of the impeller are spherical surfaces, the inside of the hub is defined by the angle between the generatrix of the conical surface of the hub surface and the movable blade stem axis center line. The upstream angle is 90
Or 90 degrees or more.

【0008】また可動翼斜流羽根車は、設計基準翼角で
可動翼のハブ側端面が羽根車ハブ面に合うように円錐面
に形成され、その基準翼角から大きな翼角に翼が立てら
れたときに翼のハブ側端面が羽根車ハブ面と当たらずに
隙間なく対面するように、その可動翼のハブ側端面が対
面するハブ面の部分を窪み楕円体面に形成している。ま
た窪み楕円体面に形成されたハブ面の部分の窪み面とハ
ブ面の円錐面とがつながる部分が、滑らかな曲面で形成
されている。さらに可動翼斜流羽根車の球面に形成され
たケーシングライナ側先端面と対峠するケーシングライ
ナの内面形状を複数個の円錐面で形成している。
The movable blade mixed flow impeller is formed into a conical surface so that the end surface of the movable blade on the hub side fits the impeller hub surface at the design reference blade angle, and the blade stands at a large blade angle from the reference blade angle. The hub surface portion of the movable blade facing the hub side end surface is formed into a concave ellipsoidal surface so that the hub side end surface of the blade does not contact the impeller hub surface without a gap when the blade surface is contacted. Further, a portion where the hollow surface of the hub surface portion formed on the hollow ellipsoidal surface and the conical surface of the hub surface are connected is formed by a smooth curved surface. Furthermore, the inner surface of the casing liner facing the casing liner side end surface formed on the spherical surface of the movable blade mixed flow impeller is formed by a plurality of conical surfaces.

【0009】[0009]

【作用】上記の可動翼斜流ポンプ及び排水ポンプ並びに
循環水ポンプは、可動翼斜流羽根車のハブ面形状の円錐
面は加工を容易にし、またその円錐面の母線と可動翼ス
テム軸中心線とのなす角度でハブ内側の上流側の角度が
90度または90度以上に選択して設計することができ
る。
In the movable blade mixed flow pump, drainage pump and circulating water pump described above, the conical surface of the hub surface of the movable blade mixed flow impeller facilitates machining, and the generatrix of the conical surface and the movable blade stem axis center. The angle formed by the line can be selected so that the angle on the upstream side inside the hub is 90 degrees or 90 degrees or more.

【0010】また可動翼斜流羽根車は、羽根車ハブ面形
状を円錐面とするとともに、設計基準翼角で翼のハブ側
端面を羽根車ハブの円錐面に合うように形成し、かつ基
準翼角より若干大きな翼角に設定したときも翼のハブ側
端面が羽根車ハブ面に接触しないで対面するようにハブ
面の一部が窪み楕円体面としているので、隙間からの漏
れ流れを最小にして従来のQ−H特性が確保される。一
方の基準翼角より小さな翼角に設定したときに、従来の
Q−H特性に変曲点が発生するのは流量Q低流量域にお
いて翼の流れに急激な剥離が発生して翼に再付着せずに
失速に至る領域が広くなり全揚程Hの低下を生じるから
である。そこで本可動翼斜流羽根車は、基準翼角より小
さな翼角のときに羽根車ハブの円錐面と翼のハブ側端面
との隙間を大きくすると、その隙間を通り翼圧力面から
負圧面へ向かう漏れ流れが大きくなり、その翼の流れの
剥離は比較的流量の大きな領域から徐々に始まり、その
急激な剥離が抑制されて失速する領域が狭くなり急激な
揚程低下は阻止される。そして更に小さな流量Qとなる
と羽根車入口に逆流する部分が生じて全揚程Hは再び上
昇する結果、変曲点のない右下がりのQ−H特性が得ら
れる。さらに可動翼斜流羽根車の翼の球面に形成された
ケーシングライナ側先端面と対峠するケーシングライナ
の内面形状を複数の円錐面で形成すると、その加工費を
軽減できて球面で形成したのとほぼ同等の特性が得られ
る。
In addition, the movable blade mixed flow impeller has a conical surface as the impeller hub surface and is formed so that the end surface of the blade on the hub side at the design standard blade angle matches the conical surface of the impeller hub, and Even if the blade angle is set to be slightly larger than the blade angle, part of the hub surface is an ellipsoidal surface so that the end surface of the blade on the hub side faces without contacting the impeller hub surface, so leakage flow from the gap is minimized. Thus, the conventional Q-H characteristic is secured. When the blade angle is set to be smaller than one of the reference blade angles, the inflection point occurs in the conventional Q-H characteristic because the blade flow is rapidly separated in the flow rate Q low flow rate region and the blade is regenerated on the blade. This is because the area of stall without adhering becomes wider and the total head H is lowered. Therefore, in this movable vane mixed flow impeller, if the gap between the conical surface of the impeller hub and the end surface of the blade on the hub side is increased when the blade angle is smaller than the reference blade angle, the blade pressure surface moves from the blade pressure surface to the suction surface. The leakage flow toward the blade becomes large, and the separation of the flow of the blade gradually starts from a region having a relatively large flow rate, and the sudden separation is suppressed and the region of stalling is narrowed to prevent a sharp drop in the head. Then, when the flow rate Q becomes smaller, a backflow portion is generated at the impeller inlet and the total head H rises again. As a result, a right-down QH characteristic without an inflection point is obtained. In addition, if the inner surface of the casing liner facing the casing liner side end surface formed on the spherical surface of the blade of the movable blade mixed flow impeller is formed with a plurality of conical surfaces, the machining cost can be reduced and the spherical surface is formed. The characteristics almost equal to are obtained.

【0011】[0011]

【実施例】以下に本発明の実施例を図1から図9により
説明する。図1は本発明による可動翼斜流ポンプの第1
の実施例を示す縦断面図である。図1において、可動翼
斜流羽根車1のハブ面(ハブ表面)1a及びそれに対面
する羽根車1の可動翼2のハブ側端面2bは円錐面の形
状であり、このハブ面1a及びハブ側端面2bの円錐面
の母線と可動翼2のステム21のステム軸中心線Xとの
なす角度θは90度で直交するように形成される。一方
の可動翼2のケーシングライナ側先端面2aは球面の形
状であり、また吸い込みベルマウスとケーシングライナ
とが一体に形成された吸い込みケーシング4の内面の可
動翼2のケーシングライナ側先端面2aに対峠するケー
シングライナの内面部4aも球面の形状である。吸い込
みケーシング4の下流側はディフューザ3である。なお
図1において、ハブ面1a及びハブ側端面2bの円錐面
の母線と可動翼2のステム軸中心線Xとのなす角θは9
0度としているが、ハブ面1a及びハブ側端面2aの円
錐面の母線と可動翼2のステム軸中心線Xとのなす角度
でハブ内側の上流側の角度θが90度以上である場合も
含むものとする。この可動翼斜流ポンプは大形の排水ポ
ンプまたは火力発電所等の循環水ポンプなどに用いるこ
とができる。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 9. FIG. 1 shows a first embodiment of a movable vane mixed flow pump according to the present invention.
It is a longitudinal cross-sectional view showing an embodiment of. In FIG. 1, the hub surface (hub surface) 1a of the movable blade mixed flow impeller 1 and the hub-side end surface 2b of the movable blade 2 of the impeller 1 facing the same are conical surfaces. The angle θ formed by the generatrix of the conical surface of the end surface 2b and the stem axis center line X of the stem 21 of the movable blade 2 is formed so as to be orthogonal to each other at 90 degrees. The casing liner-side tip surface 2a of one movable blade 2 has a spherical shape, and the casing liner-side tip surface 2a of the movable blade 2 on the inner surface of the suction casing 4 in which the suction bell mouth and the casing liner are integrally formed. The inner surface portion 4a of the casing liner that faces it is also spherical. The diffuser 3 is located downstream of the suction casing 4. In FIG. 1, the angle θ between the generatrix of the conical surface of the hub surface 1a and the hub-side end surface 2b and the stem axis center line X of the movable blade 2 is 9
Although it is set to 0 degrees, the angle formed by the generatrix of the conical surface of the hub surface 1a and the hub-side end surface 2a and the stem axis center line X of the movable blade 2 on the upstream side inside the hub is also 90 degrees or more. Shall be included. This movable vane mixed flow pump can be used as a large-scale drainage pump or a circulating water pump in a thermal power plant or the like.

【0012】図2は図1の可動翼斜流羽根車の部分立体
図である。図2において、可動翼斜流羽根車1は設計基
準翼角で可動翼2のハブ側端面2bが羽根車ハブ面1a
の円錐面に合うように円錐面に形成され、その基準翼角
から大きな翼角に可動翼2が立てられたときに翼2のハ
ブ側端面2bが羽根車ハブ面1aと当たらずに隙間なく
対面するように、その可動翼2のハブ側端面2bが対面
する羽根車ハブ面1aの部分を窪み楕円体面1b、1c
に形成する。また羽根車ハブ面1aの窪み楕円体面1
b、1cの窪み面とハブ面1aの円錐面とがつながる部
分が、滑らかな曲面1d、1eで形成される。なお図2
において、可動翼2は羽根車回転方向にねかせて翼角
(翼取付角、翼開度)ψを小さくした状態で示してい
る。
FIG. 2 is a partial three-dimensional view of the movable blade mixed flow impeller of FIG. In FIG. 2, the movable blade mixed flow impeller 1 has a design reference blade angle, and the hub-side end surface 2b of the movable blade 2 is the impeller hub surface 1a.
When the movable blade 2 is erected at a large blade angle from the reference blade angle, the hub-side end surface 2b of the blade 2 does not contact the impeller hub surface 1a and there is no gap. The face of the impeller hub 1a facing the hub-side end face 2b of the movable blade 2 is recessed so as to face each other, and the ellipsoidal faces 1b, 1c are formed.
To form. Also, the hollow ellipsoidal surface 1 of the impeller hub surface 1a
Portions connecting the concave surfaces of b and 1c and the conical surface of the hub surface 1a are formed by smooth curved surfaces 1d and 1e. Figure 2
In the figure, the movable blade 2 is shown in a state in which the blade angle (blade attachment angle, blade opening) ψ is reduced by revolving in the impeller rotation direction.

【0013】図3は図2の可動翼斜流羽根車の可動翼の
A矢視図である。図3において、図2の可動翼羽根車1
の可動翼2をA方向(ステム軸中心線X方向)から見
て、翼角ψを基準状態の設計基準翼角ψ0としたとき、
翼を羽根車回転軸方向に立てたより大きな翼角ψ+(ψ+
>ψ0)のとき、翼を羽根車回転方向にねかせた小さな
翼角ψ-(ψ-<ψ0)のときの翼2の状態を示してい
る。
FIG. 3 is a view of the movable vanes of the movable vane mixed flow impeller of FIG. In FIG. 3, the movable impeller 1 of FIG.
When the movable blade 2 of is viewed from the A direction (stem axis centerline X direction), and the blade angle ψ is the design reference blade angle ψ 0 in the reference state,
Larger blade angle ψ ++
> Ψ 0 ) shows the state of the blade 2 when the blade angle is small ψ 0 ) when the blade is revolved in the impeller rotation direction.

【0014】図4(a)、(b)は図2の可動翼斜流羽
根車のB矢視断面図である。図4(a)、(b)におい
て、図4(a)は図2の羽根車1及びその可動翼2の前
緑部2c付近の断面Dを矢印Bの方向から見た断面形状
であり、翼2が設計基準翼角ψ0のときに翼2のハブ側
端面2bは羽根車1のハブ面1aにほぼ接しており、窪
み楕円体面1bの表面形状は翼角ψが大きくなるように
翼2を羽根車回転軸方向に立ててより大きな翼角ψ
+(ψ+>ψ0)にして、翼2のハブ側端面2bが回転移
動したときの軌跡面の楕円体形状に形成され、その窪み
楕円体面1bは設計最大翼角ψ+1に翼2が設定されるま
で翼2のハブ側端面2bが羽根車ハブ面1bに当たって
動かなくなることがなく隙間もないように形成されてい
る。また羽根車1のハブ面1aの一部に形成された窪み
楕円体面1bと羽根車1aの円錐面とがつながる部分は
滑らかな窪み端面に形成される。なお翼角ψが小さくな
るように翼2を羽根車回転軸方向にねかせてより小さな
翼角ψ-(ψ-<ψ0)にしたときには、翼2のハブ側端
面2bと羽根車ハブ面1aの間には隙間δ1が翼2の流
れの入口に形成される。
FIGS. 4A and 4B are sectional views of the movable vane mixed flow impeller of FIG. 4 (a) and 4 (b), FIG. 4 (a) is a sectional view of the impeller 1 and the movable blade 2 of FIG. When the blade 2 has the design reference blade angle ψ 0 , the hub-side end surface 2b of the blade 2 is almost in contact with the hub surface 1a of the impeller 1, and the surface shape of the concave ellipsoidal surface 1b is such that the blade angle ψ becomes large. Set 2 in the direction of the impeller rotation axis to increase the blade angle ψ
++ > ψ 0 ), the hub-side end surface 2b of the blade 2 is formed into an ellipsoidal shape of the locus surface when the blade 2 rotates, and the hollow ellipsoidal surface 1b has the designed maximum blade angle ψ +1. Is set so that the hub-side end surface 2b of the blade 2 does not come into contact with the impeller hub surface 1b and does not move until there is a gap. Further, the part where the concave ellipsoidal surface 1b formed in a part of the hub surface 1a of the impeller 1 and the conical surface of the impeller 1a are connected is formed as a smooth concave end surface. When the blade 2 is swung in the impeller rotation axis direction so as to reduce the blade angle ψ to a smaller blade angle ψ 0 ), the hub-side end surface 2b of the blade 2 and the impeller hub surface 1a. A gap δ 1 is formed at the inlet of the flow of the blade 2.

【0015】図4(b)は図4(a)の翼2のハブ側端
面2bの部分断面形状である。図4(b)において、図
4(a)の翼2のハブ側端面2bの翼2の流れの入口側
は負圧面2eとハブ側端面2(b)の両面が交差する角
に円みR1が付けられており、図4(a)の窪み楕円体
面1bの滑らかな窪み端面に対応している。
FIG. 4B shows a partial cross-sectional shape of the hub-side end surface 2b of the blade 2 of FIG. 4A. In FIG. 4 (b), the inlet side of the flow of the blade 2 of the hub-side end surface 2b of the blade 2 of FIG. 4 (a) is rounded at an angle where both the suction surface 2e and the hub-side end surface 2 (b) intersect. 1 is attached, and corresponds to the smooth end face of the recess ellipsoidal surface 1b in FIG. 4 (a).

【0016】図5(a)、(b)は図2の可動翼斜流羽
根車のC矢視断面図である。図4(a)、(b)におい
て、図5(a)は図2の羽根車1及びその可動翼2の後
縁部2d付近の断面Eを矢印E方向からみた断面形状で
あり、翼2が設計基準翼角ψ0のときに翼2のハブ側端
面2bは羽根車1のハブ面1aにほぼ接しており、窪み
楕円体面1bの表面形状は翼ψが大きくなるように翼2
を羽根車回転軸方向に立ててより大きな翼角ψ+(ψ+
ψ0)にして、翼2のハブ側端面2bが回転移動したと
きの軌跡面の楕円体形状に形成され、その窪み楕円体面
1bは設計最大翼角ψ+1に翼2が設定されるまで翼2の
ハブ側端面2bが羽根車ハブ面1bに当たって動かなく
なることがなく隙間もないように形成される。また羽根
車1のハブ面1aの一部に形成された窪み楕円体面1b
と羽根車1aの円錐面とがつながる部分は滑らかな窪み
端面に形成される。なお翼角ψが小さくなるように翼2
を羽根車回転軸方向にねかせてより小さな翼角ψ-(ψ-
<ψ0)にしたときには、翼2のハブ側端面2bと羽根
車ハブ面1aの間には隙間δ2が翼2の流れの出口側に
形成される。
5A and 5B are sectional views of the movable vane mixed flow impeller of FIG. 4 (a) and 4 (b), FIG. 5 (a) is a cross-sectional shape of the impeller 1 and the movable blade 2 of FIG. Is the design reference blade angle ψ 0 , the hub-side end surface 2b of the blade 2 is almost in contact with the hub surface 1a of the impeller 1, and the surface shape of the recessed ellipsoidal surface 1b is such that the blade 2 becomes large.
With a larger blade angle ψ ++
ψ 0 ), the hub-side end surface 2b of the blade 2 is formed into an ellipsoidal shape of the locus surface when rotationally moved, and the hollow ellipsoidal surface 1b is set until the blade 2 is set to the designed maximum blade angle ψ +1. It is formed so that the hub-side end surface 2b of the blade 2 does not come into contact with the impeller hub surface 1b and does not move, and there is no gap. Also, a hollow ellipsoidal surface 1b formed in a part of the hub surface 1a of the impeller 1.
The part where the conical surface of the impeller 1a and the conical surface are connected to each other is formed as a smooth end surface of the recess. In addition, the wing 2 is set so that the wing angle ψ becomes smaller.
A smaller blade angle lay to the impeller rotation axis direction ψ - -
0 ), a gap δ 2 is formed on the outlet side of the flow of the blade 2 between the hub-side end surface 2b of the blade 2 and the impeller hub surface 1a.

【0017】図5(b)は図5(a)の翼2のハブ側端
面2bの部分断面形状である。図5(b)において、図
5(a)の翼2のハブ側端面2b翼2の流れの出口側は
圧力面2fとハブ側端面2bの両面が交差する角に円み
2が付けられており、図5(a)の窪み楕円体面1b
の滑らかな窪み端面に対応している。
FIG. 5B shows a partial cross-sectional shape of the hub-side end surface 2b of the blade 2 of FIG. 5A. In FIG. 5 (b), a hub side end surface 2b of the blade 2 of FIG. 5 (a) is provided with a circle R 2 at the corner where the pressure surface 2f and the hub side end surface 2b intersect on the outlet side of the flow of the blade 2. And the concave ellipsoidal surface 1b of FIG. 5 (a).
Corresponds to the smooth concave end face of.

【0018】図6は図1の可動翼斜流ポンプのQ−H特
性例図である。図6において、図10の従来例等の可動
翼斜流ポンプの流量(吐出量)Q−全揚程H特性例を実
線で示し、図1の従来例と異なる本発明の1実施例の可
動翼斜流ポンプQ−H特性例を破線で示す。図1ないし
図5について上記説明した本発明の一実施例の構成の可
動翼斜流羽根車1をもつ可動翼斜流ポンプのQ−H特性
は図6に示すように、翼角ψが設計基準翼角ψ0及びそ
れより大きな翼角ψ+で設計最大翼角ψ+1まででは、従
来例の可動翼斜流羽根車の可動翼斜流ポンプのQ−H特
性(実線)と同じである。この理由は本実施例ポンプで
は設計基準翼角ψ0で従来例ポンプと同じQ−H特性が
得られるように設計され、これより大きな翼角ψ+とし
たときも設計最大翼角ψ+1まで図4(a)及び図5
(a)に例示したように可動翼2のハブ側端面2aと前
縁部2c及び後縁部2dを含む羽根車ハブ面1aの窪み
楕円体面との隙間が基準翼角ψ0のときの隙間と変わら
ず、また窪み楕円体面の窪み深さも翼2の高さ(流路
幅)に比べれば十分に小さいため窪み楕円体面の形成に
よる流れの損失の増加も極めて小さいからである。
FIG. 6 is an example of QH characteristics of the movable vane mixed flow pump of FIG. In FIG. 6, an example of the flow rate (discharge amount) Q-total head H characteristic of the movable vane mixed flow pump of the conventional example of FIG. 10 is shown by a solid line, and the movable vane of one embodiment of the present invention different from the conventional example of FIG. An example of the characteristic of the mixed flow pump QH is shown by a broken line. The QH characteristics of the movable vane mixed flow pump having the movable vane mixed flow impeller 1 having the configuration of the embodiment of the present invention described above with reference to FIGS. 1 to 5 are shown in FIG. With the reference blade angle ψ 0 and the larger blade angle ψ + and up to the maximum designed blade angle ψ +1 , the QH characteristics (solid line) of the movable blade mixed flow pump of the conventional example of the movable blade mixed flow impeller are the same. is there. This is because in this embodiment the pump is designed so that the same Q-H characteristic is obtained in the conventional example pumps in the design reference blade angle [psi 0, also designed maximum blade angle [psi +1 when from the large blade angle [psi + This Up to FIG. 4 (a) and FIG.
As illustrated in (a), the gap between the hub-side end surface 2a of the movable blade 2 and the hollow ellipsoidal surface of the impeller hub surface 1a including the front edge portion 2c and the rear edge portion 2d is the reference blade angle ψ 0. This is because the depression depth of the depression ellipsoidal surface is sufficiently smaller than the height (flow passage width) of the blade 2, and therefore the increase in the flow loss due to the formation of the depression ellipsoidal surface is extremely small.

【0019】また一方で翼2の翼角ψを設計基準翼角ψ
0より翼角ψ-で例えば翼角ψ-1以下に小さくしたときに
は図6のQ−H特性例は破線の特性曲線となる。この理
由は上記のとおり図4(a)及び図5(b)に示したよ
うに可動翼2の翼角ψを設計基準翼角ψ0より小さな翼
角ψ-にすると、翼2のハブ側端面2bと羽根車ハブ面
1aの円錐面との間には隙間δ1及び隙間δ2がそれぞれ
翼2の流れの入口側に形成されるが、するとこの隙間δ
1、隙間δ2を通って漏れ流れが発生し、これにより低流
量域での翼2における流れの剥離が比較的大きな流量Q
の領域から徐々に始まり、よって急激な流れの剥離は抑
制されて流路内の失速する領域が狭くなり急激な全揚程
Hの低下が阻止される。そして更に小さな流量Qになる
と羽根車入口側への逆流が生じて全揚程Hは再び上昇す
るから、その結果として変曲点のない右下がりのQ−H
特性が得られ、安定な可動翼斜流ポンプの運転が行われ
る。
On the other hand, the blade angle ψ of the blade 2 is set to the design reference blade angle ψ.
When the blade angle ψ is smaller than 0 and is smaller than the blade angle ψ −1 , for example, the QH characteristic example of FIG. The reason for this is that, as described above, when the blade angle ψ of the movable blade 2 is set to a blade angle ψ smaller than the design reference blade angle ψ 0 as shown in FIGS. 4 (a) and 5 (b), the hub side of the blade 2 is formed. Between the end surface 2b and the conical surface of the impeller hub surface 1a, a gap δ 1 and a gap δ 2 are formed on the inlet side of the flow of the blade 2, respectively.
1. Leakage flow is generated through the gap δ 2 and the flow separation in the blade 2 in the low flow rate region is relatively large.
Gradually starts from the region of (1), and thus abrupt separation of the flow is suppressed, the region of stall in the flow passage is narrowed, and a sudden decrease in the total head H is prevented. When the flow rate Q becomes smaller, backflow to the inlet side of the impeller occurs, and the total head H rises again. As a result, there is no inflection point, and Q-H descends to the right.
Characteristic is obtained and stable operation of the movable blade mixed flow pump is performed.

【0020】図7は本発明による可動翼斜流ポンプの第
2の実施例を示す縦断面図である。図7において、可動
翼斜流羽根車1のハブ面(ハブ表面)1a及びそれに対
面する羽根車1の可動翼2のハブ側端面2bは円錐面の
形状であり、このハブ面1a及びハブ側端面2bの円錐
面の母線と可動翼2のステム軸中心線Xとのなす角度で
ハブ内側の角度θが90度以下となるように設定されて
いる。このようにすると羽根車入口部の流路幅B1′は
図1に示す羽根車入口部の流路幅B1に比べて大きくな
る。すると斜流ポンプのキャビテーション性能は羽根車
入口の流路面積により定まり、この流路面積が大きいほ
ど子午面流速が小さくなり、よって翼2における圧力低
下が小さくなってキャビテーションの発生が少なくなり
キャビテーション性能が向上するが、この流路面積は上
記流路幅B1′に比例するから図7の第2の実施例の方
が図1の第1の実施例の流路幅B1のものより優れたキ
ャビテーション性能が得られる。この可動翼斜流ポンプ
は大形の排水ポンプまたは火力発電所等の循環水ポンプ
などに用いることができる。
FIG. 7 is a longitudinal sectional view showing a second embodiment of the movable vane mixed flow pump according to the present invention. In FIG. 7, the hub surface (hub surface) 1a of the movable blade mixed flow impeller 1 and the hub side end surface 2b of the movable blade 2 of the impeller 1 facing the hub surface (hub surface) 1a are conical surfaces. The angle θ between the hub inner surface and the stem axis center line X of the movable blade 2 formed by the generatrix of the conical surface of the end surface 2b is set to 90 degrees or less. By doing so, the flow passage width B 1 ′ at the impeller inlet portion becomes larger than the flow passage width B 1 at the impeller inlet portion shown in FIG. Then, the cavitation performance of the mixed flow pump is determined by the flow passage area at the impeller inlet. The larger the flow passage area, the smaller the meridional flow velocity, and the smaller the pressure drop in the blade 2 and the less cavitation performance. However, since the flow path area is proportional to the flow path width B 1 ′, the second embodiment of FIG. 7 is superior to the flow path width B 1 of the first embodiment of FIG. Excellent cavitation performance can be obtained. This movable vane mixed flow pump can be used as a large-scale drainage pump or a circulating water pump in a thermal power plant or the like.

【0021】図8は図7の可動翼斜流羽根車出口の速度
三角形の線図である。図8において、また羽根車出口部
流路幅(羽根車出口幅)B2については、図10の従来
の羽根車のケーシングライナ内面及びハブ面がともに球
面である例では、羽根車入口部流路幅(羽根車入口幅)
と羽根車出口部流路幅(羽根車出口幅)は同じである
が、図7の本第2の実施例では羽根車出口部流路幅(羽
根車出口幅)B2′を羽根車入口部流路幅(羽根車入口
幅)B1′より小さく設定することが可能であり、そう
すれば図8の羽根車出口の速度三角形における出口子午
面流速はCm2からCm2′へと大きくなり、出口流出角
はβ2からβ2′と大きくなるので、出口流出角β2に比
例して設定される羽根車1の翼出口角βb2(図3)は図
10の従来例の値より大きく設定できる。すると翼2の
長さは翼出口角βb2に依存して定まり、翼出口角βb2
大きいほど翼長さは短くなり、この可動翼2において翼
はステムに取り付けられていて、翼入口部と翼出口部は
ステムからオーバーハングしているから、従って翼の強
度上からは翼が適度に短い方が好ましい。よって羽根車
出口幅B2′を小さくすると、翼2を短くすることがで
き、強度上で優れた可動翼2が実現できる効果がある。
なお図8の羽根車出口の速度三角形について、流速
2′、u2は羽根車周速度、C2、C2′は流れの絶対速
度(合成速度)である。
FIG. 8 is a diagram of a velocity triangle at the outlet of the movable blade mixed flow impeller of FIG. In FIG. 8, regarding the impeller outlet flow path width (impeller outlet width) B 2 , in the example in which both the casing liner inner surface and the hub surface of the conventional impeller of FIG. 10 are spherical, the impeller inlet flow Road width (impeller entrance width)
And the impeller outlet passage width (impeller outlet width) are the same, but in the second embodiment of FIG. 7, the impeller outlet passage width (impeller outlet width) B 2 ′ is set to the impeller inlet. 'it is possible to set smaller than, Deguchiko meridional velocity at velocity triangle of the impeller exit in Figure 8 if so, Cm 2 from Cm 2' part flow path width (impeller inlet width) B 1 increases to Since the outlet outflow angle increases from β 2 to β 2 ′, the blade outlet angle β b2 (FIG. 3) of the impeller 1 set in proportion to the outlet outflow angle β 2 is the value of the conventional example of FIG. 10. Can be set larger. Then the length of the blade 2 is Sadamari depending on blade outlet angle beta b2, as blade outlet angle beta b2 is greater blade length is shortened, the wing in the movable blade 2 is attached to a stem, blade inlet Since the blade outlet portion is overhanging from the stem, it is preferable that the blade be appropriately short in view of the strength of the blade. Therefore, when the impeller outlet width B 2 ′ is reduced, the blade 2 can be shortened, and the movable blade 2 excellent in strength can be realized.
In the velocity triangle at the outlet of the impeller of FIG. 8, the flow velocities w 2 ′ and u 2 are the impeller peripheral velocity, and C 2 and C 2 ′ are the absolute velocity of the flow (composite velocity).

【0022】図9は本発明による可動翼斜流ポンプの第
3の実施例を示す縦断面図である。図9において、可動
翼斜流羽根車1は図1の第1の実施例と同様であり、こ
の可動翼斜流羽根車1の翼2の球面に形成されたケーシ
ングライナ側先端面と対峠する吸い込みケーシング4の
ケーシングライナの内面4aの形状をその母線が母線F
及び母線Gである2個の円錐面で形成してある。このよ
うにすればケーシングライナの内面4aの加工は従来例
の球面の加工に比べて大幅に容易となり加工費の低減を
図ることができる。なお図9ではケーシングライナの内
面4aを2個の円錐面で形成したが、一般に複数個の円
錐面で形成してもよい。この可動翼斜流ポンプは図1ま
たは図7の可動翼斜流ポンプなどにも適用できる。また
この可動翼斜流ポンプは大形の排水ポンプまたは火力発
電所等の循環水ポンプなどに用いることができる。
FIG. 9 is a vertical sectional view showing a third embodiment of the movable vane mixed flow pump according to the present invention. In FIG. 9, the movable blade mixed flow impeller 1 is the same as that of the first embodiment of FIG. 1, and it faces the casing liner side tip surface formed on the spherical surface of the blade 2 of the movable blade mixed flow impeller 1. The shape of the inner surface 4a of the casing liner of the suction casing 4 is the busbar F
And two conical surfaces that are the generatrix G. By doing so, the inner surface 4a of the casing liner can be machined significantly more easily than the conventional spherical surface machining, and the machining cost can be reduced. Although the inner surface 4a of the casing liner is formed of two conical surfaces in FIG. 9, it may be formed of a plurality of conical surfaces in general. This movable vane mixed flow pump can also be applied to the movable vane mixed flow pump of FIG. 1 or FIG. The movable blade mixed flow pump can be used as a large-sized drainage pump or a circulating water pump in a thermal power plant.

【0023】[0023]

【発明の効果】本発明によれば、可動翼斜流ポンプにお
いて可動翼斜流羽根車の可動翼の全設計翼角におけるQ
−H特性で変曲点のない右下がりのQ−H特性が得られ
安定なポンプの運転が容易に行えるとともに、可動翼斜
流羽根車のハブ面の加工あるいはケーシングライナの内
面の加工を容易にして製品の加工費を低減できるなどの
効果がある。
According to the present invention, in the movable vane mixed flow pump, the Q at all design blade angles of the movable vanes of the movable vane mixed flow impeller is obtained.
With the -H characteristic, a QH characteristic with a right downward slope without an inflection point can be obtained, which facilitates stable pump operation, and facilitates machining of the hub surface of a movable blade mixed flow impeller or the inner surface of a casing liner. This has the effect of reducing the processing cost of the product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の可動翼斜流ポンプの第1の実施例を示
す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a movable vane mixed flow pump according to the present invention.

【図2】図1の可動翼斜流羽根車の部分立体図である。FIG. 2 is a partial three-dimensional view of the movable blade mixed flow impeller of FIG.

【図3】図2の可動翼斜流羽根車の可動翼のA矢視図で
ある。
3 is a view of a movable blade of the movable blade mixed flow impeller of FIG.

【図4】図2の可動翼斜流羽根車のB矢視断面図であ
る。
FIG. 4 is a sectional view of the movable vane mixed flow impeller of FIG.

【図5】図2の可動翼斜流羽根車のC矢視断面図であ
る。
5 is a sectional view of the movable vane mixed flow impeller of FIG. 2 as viewed in the direction of arrow C. FIG.

【図6】図1の可動翼斜流ポンプのQ−H特性例図であ
る。
FIG. 6 is a QH characteristic example diagram of the movable vane mixed flow pump of FIG. 1.

【図7】本発明の可動翼斜流ポンプの第2の実施例を示
す縦断面図である。
FIG. 7 is a longitudinal sectional view showing a second embodiment of the movable vane mixed flow pump of the present invention.

【図8】図7の可動翼斜流羽根車出口の速度三角形の線
図である。
8 is a diagram of a velocity triangle at the outlet of the movable vane mixed flow impeller of FIG. 7. FIG.

【図9】本発明の可動翼斜流ポンプの第3の実施例を示
す縦断面図である。
FIG. 9 is a vertical sectional view showing a third embodiment of the movable vane mixed flow pump of the present invention.

【図10】従来の可動翼斜流ポンプを例示する縦断面図
である。
FIG. 10 is a vertical cross-sectional view illustrating a conventional movable blade mixed flow pump.

【符号の説明】[Explanation of symbols]

1 可動翼斜流羽根車 1a ハブ面 1b、1c 窪み楕円体面 2 可動翼 3 ディフューザ 4 吸い込みケーシング 1 Movable Blade Mixed Flow Impeller 1a Hub Surface 1b, 1c Dimple Ellipsoidal Surface 2 Movable Blade 3 Diffuser 4 Suction Casing

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ケーシングライナ内の可動翼斜流羽根車
のハブ面形状は円錐面とし、同羽根車の可動翼のケーシ
ングライナ側先端面形状は球面とする可動翼斜流ポンプ
において、上記可動翼斜流羽根車のハブ面形状の円錐面
の母線と可動翼のステム軸中心線とのなす角度でハブ内
側かつ上流側の角度が90度または90度以上である可
動翼斜流ポンプ。
1. A movable blade mixed flow pump in which a hub surface shape of a movable blade mixed flow impeller in a casing liner is a conical surface, and a casing liner-side end surface shape of a movable blade of the impeller is a spherical surface. A movable-blade mixed-flow pump in which the angle between the generatrix of the conical surface of the hub surface of the blade impeller and the stem axis center line of the movable blade is 90 degrees or more on the upstream side of the hub.
【請求項2】 ケーシングライナ内の可動翼斜流羽根車
のハブ面形状は円錐面とし、同羽根車の可動翼のケーシ
ングライナ側先端面形状は球面とする可動翼斜流ポンプ
において、上記可動翼斜流羽根車は設計基準翼角で可動
翼のハブ側端面が羽根車ハブ面に合うように円錐面に形
成され、その基準翼角から大きな翼角に翼が立てられた
ときに翼のハブ側端面が羽根車ハブ面と当たらずにほぼ
隙間なく対面するように、その可動翼のハブ側端面が対
面するハブ面の部分を窪み楕円体面に形成した可動翼斜
流ポンプ。
2. A movable vane mixed flow pump in which a hub surface of a movable vane mixed flow impeller in a casing liner has a conical surface and a tip end surface of a movable vane of the impeller has a spherical surface. A mixed-blade impeller is formed on a conical surface so that the end surface of the movable blade on the hub side matches the impeller hub surface at the design reference blade angle, and when the blade is set to a large blade angle from the reference blade angle, A movable-blade mixed-flow pump in which a portion of the hub surface of the movable blade facing the hub-side end surface is formed into a concave ellipsoidal surface so that the hub-side end surface does not contact the impeller hub surface with almost no gap.
【請求項3】 請求項1記載の可動翼斜流ポンプにおい
て、上記可動翼斜流羽根車は設計基準翼角で可動翼のハ
ブ側端面が羽根車ハブ面に合うように円錐面に形成さ
れ、その基準翼角から大きな翼角に翼が立てられたとき
に翼のハブ側端面が羽根車ハブ面と当たらずにほぼ隙間
なく対面するように、その可動翼のハブ側端面が対面す
るハブ面の部分を窪み楕円体面に形成した可動翼斜流ポ
ンプ。
3. The movable vane mixed flow pump according to claim 1, wherein the movable vane mixed flow impeller is formed into a conical surface such that the end face of the movable vane on the hub side matches the impeller hub face at a design standard blade angle. The hub on which the hub-side end surface of the movable blade faces so that the hub-side end surface of the vane faces the impeller hub surface with almost no gap when the blade stands up from the reference blade angle to a large blade angle. A movable vane mixed flow pump with a hollow surface that is formed into an ellipsoidal surface.
【請求項4】 窪み楕円体面に形成されたハブ面の部分
の窪み面とハブ面の円錐面とがつながる部分は、滑らか
な曲面で形成した請求項2または3記載の可動翼斜流ポ
ンプ。
4. The movable vane mixed flow pump according to claim 2, wherein a portion where the hollow surface of the hub surface formed on the hollow ellipsoidal surface and the conical surface of the hub surface are connected to each other is formed by a smooth curved surface.
【請求項5】 可動翼斜流羽根車の翼の球面に形成され
たケーシングライナ側先端面と対峠するケーシングライ
ナの内面形状を複数個の円錐面で形成した可動翼斜流ポ
ンプ。
5. A movable-blade mixed-flow pump in which the inner surface of a casing liner facing the casing-liner-side tip surface formed on the spherical surface of the blade of a movable-blade mixed-flow impeller is formed with a plurality of conical surfaces.
【請求項6】 可動翼斜流羽根車の翼の球面に形成され
たケーシングライナ側先端面と対峠するケーシングライ
ナの内面形状を複数個の円錐面で形成した請求項1から
4のいずれかに記載の可動翼斜流ポンプ。
6. The inner surface shape of a casing liner facing the casing liner side end surface formed on the spherical surface of the blade of a movable blade mixed flow impeller is formed by a plurality of conical surfaces. The movable blade mixed flow pump described in.
【請求項7】 請求項1から6のいずれかに記載の可動
翼斜流ポンプを用いた排水ポンプ。
7. A drainage pump using the movable vane mixed flow pump according to any one of claims 1 to 6.
【請求項8】 請求項1から6のいずれかに記載の可動
翼斜流ポンプを用いた発電所等の循環水ポンプ。
8. A circulating water pump for use in a power plant or the like, which uses the movable vane mixed flow pump according to any one of claims 1 to 6.
JP6868094A 1994-04-06 1994-04-06 Variable rotor blade diagonal flow pump and discharge pump and circulating pump Pending JPH07279897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6868094A JPH07279897A (en) 1994-04-06 1994-04-06 Variable rotor blade diagonal flow pump and discharge pump and circulating pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6868094A JPH07279897A (en) 1994-04-06 1994-04-06 Variable rotor blade diagonal flow pump and discharge pump and circulating pump

Publications (1)

Publication Number Publication Date
JPH07279897A true JPH07279897A (en) 1995-10-27

Family

ID=13380689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6868094A Pending JPH07279897A (en) 1994-04-06 1994-04-06 Variable rotor blade diagonal flow pump and discharge pump and circulating pump

Country Status (1)

Country Link
JP (1) JPH07279897A (en)

Similar Documents

Publication Publication Date Title
US4531890A (en) Centrifugal fan impeller
US6540481B2 (en) Diffuser for a centrifugal compressor
US10294956B2 (en) Propeller blade
CA2068854C (en) Impeller for centrifugal pumps
TW442616B (en) An improved vane system
JPS5990797A (en) Centrifugal compressor and compression method
JP2001280295A (en) Protrusion type compressor casing
US7186080B2 (en) Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
US5743710A (en) Streamlined annular volute for centrifugal blower
CN111577655B (en) Blade and axial flow impeller using same
CN109404334A (en) A kind of oblique flow wind wheel and the low noise diagonal flow fan including the oblique flow wind wheel
US5549451A (en) Impelling apparatus
JP2813014B2 (en) Rotary pump inlet speed distribution controller
WO2019172422A1 (en) Diffuser vane and centrifugal compressor
JP3508811B2 (en) Duct propeller device
CN110566500A (en) Impeller of centrifugal ventilator
JPH07279897A (en) Variable rotor blade diagonal flow pump and discharge pump and circulating pump
JP2573292B2 (en) High speed centrifugal compressor
JP2000009083A (en) Impeller
KR102558158B1 (en) Centrifugal impeller with partially opened shroud
JPS61164096A (en) Centrifugal pump rotatable to both normal and reverse directions allowing both normal and reverse flow of liquid
TWI788136B (en) Impeller and cooling fan including the same
JPH0233495A (en) Multiblade blower
JPH06272697A (en) Impeller with movable blade
JP3124517B2 (en) High specific speed mixed flow pump